Fault-tolerant Control Synthesis and Verification
of Distributed Embedded Systems

Matthias Kauer!, Damoon Soudbakhsh?, Dip Goswami®, Samarjit Chakraborty?, Anuradha M. Annaswamy?
! TUM CREATE, Singapore, matthias.kauer @tum-create.edu.sg
2 Massachusetts Institute of Technology, USA, {damoon, aanna}@mit.edu
3 Technische Universitit Miinchen, Germany, {dip.goswami, samarjit} @tum.de

Abstract—We deal with synthesis of distributed embedded
control systems closed over a faulty or severely constrained com-
munication network. Such overloaded communication networks
are common in cost-sensitive domains such as automotive. Design
of such systems aims to meet all deadlines following the traditional
notion of schedulability. In this work, we aim to exploit robustness
of the controller and propose a novel implementation approach
to achieve a tighter design. Toward this, we answer two research
questions: (i) given a distributed architecture, how to characterize
and formally verify the bound on deadline misses, (ii) given such
a bound, how to design a controller such that desired stability
and Quality of Control (QoC) requirements are met. We address
question (i) by modeling a distributed embedded architecture as
a network of Event Count Automata (ECA), and subsequently
introducing and formally verifying a property formulation with
reduced complexity. We address question (ii) by introducing a
novel fault-tolerant control strategy which adjusts the control
input at runtime based on the occurrence of fault or drop. We
show that QoC under faulty communication improves significantly
using the proposed fault-tolerant strategy.

I. INTRODUCTION

Contemporary in-vehicle networks contain Electronic Control
Units (ECUs), sensors and actuators that are connected via arbi-
trated, shared buses such as Ethernet, Controller Area Network
(CAN) or FlexRay. Feedback control applications that are running
in this context — often referred to as Cyber-physical Systems
(CPS’) — induce a tight coupling between computational and
physical resources. This is typically coordinated by designing
CPS’ with a fixed pair of deadline and sampling period; it is
then ensured that the worst-case sensor-to-actuator message delay
on the communication hardware is smaller than this deadline.
However, relying on the interface of sampling period and deadline
alone is not flexible enough in situations where the communica-
tion buses are already highly utilized. This is due to the fact that
worst-case delay is typically a rare occurrence triggered only by
a very specific sequence of events, and it is possible to design the
feedback controllers to be robust to certain amount of message
drops without compromising the required control performance.
In this work, we propose a design flow that first establishes a
formal bound on the message drops for a certain suitable period-
deadline pair. We then design a control strategy specifically with
this bound in mind that guarantees exponential stability.

A. Related Work

This work is closely related with two broad areas; (i) fault-
tolerant control design and (ii) analysis and formal verification

This work was financially supported in part by the Singapore National
Research Foundation under its Campus for Research Excellence And Tech-
nological Enterprise (CREATE) programme.

This work was supported in part by the NSF Grant No. ECCS-1135815 via
the CPS initiative.

978-3-9815370-2-4/DATE14/(©2014 EDAA

of timing properties in embedded architectures.

In control theory literature faults in the feedback loop are
often addressed by an appropriate Linear Matrix Inequality (LMI)
formulation as in [1], [2] and [3]. In [2], robustness of a feedback
control loop is quantified by a fault ratio over an infinite horizon.
An LMI-based design approach is presented in [3]. The presented
strategy assumes an upper bound on the consecutive faults and
zero sensor-to-actuator delay. A more recent approach to handle
dropped signals in a networked control system is the predictive
outage control presented in [4]. This approach is based on predic-
tive form and was implemented using an additional computational
block next to the actuator to compute new input signals in case no
new messages arrived. The input signal was computed using the
previous inputs of the system. In our study, we explicitly design
the controllers by considering the nominal delays of the system
and the upper bounds on the consecutive missed deadlines. We
use this information to design an exponentially stable controller.

On the timing analysis/verification side, [5] and [6] first
showed that certain control performance requirements induce
scheduling specifications that are w-regular languages. They then
describe the construction of a scheduling automaton where every
path leads to a schedule for a single ECU that guarantees all
the individual performance requirements. Building on their work,
[7] describes how such an @-regular specification can be used
in conjunction with an Event Count Automaton (ECA) model
(an automaton-based extension of Real-Time Calculus (RTC)
[8]) of the communication architecture to guarantee the overall
performance of a CPS. A similar angle is taken in [1] where
another extension of RTC to Timed Automata (TAs) and the
tool UPPAAL is used to guarantee the stability margin of a
control system. Both the ECAs in [7] as well as the TAs
from [1] can handle state-based scheduling in a straightforward
fashion and allow the integration with RTC. This greatly helps
with scalability if state-dependent scheduling is only employed
in certain subnetworks. Their main difference is the trade-off
between time-granularity and scalability of the modeling. The
ECA framework directly incorporates the jitter into a coarser
view of the architecture, leading to faster verification of typical
streaming systems. Finally, a technique that relies on RTC alone
— and hence trades in state-based scheduling for better scalability
— has been developed to analyze worst-case failure patterns in [9].
The authors combine this with an LMI-based test for exponential
stability, but no design method.

B. Contribution

Our contributions are two-fold. For a given ECA model of
a distributed embedded architecture, we propose an evaluation
method to verify an upper bound on missed deadlines. Our
model-checking framework is able to verify the bound with
deadlines shorter than the sampling period. Since most designs
in safety-critical domains do not allow longer deadlines, the

Buffer

Fig. 1: Distributed control system under consideration.

above framework is of practical importance in such setups. Our
proposed method reduces the size of the state space and hence
improves the performance of the model checking framework
compared to the previous works in this direction. Furthermore,
we propose an LMI-based formulation for fault-tolerant control
design that takes into account the bound guaranteed by the model
checking framework. Our control strategy observes deadlines
— that can be smaller than sampling period — at runtime and
adjusts the gains with respect to violations. This new control
design and implementation algorithm significantly improved the
system’s stability and reduced the required input over traditional
methods such as Zero-Order Hold (ZOH). Furthermore, instead
of testing and verifying the performance of a given control law
as in previous attempts [7], [9], [1], our framework designs a
controller for a given architecture.

II. PROBLEM DESCRIPTION

We consider a continuous linear time-invariant plant closed
over a highly utilized network as shown in Fig. 1. Since the
communication is initially unbuffered, the feedback loop experi-
ences a time-varying delay T which leads to the continuous time
dynamics

x(t) = Acx(t) + Beu(t — 1), (1)

where A, € R"™" B. € R"*P are continuous system and input
matrices; x, u denote the state variables and the control input
respectively.

This control system is divided into two main tasks, sensor
task ps and controller task p., and implemented in a distributed
fashion (see Fig. 1). On ECUj, state x[k] is read from the sensor
periodically. ps further processes the reading and sends it out
over the network to ECU, as a message. After the message
is transmitted over the network, it is stored in the buffer of
ECU,. On ECU,, p. is triggered periodically. It checks whether
a message has arrived in its buffer, calculates input signal u[k]
and adjusts the actuator accordingly.

The timing of this distributed system is detailed in Fig. 2. 7,
is the variable time interval from sensor reading until the message
arrives at the buffer of ECU,. Controller task p. then needs time
Ty to calculate u[k] and apply the input signal via the actuator.
Sensor and actuator are triggered periodically with period # and
a relative offset of 7,,. Therefore, 7| must not exceed 7, — T» for
a successful actuation. A message is considered to be dropped
when 1) > (7, — T2). Thus, control system (1) with variable delay
T can be considered as a discrete-time sampled-data system with
period h and constant sensor-to-actuator delay 7.

x[k+ 1] = Ax[k] + Boulk] + Biulk — 1])
where A, By, By are given by (3).

h—ty,
A=t BO:/ eV dvB,, B = AVdvB., (3)
0

h—r,h

In this work, we aim to guarantee Quality of Control (QoC) in
the form of exponential stability (Definition 2) under the presence

ECU, 04
CAN | 1
ey a a
PHY (Psense T feunb()) sense

Fig. 2: Timing Diagram of the Distributed System as in Fig. 1. Controller
task p. requires constant time 7. A fault occurs if variable delay 7 > 7, — 7.

of some dropped messages. However, package drops degrade
QoC and potentially render the system unstable. Hence, messages
cannot be dropped too frequently. We quantify the permissible
amount of lost signals with the notion of (m,k)-firm deadline
(Definition 1). For a given (m+ 1,1)-firmness, we need to adapt
our control strategy to ensure exponential stability (shown in
Section IV).

Definition 1 ((m,k)-firm Deadline): A message stream meets
an (m,k)-firm deadline of delay 7, if over any window of m
consecutive messages at least k arrive within 7, time.

Definition 2 (Global Exponential Stability): Equilibrium
point xy of system (1) is said to be globally exponentially stable
if there exist C,7y > 0 such that

[lx(®)]| < Cyllxo —x(20) | .o~ Vt=10)

holds for all 7 > 9. Equivalently, the system is globally exponen-
tially stable if there are suitable constants 0 < C,0 < ¥ < 1, such

that A
x[K]|| < €19 1o — x[ko] |

for k > ko is fulfilled for its discrete-time representation (2).

III. EVENT COUNT AUTOMATA

In this section we describe how to obtain the upper bound
on the deadline misses that we need to design a suitable control
strategy. We model the underlying hardware architecture of the
system as a network of Event Count Automata (ECAs), similar
to [7]. We briefly describe this in Section III-A. Since, we are
only interested in an upper bound on the successive deadline
misses, we can significantly simplify the time stamps and the
corresponding Linear Temporal Logic (LTL) formulation (Sec-
tion III-B). Finally, we use the model-checking tool Symbolic
Analysis Laboratory (SAL) [10] to obtain the bound from the
established model.

A. Networks of Event Count Automata (ECAs)

Individual ECAs. An individual ECA describes the arrival of
events or the available service of a Processing Element (PE).
Every state s € S of an ECA 1is characterized by an event rate
p(s) = [l,u], an interval bounding the possible occurrence of
events, the event count c. The event count ¢ increases the count
variables X and, at the same time, it makes up the output of
the ECA. Transitions with guards such as x =1 or x < 1 and
reset actions x <— 0 connect the states to each other. Both the
actual selection of the event count ¢ and the transitions are taken
non-deterministically — constrained by the rate function and the
guards, respectively. This non-determinism in turn has every ECA
produce a set of event count sequences

Y ={0o =(c1,c2,...) : ECA movement could produce ¢}

x+0
wl 67
x<3 %4— B
x+0 527 i
O, .

ticks

(a) Example ECA produc-
ing strings (1104 111)®

(b) Upper (solid) and lower (dashed)
bound on the events the ECA can pro-
duce.

Fig. 3: Example ECA illustrating the framework’s basic functionality.

For further illustration, consider the example ECA from Fig. 3(a).
Its states A and B have associated rate intervals p(A) = [1,1] and
p(B) = [0,1]. Hence, while in A one event per time slot will
occur, whereas the slots that the automaton spends in B may see
zero or one event. These events affect the single count variable
x. The ECA starts in the initial configuration (s;,,Vix) = (4,[0])
where V' corresponds to the valuation of the count variable x. It
cannot move out of A immediately, so it waits for two slots until
x =2 is fulfilled at which point the automaton moves to (B, [2]).
All transitions are considered urgent by default and we therefore
move to (A,[0]) immediately — whether another event occurs or
not. This behavior can be seen in Fig. 3(b) when the lower bound
(dashed) on the possible event count sequences diverges from the
upper bound (solid) in the second tick.

Connecting Multiple ECAs. A set of ECAs can be interlinked
via buffers and form an ECA network. The general idea is to
consider the event count ¢ of an ECA as available service. This
service is used to process messages (or generic data units) from
input to output buffer. The output buffer is another ECA’s input
and hence, a stream is formed. The first ECAs are without
input buffer and their events model arrivals of the system that
are deposited into the first buffers. These automata are also
referred to as arrival ECA. Note that for verification purposes,
ECAs, including their networks, can be transformed to Non-
determistic Biichi Automata (NBAs) giving access to a multitude
of established tools from the digital design domain. A more
complete description, with further examples and applications of
ECA can be found in [8].

B. Verification of Deadline Firmness

In the following, we propose a method to verify a (m+1,1)-
firm deadline using an ECA network model. In other words,
we develop a test to see if it is guaranteed that no more
than m consecutive messages fail to meet their deadline. Our
approach requires the following assumptions that are fulfilled in
the scenario we are concerned with:

1) Messages in the stream under discussion arrive period-
ically, possibly with small jitter, but without burst. This
is necessary for the arrival automaton’s clock to serve
as clock for the evaluation automaton.

Messages are only overwritten by other messages from
their own stream and they cannot bypass each other.
3) Messages have a deadline shorter than their arrival

period.

2)

Clka,, mod / 7& Th — T

4

clkyrr modh=1;,— 1
bufiya =0

clkgyr modh=1y,— 1
bUfmral >0

Fig. 4: Evaluation Automaton with inputs clkg,, the clock of the correspond-
ing arrival automaton, buf;,,; = Yi.icsyeam Pi» the total amount of messages
inside the stream of interest has inside the system.

Under these assumptions it is sufficient to test that the stream has
no more messages inside the system when the clock of the arrival
automaton reaches the deadline. When no messages are inside the
system, the last message that was sent must have successfully
arrived since — being last — it could not have been overwritten.

We implemented this check in the evaluation automaton
depicted in Fig. 4. To track the maximum number of uninterrupted
deadline misses, we initialize a variable failcnt = 0. We then
update it with (-)* the temporal next operator! depending on
s, the state of the evaluation automaton.

failent+1 , if s = fail
failentt =< 0 , if s = success
failent , if s = neutral

To guarantee that there are at most m message drops after every
successful transmission — as we require in this work —, it then
suffices to model check the simple LTL formulation

G(failent < m)

More complicated m, k-firm deadlines as discussed in [7] can be
evaluated by introducing a fail count array of size & that is updated
in a similar way. We would then have to verify that none of the
array’s elements exceed m at any time.

IV. FAULT-TOLERANT CONTROL DESIGN WITH DELAYS
UNDER FIRM DEADLINE ASSUMPTION

As explained in Section II, the controller’s task is to stabilize
the system and guarantee its required performance with nominal
delay 7,, and packet drops. Typically, these drops are caused
by delay from contending messages and subsequent deadline
violation as in Section III-B. They may also occur due to sporadic
hardware faults or disturbance from outside the control setup.

Fault-tolerant strategies are usually designed based on sys-
tems without delays (see for example [3]). In the following we
present Drop Compensation Control (DCC), a control design al-
gorithm using LMI and Switching Control Theory that considers
both delays and drops in the system. DCC adjusts the new input
signal to lessen the impact of the old input signal. Its design is
more involved than for ZOH, but it achieves superior QoC and
does not introduce chattering.

A. Zero-Order Hold (ZOH) Actuation Timing

The traditional implementation of a digital controller is a
sample and hold block that stores the control signal until the
periodically actuated controller finds a new one in its buffer. This

"More precisely, if b = b[k] refers to the content of variable b at the end
of slot k, b™ = b[k+ 1] refers to the content one time step later. This notation
integrates nicely with model-checking tools.

X0 j X1 X2 j X3
) Y up Uy =u \II u \I
ZOH < : _— ,:\ ?
5 e 1o \'/ul _ Ao “2 z
PZOH € »¢ 7€]
Io fo+ T I i+ T L t+Th I3 13+ T

Fig. 5: Activation Sequences for ZOH and PZOH in reaction to two successful
(x0, x2) and one failed (x;) transmission. ZOH only changes the input after a
successful transmission. PZOH sets the input to zero if a fault is detected.

is referred to as ZOH. An alternative approach that we named
Periodic Zero-Order Hold (PZOH) is periodically checking the
buffer for fresh state information and only actuates if the last
transmission was successful.
K if 7 <71y —
ulk] = { x[k] Lifn<t—n @

0 , otherwise

Fig. 5 illustrates the difference between these patterns.

B. Drop Compensation Control (DCC) Design

Any controller that is periodically checking its buffer for
new information in PZOH fashion (see Fig. 5) can identify
dropped messages at runtime. We therefore look for a strategy that
compensates for the drops and thereby increases the robustness
of the system. Fig. 6 shows a schematic implementation of the
proposed drop controller design. The drop controller counts the
number of consecutive drops J, i.e., the number of instants where
T1 > Ty, — T2, since the last successful update. In time step k+ j,
it then actuates the system based on x[k — 1], the last state that
was transmitted, and u[k — 2], the input at that time.

ulk+j] = Kixk— 1]+ Gulk—2], j=0,1,....m—1 (5)

This signal follows a PZOH actuation pattern, i.e., it is used until
the next period recalculation (see Fig. 5). In the following, we
will discuss how to select gain matrices (K s G.,-) j=0,...,m such that
exponential stability of the system is guaranteed.

In the nominal case, there are no drops and the system is

always actuated using (Ko, Gp). Using an extended state X[k] = &t

[x[k] ulk—1]]" we can write this as
A+ BoKy B+ ByGy def
Xkt 1) = (AT S0 Bt BoGol ety xiy (o)

In what follows, we develop an algorithm for designing the
stabilizing controller in the drop mode. For j =1 drops, we have

x[k+ 1] =Ax[k] + Bou[k] + Biu—; @)
=A(Ax[k — 1] + Boulk — 1] + Byu[k — 2])
+ Bo (Kix[k — 1] + Grulk —2]) + Byuy_

T T

Compensate
u+ Kix+Gju*
u* —u*
jj+1

NO

4

Wait
Regular
u < Kox+ Gou
u —u
j<0

4

YES

Fig. 6: Schematic representation of Drop Compensation Control (DCC). After
a successful transmission (TX), the regular path is taken. If no new information
is available, progressively higher compensation gains (K;,G;) are utilized.

and hence, using Ap défABo + By, we obtain:

2
X[k+1] = [A +ApKo + BoKi

AB1 +ApGo + BoGy

K, G X[k—1]

For a general number of drops j, we iterate this construction,
resulting in the following closed loop dynamics

U A0
X[k+1] = {A,g, Allx{k—ﬂdef APX=j1 ®
1 1
where
A()defAf“JrZAf 'AsK_| + BoK;
(’,:l
A el pip, +ZAJ ‘AsGy_1 + BoG;)

The goal is to design a controller that makes the switching
system in (8) exponentially stable (Definition 2). We do this by
introducing a novel LMI formulation that proves the existence of
a Common Quadratic Lyapunov Function (CQLF) in Theorem
2. Exponential stability is then guaranteed by Theorem 1, taken
from [11].

Theorem 1 (CQLF): A switching system
S0 xk+1]=Awx[k], i=1,2---N.

is exponentially stable with CQLF V (x) = x” Px if there exists a
matrix P > 0 solving the system of LMIs

ATPA;—P <0,

(10)

i€l,2--N (11)

Theorem 2: Suppose the communication of the system meets
a (m+1,1)-firm deadline requirement, i.e., there are at most m
consecutive drops. If there exist matrices E; € RP*", F; € RP*P,
Q1 e R™", 0, € RP*P with Q1,0; > 0, and positive scalar y < 1
such that LMI (13) and the system of LMIs (14) are satisfied.
Then, utilizing K; € RP*" and G; € RP*? as given by (12) in
control strategy (5) guarantees exponential stability of system (2).

Ki=EjQ' G;j=FQ,". (12)
—’)/Ql 0 * *
0 —v0» * *
AQi +BoEy BiQ2+BoFy —0; o | =0 (3
Ey F 0)

with
. i
AIT1Q + ¥ AIARE,_ | + BoE;
(=1
E;
. -1
A'B\Qy+ Y AT'AgF,_1 + BoF;
/=1
F;

Proof: Using the Schur complement, LMI (13) can be
rewritten to

Lo ' % —vy0<0

where matrices Q,.% are defined as

_ 101 0 __|AQ1+BoEy B10Q>+BoFy
A I S o

Substituting (12) and keeping A, from (6) in mind, we obtain
that

_ |AQi +BoKoQ1 Bi1Q2+BoGoQ2| _ ,
‘ZO‘{ KoQ1 Go0> }—A" e v
and hence
QAT Q™ 'A,0— Y0 < 0. (16)

Multiplying (16) from left and right by Q~!, and defining a new

positive definite matrix P def 07!, we arrive at the following
inequality

Al'pA, —yP <0, (17)
similarly, we can show that inequality (14) implies that
~T .
AV PAY P <0, j=1,--\m (18)

These inequalities imply that a quadratic Lyapunov function
V(X) =XTPX exists for systems (13) and (14), proving Theorem
2.]

Remark 3: One can view DCC as a special case of state
estimation scheme.

V. CASE STUDY
A. Fault-Tolerant Control Evaluation

In order to compare DCC to the established ZOH design, we
selected the following highly unstable system matrix A, and two

variations of input matrices By), Bg2> as in (19).

10 1 1M |0 @ _| 0
AC—[6.31 —15.48} Be —{10] B =11000] (19

For this system, a sampling time of 42 = 10ms and a delay
threshold of t,, = 4ms was chosen and A, B, By were calculated
via (3). The system is required to maintain exponential stability
tolerating a maximum of m = 2 consecutive drops and we
designed control gains K; and G; using Theorem 2 accordingly.
Figure 7 shows the behavior of the plant under the various control
strategies subject to random drops within the specifications. All
the traces start with an initial disturbance of xo = [0.25 0]". On
the left, we see that PZOH is clearly not suited for the bigger
input amplitude as it introduces considerable chatter in u and
converges much slower towards O in x; than the other approaches.
In case of a smaller input amplitude, as with B£2> on the right,
it is a more reasonable choice than ZOH however. Since this
system is more sensitive, ZOH can easily lead to over-actuating
and hence instability there. The proposed DCC strategy does not
suffer from either of these drawbacks and performs well for both
input matrices.

B. Formal Verification

We modeled an exemplary network of 5 streams with periods
P and jitter j as follows:

7.5ms
1.0ms

7.5ms
1.5ms

P=[4ms 5ms

j=[1ms

10ms]

1.5ms 0.5ms] (20)
The streams are traveling over a network with two service au-

tomatons. The first is a Time Division Multiple Access (TDMA)

0 200 400 0 200 400

x2(1)[1071]

0 200 400 0 200 400

t [ms]

t [ms]
Fig. 7: Comparing x|, x2, u (top to bottom) for system (19) with matrix Bgl)
(left) and BSZ) (right). ZOH (dashed) performs well for large inputs as required
by B.(1); PZOH (dotted) is well-suited for small inputs as induced by B.(2).
DCC (solid) remains stable and more steady in both situations.

automaton that rotates 10 slots, each 0.5ms long. In its second
slot, it processes one item of stream # 5, the stream of interest.
The sixth slot is reserved for maintenance tasks and the remaining
slots each process higher priority messages.

After the TDMA ECU, messages are further processed by a
bus with speed-stepping that schedules according to a synchro-
nized Fixed Priority Non-Preemptive Scheduling (FPNS) scheme.
It starts out processing 1 message every second slot. If there are
more than 2 messages waiting to be processed in total, it increases
its speed to one message per slot. If there are no more messages
waiting, it returns to processing 1 message every second slot.
Messages are arbitrated at the beginning of the slot, i.e. the ECA
processes the highest priority message that was in the buffer at
the end of the last slot.

Verification Result and Combined Design. If we run the system
purely on the starting speed, stream # 5 will only succeed
occasionally. If the system always runs on the high speed, there
are no violations for a deadline of 7, = 3 ms. Under the described
speed stepping scheme, our model checking implementation can
find two design points. We can guarantee that there will be at most
five consecutive misses for a deadline 7,;, = 3ms and at most two
for a deadline 7;;, = 4ms. We designed controllers for A, B£.2>
from (19) at both points and evaluated the performance using a
typical quadratic cost-term punishing both non-augmented state
and input. To be precise, we used

J= Zxﬁchk + u}cRuk

where Q = I,,R = I, were chosen to be identity matrices of
appropriate size. We ran N = 300 randomly initialized Monte-
Carlo simulations of length Tin,x = 5400ms. The comparison is
shown in Fig. 8. Here, J,. refers to the worst case, i.e., the
maximum number of drops always occur and Jp. refers to the
best case, i.e., no drops occur. Additionally, we simulated the
communication using a SystemC model and generated a trace
that we fed into the MATLAB simulation of the control system.
This way, we obtained the cost J,.,. The longer delay with fewer
losses clearly outperforms the system with more drops and stricter
deadline. Note however, that increasing the delay to the point

ey

] 19.07

N
T

i =]

- Jreal

=]

] Ibe
=] J] 14.52

= we 1 14.56

(98]
LT

Deadline 7,
i

Control Cost J

Fig. 8: Comparing two DCC design points found by the ECA network based
verification. Designing for higher delay, but less drops leads to a lower cost in
the best (J) and the simulated case (Jyq), Only worst case J,. is inferior.

where no more drops occur rendered the corresponding LMI
system infeasible for our solver.

Runtime Comparison. We compared the proposed evaluation
implementation to the one from [7] by looking at the runtime for
a deadlock-check. This was performed with the architecture with
coarser granularity described there. The deadlock-check required
45s with the old evaluation technique and less than 2s with the
proposed method. All these measurements were performed on a
workstation with an Intel i7-3370 CPU @ 3.4 GHz and 16 GB
RAM.

C. Comparing to an Optimistic Lossless Design

In certain cases, depending on the design flow, the designer
may have more flexibility when choosing sampling period 4. With
this in mind, we were interested how the proposed design would
fare when comparing it to a design with longer sampling period,
but no losses. As shown in Fig. 9, if we forgo the transmission
of the two failing messages, we arrive at lossless pattern with
sampling period A = (14 m) - h and unchanged delay T ;; = T.
This is optimistic and only serves to demonstrate the value of our
control design because the drop pattern is typically irregular and
unknown a priori.

For our comparison, we used the system described in Sec-
tion V-A with Bgz), T, = 2ms, m = 2, and evaluate the per-
formance using the quadratic cost-term from (21). Simulation
length and cost per step have been adjusted to account for
different sampling periods across the various examples and the
longer slots in the lossless cases. Note that these results are
therefore not comparable with Fig. 8. Fig. 10 summarizes the
result of this comparison for sampling periods h; = Sms, hy =
10ms, hs = 15ms. The values were obtained from Monte-Carlo
simulation with 500 random initializations of x¢ and 150 time
steps afterwards. For the smallest sampling period the system
is oversampled since reducing the sampling frequency does not
reduce QoC even when compared to J. the lossless case for the
smaller period & (not shown). The larger sampling periods are
more sensitive however. Here, even the worst case pattern for
the faster sampling achieves 10% better QoC; the real case, as
obtained by simulating, is about 25% superior.

— h =

losslessﬂ ﬂ ﬂ

Fig. 9: Assuming the message drops follow the regular worst-case pattern
under sampling period i, we could also regulate the system using the larger
period hy; = 3 - h. Note that this pattern is introduced to illustrate the value of
our control design and that in real systems, it is actually not guaranteed to be
lossless.

~
1 190.72

2 15] 149.43
= 1 211.86
[}
[=] J] 213.74
oo 10 & I 1 176.89
= by 1 236.08
= H 211.69

]] .
g 50 B Jwe | 173.81
s 1 163.39
15} ‘ ! ! 22,

0 50 100 150 200

Control Cost J

Fig. 10: Comparing the fault-tolerant controller (J,¢q; and Jy,) to the lossless
design (Jy;)with hyy = 3-h from Fig. 9. For h =5, J,.q and Jj; are on par,
indicating oversampling. For larger h, J,., is significantly smaller than Jj;
showing the value of the combination design.

VI. CONCLUSION

The presented work has two key components. The verification
framework provides a formal bound on the consecutive message
drops a given architecture can experience. Additionally, we
proposed a fault-tolerant control strategy that compensates for
a certain amount of faults in the feedback control loop. For its
parameterization, one can vary deadline 7;;, subsequently obtain
bound m for a (m+ 1,1)-firm deadline guarantee and select the
most suitable controller from these design points. Together, the
verification and the fault-tolerant controller form a co-design
framework for distributed control loops implemented over highly
utilized networks. Our case study shows a clear improvement in
terms of QoC compared to both traditional Sample & Hold and
lossless designs with higher sampling periods.

REFERENCES

[1] P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy, K. Lampka, and
L. Thiele, “A Hybrid Approach to Cyber-Physical Systems Verification,”
in DAC, 2012.

[2] W. Zhang, M. Branicky, and S. Phillips, “Stability of Networked Control
Systems,” IEEE Control Systems, vol. 21, no. 1, pp. 84-99, 2001.

[3] M. Yu, L. Wang, G. Xie, and T. Chu, “Stabilization of Networked Control
Systems with Data Packet Dropout via Switched System Approach,” in
CACSD, 2004.

[4] E. Henriksson, H. Sandberg, and K. H. Johansson, “Predictive Compen-
sation for Communication Outages in Networked Control Systems,” in
CDC, 2008.

[5] G. Weiss and R. Alur, “Automata Based Interfaces for Control and
Scheduling,” HSCC, 2007.

[6] R. Alur and G. Weiss, “Regular Specifications of Resource Requirements
for Embedded Control Software,” in RTAS, 2008.

[71 M. Kauer, S. Steinhorst, D. Goswami, R. Schneider, M. Lukasiewycz,
and S. Chakraborty, “Formal Verification of Distributed Controllers using
Time-Stamped Event Count Automata,” in ASP-DAC, 2013.

[8] S. Chakraborty, L. Phan, and P. Thiagarajan, “Event Count Automata: a
State-Based Model for Stream Processing Systems,” in R7TSS, 2005.

[91 D. Soudbakhsh, L. T. X. Phan, O. Sokolsky, I. Lee, and A. M.
Annaswamy, “Co-design of Control and Platform with Dropped Signals,”
in ICCPS, 2013.

L. de Moura, S. Owre, H. Rue, J. Rushby, N. Shankar, M. Sorea, and
A. Tiwari, “SAL 2, in Computer Aided Verification, ser. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2004, vol. 3114,
pp. 251-254.

O. Mason and R. Shorten, “On Common Quadratic Lyapunov Functions
for Stable Discrete-time LTI Systems,” IMA Journal of Applied Mathe-
matics, vol. 69, no. 3, pp. 271-283, 2004.

(10]

(11]

