
Programmable Decoder and Shadow Threads:
Tolerate Remote Code Injection Exploits with

Diversified Redundancy

Ziyi Liu+, Weidong Shi+, Shouhuai Xu†, Zhiqiang Lin�

ziyiliu@cs.uh.edu+, wshi3@central.uh.edu+, shxu@cs.utsa.edu†, zhiqiang.lin@utdallas.edu�

Department of Computer Science+, University of Houston, 4800 Calhoun Road,

Houston, TX 77004, U.S.A; Department of Computer Science†, The University of Texas at San Antonio,
One UTSA Circle, San Antonio, TX 78249-0667, U.S.A; Department of Computer Science�,

The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 U.S.A.

Abstract—We present a lightweight hardware framework for
providing high assurance detection and prevention of code
injection attacks using a lockstep diversified shadow execution.
Recent studies show that hardware diversification can detect
software attacks by checking the consistency of their behavior si-
multaneously. Unfortunately, the severe performance degradation
and extra system costs caused by these methods are unacceptable
in many applications. This paper presents a hardware-level,
lockstep shadow thread framework to enrich the diversity of
the software execution, with the facilitation from programmable
hardware decoder and novel CPU support of tightly coupled
shadow thread technique. Specifically, given a piece of (legacy)
binary code, we first generate diversified binary versions using
an offline binary rewriter and programmable hardware binary
translator at runtime. Two diversified binary code images are
launched as dual simultaneous threads in the hardware layer
with one as the primary thread and the other one as shadow
thread. Instructions from the shadow thread are not executed
but just compared, and thus incur no OS side-effects. The
extended CPU is able to decode instructions from both threads,
and dispatch them to the next stage pipeline for a lockstep
comparison. Any mismatch of the decoded instructions from the
two threads caused by remotely injected binary code will be
detected. Our design provides instruction set randomization (ISR)
with minimal cost in performance, when compared with straight-
forward ISR implementation. The simulation results indicate
that our framework incurs very small overheads and provides a
protection against code injection attacks.

I. INTRODUCTION

The monoculture of our computer eco-system is one of the
root-causes of many of our cyber attacks today, such as code
injection, code reuse, worms, and bots. Breaking the mono-
culture of the computer system has shown to be an effective
approach to counter these large scale and rapid attacks. In
the past decade, numerous techniques have been proposed to
create diversified execution environments. Notable examples
include address space layout randomization (ASLR) [20],
[5], [7], instruction set randomization (ISR) [3], [17], data
randomization [10], [6], [11], and N-Variant systems [12], [4],
[19].

However, to the best of our knowledge, all these approaches
are from software perspective. More or less, they often suffer
from either large overhead (e.g., ISR has to at least 75% over-
head according to a most fast implementation [21]), or prac-
ticability (e.g., require accessing program source code [10],
[6], [11]), or have limited entropy (e.g., for 32-bits ASLR, the
entropy is only 216). While N-Variant system has explored the
diversity of existing ISAs, it only leverages the macro level
differences of multiple computer architectures. For instance, as

978-3-9815370-2-4/DATE14/ c©2014 EDAA

shown in [12], N-variant can run code compiled for several
architectures (x86, ARM, MIPS) in parallel to detect code
injection attacks. However, it has a synchronization problem
as it employs stand-alone existing computer systems with
different ISAs.

As such, in this paper, we aim to explore the hardware
approaches at micro instruction level to achieve the diversi-
fication. To this end, we propose a hardware-level, lockstep
shadow execution framework to enrich the diversity of the soft-
ware execution, with the facilitation from hardware decoder.
Specifically, given a piece of (legacy) binary code, we first
generate diversified versions by remapping its machine codes
through a binary rewriter. The original binary code along with
the diversified binary code are launched as tightly coupled
dual threads (one called primary thread, the other one called
shadow thread) in the hardware layer.

Different from the conventional cycle interleaving simulta-
neous threads (SMT), our two coupled threads appear as one
to the OS kernel. For example, our dual threads share the
same OS footprint or side-effect (e.g., I/O operations from
both threads are only executed once). The extended hardware
is able to decode the remapped instructions, and dispatch them
to the next stage pipeline for a lockstep opcode and operand
comparison. If there is any difference, the hardware will flag
that there is an intrusion from code injections. Our evaluation
results indicate that our framework incurs minimal overheads
and provides a protection against binary code injection attacks.
In short, we make the following contributions:

• We introduce a low overhead machine code diversifi-
cation technique that can remap machine code of the
same ISA into multiple variants based on the concept
of programmable decoder for high assurance of security
properties.

• We propose a design of lockstep shadow thread that
synchronizes and cross-validates two variants of the same
application at per instruction level. Any injected attack
codes will be detected due to mismatched instructions
after decoded.

• We present a hardware implementation and analyze its
performance.

II. SYSTEM OVERVIEW

A. Remote Code Injection Attacks
In the past decades, a variety of code injection attacks has

appeared in the wild. For instance, buffer overflow attack
injects attack code in the stack, leading to the overwrite of
the function return address or a function pointer to point to
the entry of the injected code [16]. Recently, hackers and



researchers have been targeting embedded systems as their
attack focus (e.g., [13], [1], [2]). In [13], the author describes
an approach by which SQL injection is used to gain remote
access to arbitrary files from the file systems of Netgear
wireless routers. In [2], the authors demonstrate exploiting
HP-RFU LaserJet printer firmware vulnerability which allows
arbitrary injection of malware into the printer’s firmware. The
key for these attacks is that the injected machine code will
overflow the buffer to gain privilege access on the device
firmware. These code injection based attacks can only succeed
if the injected foreign code is compatible with the execution
environment. For example, program may crash when injecting
MIPS machine code to a process running on x86 system
because execution of the illegal opcode. Our approach is based
on this observation, and we create an execution environment
that can load a variant shadow thread, so that the CPU
can always check the correctness of the instructions in the
primary thread by comparing each decoded instruction with
the corresponding instruction in the lockstep shadow thread.
Hence, even an attacker succeeds in injecting malicious code,
the injected code can be detected by our system because they
produce mismatched instructions after decoded by the primary
thread and shadow thread. It is important to note that code
injection attacks cannot be prevented by techniques such as
non-executable stack.

B. Approach Overview

Threat Model Our threat model is defined as the following.
An attacker is attempting to penetrate into an operating system
via code injection attack. Software applications are distributed
to the end user in binary format, and then diversified with
support for shadow thread. The binary application has been
tested, but not guaranteed to be vulnerability free. The program
may contain weakness that can be exploited by code injection.
However, the application is assumed to be free from back
doors or trojans. Furthermore, we assume that there is no
insider attack. The attacker does not know/see the executable
version of the binary code. As such, the attacker can only
launch a kind of random attack because the attacker can
neither see (due to the lack of privilege) nor run the scrambled
code (because the attacker does not have access to the decoder,
which is bound to the processor of the program owner/user).
Our threat model mainly focuses on attacks where a system
is subverted by processing malicious data submitted by the
attacker. The data may contain injected code. The threat model
covers a wide range of exploits such as compromising a
system through a hosted client-server application, attacks to
networked printers, wireless consumer appliances, networking
gears (e.g., network gateway), internet access points, network
clients, networked smart grid devices, embedded systems, etc.

Overview The system framework of our design is shown in
Figure 1. At a high level, there are three steps. First, the binary
code needs to be diversified off-line by a binary rewriter. At
this stage, the machine codes of a binary will be extracted
and translated line by line via a machine code diversifier. In
particular, the opcode of each instruction will be replaced with
another unique value based on an encoding map. A swizzle
operator will reorder the positions of the result machine codes.
The original code image can have multiple different diversified
copies. Each one has its own encoding map. The binary
rewriter will also be responsible to pack different versions of
the binary codes along with their mapping information as well
as its swizzle rules into a single binary file. Though diversified,
all the binary images contain identical instructions in the ISA.

Next, at execution time, multiple versions of the machine
code images will be loaded into separate application contexts
(simultaneous co-threading with one primary executing thread

Fig. 2. Process of Binary Instruction Diversification

and one shadow thread) by a special loader. Meantime, this
loader will also load the decoder maps that are protected
into the kernel space. Though each thread has its own virtual
memory space and page tables, they are tightly coupled using
instruction level lockstep synchronization. Each thread has its
own program counter, because the two binary images need to
be fetched into the instruction caches and decoded by the CPU.
However, different from the conventional SMT architecture,
the two threads have identical program counters.

Then, the fetched instructions are translated according to
the decoder maps (loaded into the CPU). The extended CPU
compares the translated and decoded instructions between the
primary and shadow thread. Instructions from the shadow
thread are not executed because the two threads contain
identical instructions. The shadow thread occupies minimal
hardware resources (much less than what is required in the
conventional SMT). We extend the CPU pipeline by support-
ing the proposed “lockstep simultaneous” co-threads. In par-
ticular, the modified CPU can fetch and compare instructions
from different versions of binary images at the same time.
Before the instruction gets executed, the instruction translator
will translate the scrambled machine codes into the original
instructions. After translation, the extended CPU will compare
the decoded shadow thread instruction with the corresponding
instruction from the primary thread. A mismatch will occur
when remotely injected codes are fetched and decoded. The
CPU will record such mismatch and raise an exception when
the instruction from the primary thread is committed.

III. ARCHITECTURE AND DESIGN

A. Machine Code Diversification
There are two steps involved for binary code diversification.

First, the opcode of each instruction is replaced with another
value according to a lookup table. Next, positions of each
machine code bit are scrambled using a programmable swizzle
operator. In RISC type of ISA, the opcode often has a fixed
length. For instance, 32bits MIPS has a 6-digit Opcode. As
shown in Figure 2, the original instruction is mapped to a
new instruction with a new opcode according to a lookup
table. The lookup table contains an array of unique 6-bit
random numbers that are chosen by a system administrator
or randomly generated. Using 32bit MIPS as example, this
table defines the mapping for all the MIPS opcodes. An input
opcode will be translated according to this table, e.g., 000100
is translated into 101000 in our example. The programmable
swizzle operator will scramble the order of all the machine
code bits. In the figure, the first bit is moved to the fourth bit,
the second bit is moved to the eleventh bit, and so on.

B. Programable Code Translation
We implemented the proposed design at hardware layer

using gate-level logic. As shown in Figure 4, machine code of
a fetched instruction will first be reordered by a programmable
swizzle operator, and then translated back to the original
instruction using a lookup table. The lookup table is designed



Fig. 1. Overview of Hardware Supported Binary Code Diversification and Lockstep Dual Thread Execution Model. Given a binary image, a binary rewriter
can produce two diversified thread images. One behaves as a main thread, and the other one acts as a shadow thread. The two threads contain identical
instruction sequences of the same ISA but encoded with different binary format. When executed by the hardware, the threaded micro-architecture will fetch
and decode both threads in lockstep and cross-validate the decoded instructions.

Fig. 3. Implementation of Swizzle Operator

as an array of bits similar to a directly mapped cache with
opcode as index. The programmable swizzle operator is more
complex because we need to support programmable N-to-N
remapping of bit locations. Basically, we design a hardware
logic that can arbitrarily swap machine code bits according to
a set of programmable control bits.

As shown in Figure 3, one can use n N-to-1 muxes to design
the swizzle operator. The ultimate goal of the swizzle operator
is to scramble a n-bit input machine code into another n-bit
output machine code. Using 32 bits MIPS ISA as example,
the input comprises a 32-bit machine code. After swizzle
operation, each bit of the machine code will be put into a
new position. For the 32-bit machine code output, each bit
location stores the value from an arbitrary input bit out of
the 32 input bits. A 32-to-1 multiplexer that takes 32 bit
inputs can arbitrarily choose an input bit as the output based
on 5-bit control signals. For implementing our design, one
can use 32 32-to-1 multiplexers to create a 32-to-32 swizzle
operator. There exist alternative designs that are efficient in
logic area. However, we use this design in our evaluation
for simplicity. One advantage of our design for binary format
diversification is its low overhead in terms of hardware cost
and latency. Alternative designs such as a straight-forward
hardware implementation of ISR [17] will incur more over-
head in area and decoding latency because ISR relies on
heavyweight cryptographic functions. Simulation results show
upto 1000% performance slowdown under naive ISR hardware
implementation.

C. Lockstep Shadow Threads
Our lockstep shadow threads share some similar features

with the conventional cycle based simultaneous threading
(SMT) but with several major differences. In a conventional
SMT machine, the minimum resources needed for one in-
dependent thread execution are an execution unit, a private
register file, and a separate stack-space. Similar to the si-
multaneous multithreading technique, the lockstep threads can
issue instructions each cycle by alternating instruction fetches

between the primary thread and the shadow thread. Lockstep
threads enable execution of these two threads in parallel on a
single core with multiple programable counters. One essential
feature of the lockstep threads is that two instructions of both
threads can be fetched at once. This rule ensures that the
program counters of the primary and shadow thread point
to the same virtual address. After translated by the TLB
(translation lookup buffer), these program counters point to
different physical addresses.

Different from the conventional SMT technique, in our
design, the primary and the shadow thread contain identical
instructions but different binary images. The two threads are
synchronized in lockstep at per instruction level. This means
that the corresponding instructions from both threads commit
together atomically as one instruction. Since the primary
and shadow thread contain identical instructions, it is not
necessary to execute the decoded instructions from the shadow
thread. The hardware pipeline will match the corresponding
instructions from the two threads after they are decoded, and
ensure that they are the same. When a mismatch is detected,
an exception will occur. Taking advantages of the fact that the
two threads are the same, the shadow thread doesn’t need its
own architect register file. It can use register values from the
primary thread.

Since each thread has its own memory space, instructions
that change memory states should take effects for both threads.
This is achieved by applying the same updates to the physical
memory of both threads at the same time and tagging on-chip
cache lines with both primary thread id and shadow thread id.
With this implementation, data only needs to be saved once
by the primary thread. The two threads can share virtually
indexed data cache entries. When a data cache line is evicted,
its value will be written back to the physical memory for both
threads automatically. Note that instruction cache cannot be
shared because the two threads contain different binary code
images.

After a machine code is translated and decoded, the hard-
ware pipeline will first determine whether the instruction is
from the primary thread or not. The instructions from the
primary thread are always executed. If the decoded instruction
is from the shadow thread, it will be compared with the
corresponding instruction of the primary thread. Result of
the comparison is stored as a single bit value in the related
ROB (re-order buffer) entry of the primary thread. When
instructions are committed and retired from the ROB, the
matching bits will be checked. The hardware will raise excep-
tion if it detects mismatch of decoded instructions. From OS
perspective, the two lockstep threads behave as one thread. OS



Fig. 4. Extensions to Processor Execution Pipeline. The figure shows the main extensions to an Out-of-Order threaded processor architecture for supporting
the proposed lockstep shadow thread model. Each thread has its own program counter, and decoding context. When mismatch between a pair of decoded
instructions from the main and shadow thread is detected, the hardware will record it in the ROB (Reorder Buffer). When the main thread instruction is to be
committed and there is a mismatch, an exception will be raised and handled by the OS kernel. Most instructions from the shadow thread don’t need execution
because the two threads are identical.

resources are only allocated once for the thread pair. Similarly,
OS level operations (e.g., sending a network packet) are only
performed once. Since both threads share the same program
counter and fetch instructions in lockstep. They can share the
same branch prediction logic.

IV. SECURITY REMARKS

The security of our framework is fundamentally based on
the fact that, (i) it is very difficult for a remote attacker
to recover portions of the lookup tables; and (ii) even an
attacker can recover the lookup table, he/she cannot attack
both threads at the same time using the same injected codes. In
this section, we analyze how secure our framework is against
remote attackers.

Recall that in the threat model, an attacker attempts to
penetrate into a system via code injection attack. He/she
does not have the executable version of the binary code,
nor be able to observe the instruction-by-instruction state
change. Using the terminology from cryptographic analysis,
the attacker cannot launch even the ciphertext-only attack, let
alone the much more powerful known-plaintext attack, chosen-
plaintext attack, and chosen-ciphertext attack. In the following,
we analyze security of the system against the random attack,
by evaluating the success probability of the attacker.

For 32 bit MIPS, there are 32! swizzle possibilities. Each
opcode has 2n possible values where n is the size of opcode.
The relatively large search space increases the difficulties of
brute fore attacks. Besides this first line of defense, the lock-
step thread mode will further thwart any code injection attacks
because the two threads share the same program counter and
dynamic data. Injected codes work for one thread will be
decoded into mismatched instructions for the other thread.
Detailed studies of our solution confirms its effectiveness for
detecting remote binary code injection attacks, see Section
VI(B) for detailed security evaluations.

V. EVALUATION

In order to demonstrate the feasibility of our system design,
we have conducted several experiments and simulations. From
hardware perspective, we implemented the extended hardware
at register-transfer level using Verilog. In addition, we show
that the area and power overhead of the extended hardware is
suitable to fit in the CPU.

We show the overall performance degradation with 12 SPEC
CPU 2K6 benchmarks [24]. Along with that, we list all
the possible overhead by adopting our system including L1

cache miss overhead, total performance overhead, and etc. In
particular, we extended GEM5 [8] simulators for cycle based
full system evaluation. GEM5 is a detailed CPU architecture
simulator built from a combination of M5 [9] and GEMS [18]
simulators. GEM5 supports most commercial ISAs such as
x86, ARM, and MIPS. It can run a full system simulation and
provide a cycle based model for out-of-order processors. In
addition, we implemented a full system MIPS emulator that
can validate our lockstep shadow thread design at functional
level.

A. Implementations
A key component of our design is the instruction translator

that is able to translate scrambled machine codes into available
ISA. For tuning the GEM5 simulator, the instruction translator
is implemented in Verilog. Results of the Verilog implementa-
tion were used to develop the cycle based MIPS CPU model.

B. Benchmarks
For performance evaluation, we used the SPEC CPU2006

benchmark suite [24] that is a set of benchmark applications
designed to test the CPU performance. We tested twelve
memory intensive benchmarks of the SPEC CPU2006. These
include, 8 integer benchmarks and 4 floating point bench-
marks. In particularly, there are bzip2, gcc, mcf, gobmk, hm-
mer, sjeng, libquantum, h264ref, omnetpp, calculix, lbm, and
gemsFDTD. The detailed descriptions of the benchmarks can
be found in [24]. The simulation started when the application
passed the initialization stage. The cycle based simulation ex-
ecuted each benchmark application for one billion instructions
or until it finished depending on which one was longer.

C. Machine Parameters
We modified the GEM5 simulator to simulate instruction

translation and lockstep multi-thread support. The configura-
tion setting is based on results of the Verilog implementation.
In particular, the multicore CPU has multiple configurations
with different instruction cache sizes. The simulation is per-
formed with an out-of-order CPU model running at 2GHz
and MIPS ISA. The CPU model has seven pipeline stages:
fetch, decode, rename, issue, execute, writeback, and commit.
We merge the instruction translation into decode stage. Each
processor core has pipeline resources: branch predictor, reorder
buffer, instruction queue, load-store queue, and functional
units. Specifically, each processor core has two program



TABLE I
SIZE AND LATENCY COMPARISON BETWEEN DIFFERENT APPROACHES

AES-
192

AES-
256

Our Binary
Diversification
Approach

Number of Slice Registers 5280 6848 1506
Number of Slice LUTs 4264 6503 795
Number of bonded IOBs 449 513 263
Number of Block RAM/FIFO 100 121 47
Maximum Frequency (MHz) 324.6 324.6 600
Latency (ns) 3 3 1.6

Fig. 5. Total Performance Overhead (measured as percentage of performance
change)

counters and is able to support two threads simultaneously
in lockstep. The I-TLB and D-TLB have 64 fully associative
entries. The L1-instruction and L1-data caches are 64KB
write-back caches with 64-byte block size, and an access
latency of 2 cycles. The L2 cache is unified, virtually indexed,
non-blocking, 2MB size, 16-way associativity, 128-byte block
size, and has an 10-cycle access latency.

VI. ANALYSIS

A. Performance Analysis
A fully synthesizable implementation of the CPU extensions

to support programmable binary diversification at 45nm, occu-
pies additional 1.07 mm2 area, and dissipates extra 32.2mW of
peak power. Most of the silicon area and power are consumed
by the swizzle operator and lookup table. The on-chip resource
overhead is very low when compared with the size and power
consumption of a modern commercial micro-processor. For
example, Atom 450 fabricated in 45nm has a transistor count
of 123M and die size of 66mm2.

Based on our Verilog implementation, we compared our
programmable binary diversification approach with ISA ran-
domization using cryptographic functions such as AES. We
used optimized and pipelined AES Verilog implementation
as reference. All the designs were tested and verified using
FPGA. Comparison of the FPGA overhead and performance
is shown in Table I. As suggested by the results, our approach
requires less resources when compared to ISR implemented
using AES cores and at the same time achieves lower instruc-
tion decoding latency. Our approach is much simpler than the
conventional ISR in both design and implementation. Though
the implementation of our approach contains lookup tables
and swizzle operators, ISR implemented using a cryptographic
core is far more complex.

For the benchmarks, performance overhead of the intro-
duced binary translator is shown in Figure 5, the average
system degradation is around 1.2%. GCC benchmark has the
highest overhead due to the increase of instruction cache
miss rate. In the proposed design, the instruction translator
is merged into the pipeline stages. Thus the overhead of
instruction translation is small. However, the binary size is
twice as the normal binary, instruction cache miss rate will
increase because of the fixed instruction cache size. As shown
in Figure 6, the increased L1 instruction cache miss rate is
more than 20% on average. The figure also demonstrates that
the performance degradation is highly related to the instruction
cache miss rate. The L1 cache miss rate of GCC benchmark

Fig. 6. Instruction Cache Performance

Fig. 7. Performance Improvement under Different Instruction Cache Sizes

raises 160% when executed as a thread pair. Our investigation
reveals that of all the studied benchmark applications, GCC
has the most number of conditional branches. When both
threads are turned on, it leads to higher pressure on the L1
instruction cache. In addiction, Figure 7 indicates that larger
instruction cache can achieve better performance. Doubling the
L1 instruction cache size is enough to tolerate the instruction
fetch pressure caused by running two lockstep threads.

B. Security Evaluation
Our proposed approach provides a lightweight solution

for diversifying the binary to prevent code injection attacks
on embedded systems. We studied and analyzed several bi-
nary vulnerabilities such as shellcode attacks, return-to-libc
attacks, format string vulnerability based on the proposed
prototype under an emulated MIPS environment using MIPS-
gnu cross-compiling tools. The injected exploit codes were
written manually and tested. The MIPS shellcode attacks
were developed according to [22]. Apparently the injected
code, such as shellcode, depends on the ISA support. Using
our MIPS functional emulator with instruction level cross-
validation between the main and shadow thread, the shellcode
which contains malicious MIPS machine code, when injected
to the test binary, is detected at the decoding state because
it produces mismatched instructions between the main thread
and the shadow thread. As a result, the attack becomes invalid
and fails. In addition, we tested our solution against a real
attack to MIPS based SOHO devices [13]. The vulnerability
and attacks are documented in [13]. For experimentation,
we isolated the vulnerable program and developed customized
exploit codes according to [13]. According to the evaluation,
the injected code can be detected using our diversified shadow
execution solution.

VII. RELATED WORK

Creating a diversified environment is a promising approach
to thwart cyber attacks as advocated by Forrest et al. [14].

TABLE II
EVALUATED CODE INJECTION EXPLOITS AGAINST OUR APPROACH. ALL

ATTACKS CAN BE DETECTED.

Exploit Attack-Vector Detected?
shellcode [22] shellcode code injection �
return to libc code injection �
format string code injection �

SQL injection [13] code injection �



In the past decade, numerous diversification strategies have
been instantiated, such as ASLR [20], [5], [7], instruction set
randomization (ISR) [3], [17], data randomization [11], [10],
[6], and N-Variant system [12]. In this section, we briefly
compare our new lockstep diversified shadow execution with
each of these techniques.
Address Space Layout Randomization (ASLR): Being a
practical technique, ASLR has been widely adopted by many
modern OSes such as Windows and Linux. The goal of
ASLR is to obscure the location of code and data objects
that are resident in memory, including the addresses of the
program stack, heap, and shared library code [20], [5], [7].
Compared with all these software ASLR approaches, our
work complements with them by adding another layer of
randomizations from hardware.
Instruction Set Randomization (ISR): By randomizing the
underlying system instructions [3], [17], ISR is an approach
to prevent code injection attacks. In this approach, instructions
are encrypted with a set of random keys and then decrypted
before being fetched and executed by the CPU. ISR is effective
for preventing code injections. However, it has significant
performance slowdown and overhead, which in fact motivated
us to develop this more efficient and lightweight hardware
approach. Furthermore, ISR fails when the encryption key is
leaked or an attacker succeeds in guessing the key [23]. In our
solution, an attacker cannot fool both threads using the same
injected codes even the attacker knows both maps.
Data Randomization: Besides the randomization to pro-
gram instructions, program data can also be encrypted and
decrypted. PointGuard [11] encrypts all pointers while they
reside in memory and decrypts them only before they are
loaded into CPU registers. Recent work has presented a
new data randomization technique that provides probabilistic
protection against memory exploits by XORing data with
random masks [10], [6].
Orthrus: Orthrus protects software integrity by exploiting
multi-core architecture and executing n versions using differ-
ent processor cores [15]. Different from Orthrus, our solution
is based on lockstep simultaneous co-threading. Furthermore,
other unique properties of our solution include, variants of
machine codes based on programmable binary translations,
and non-executing simultaneous shadow threads.
Multi-variant System N-variant [12] is an application level
framework which employs a set of automatically diversified
variants to execute the same task in a loosely coupled manner.
Any divergence among the outputs will raise an alarm and
can hence detect the attack. Multi-variant system makes code
injection significantly hard for attackers to simultaneously
subvert all the running variants. Different from N-variant that
employs different ISAs and synchronizes at system call level,
our solution exploits machine code variants of the same ISA
and synchronizes at per instruction level. Due to the coarse
level of synchronization, N-variant can be compromised by
an attacker if the attacker can subvert all the variants before a
synchronization point is reached. As a result, our solution does
not have this vulnerability. Furthermore, N-variant requires
complete executions of all the variants, while in our solution,
execution of shadow thread is minimized.

VIII. CONCLUSION

We have developed a programmable decoder based binary
diversification scheme and lockstep shadow execution to fight
against code injection attacks. By monitoring the diversified
machine codes at instruction-level, the system can detect
remotely injected binary code attacks including unknown code
injections. The speed degradation of the proposed design is
around 1.2% across twelve SPEC CPU2006 benchmarks. In
addition, the power overhead of the extend hardware is less
1% of the modern CPU.

REFERENCES

[1] ANG CUI, J. V. Print me if you dare, firmware modification attacks and
the rise of printer malware, 2012.

[2] ANG CUI, M. C., AND STOLFO, S. J. When firmware modifications
attack: A case study of embedded exploitation. In NDSS (2013), The
Internet Society.

[3] BARRANTES, E. G., ACKLEY, D. H., PALMER, T. S., STEFANOVIC,
D., AND ZOVI, D. D. Randomized instruction set emulation to disrupt
binary code injection attacks. In Proc. 10th ACM Conf. Computer and
Communications Security (2003), pp. 281–289.

[4] BERGER, E. D., AND ZORN, B. G. Diehard: probabilistic memory
safety for unsafe languages. In Proceedings of the 2006 ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion(PLDI’06).

[5] BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. Address obfusca-
tion: An efficient approach to combat a broad range of memory error
exploits. In Proc. 12th USENIX Security Symposium (2003), p. 8.

[6] BHATKAR, S., AND SEKAR, R. Data space randomization. In Proc.
Int. Conf. Detection of Intrusions and Malware, and Vulnerability
Assessment (2008), pp. 1–22.

[7] BHATKAR, S., SEKAR, R., AND DUVARNEY, D. C. Efficient techniques
for comprehensive protection from memory error exploits. In Proc. 14th
USENIX Security Symposium (2005), pp. 255–270.

[8] BINKERT, N., BECKMANN, B., BLACK, G., REINHARDT, S. K., SAIDI,
A., BASU, A., HESTNESS, J., HOWER, D. R., KRISHNA, T., SAR-
DASHTI, S., SEN, R., SEWELL, K., SHOAIB, M., VAISH, N., HILL,
M. D., AND WOOD, D. A. The gem5 simulator. SIGARCH Comput.
Archit. News 39 (Aug. 2011), 1–7.

[9] BINKERT, N. L., DRESLINSKI, R. G., HSU, L. R., LIM, K. T., SAIDI,
A. G., AND REINHARDT, S. K. The m5 simulator: Modeling networked
systems. IEEE Micro 26, 4 (July 2006), 52–60.

[10] CADAR, C., AKRITIDIS, P., COSTA, M., MARTIN, J.-P., AND CASTRO,
M. Data randomization. Tech. Rep. MSR-TR-2008-120, Microsoft
Research, 2008.

[11] COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, P.
PointGuardTM: Protecting pointers from buffer overflow vulnerabilities.
In Proc. 12th USENIX Security Symposium (2003), pp. 91–104.

[12] COX, B., EVANS, D., FILIPI, A., ROWANHILL, J., HU, W., DAVIDSON,
J., KNIGHT, J., NGUYEN-TUONG, A., AND HISER, J. N-variant
systems: a secretless framework for security through diversity. In
Proceedings of the 15th Conference on USENIX Security Symposium
(2006).

[13] CUTLIP, Z. Sql injection to mips overflows: Rooting soho routers, 2012.
[14] FORREST, S., SOMAYAJI, A., AND ACKLEY, D. H. Building diverse

computer systems. In Proc. 6th Workshop on Hot Topics in Operating
Systems (1997), p. 67.

[15] HUANG, R., DENG, D. Y., AND SUH, G. E. Orthrus: efficient software
integrity protection on multi-cores. In Proceedings of the fifteenth edition
of ASPLOS on Architectural support for programming languages and
operating systems (2010), ASPLOS ’10, pp. 371–384.

[16] KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. Countering
code-injection attacks with instruction-set randomization. In Proceed-
ings of the 10th ACM conference on Computer and communications
security.

[17] KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. Countering
code-injection attacks with instruction-set randomization. In Proc. 10th
ACM Conf. Computer and Communications Security (2003), pp. 272–
280.

[18] MARTIN, M. M. K., SORIN, D. J., BECKMANN, B. M., MARTY, M. R.,
XU, M., ALAMELDEEN, A. R., MOORE, K. E., HILL, M. D., AND

WOOD, D. A. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Comput. Archit. News 33, 4 (Nov.
2005), 92–99.

[19] NOVARK, G., BERGER, E. D., AND ZORN, B. G. Exterminator:
automatically correcting memory errors with high probability. In
Proceedings of ACM SIGPLAN Conference on Programming Language
Design and Implementation (2007).

[20] PAX TEAM. PaX address space layout randomization (ASLR), 2003.
pax.grsecurity.net/docs/aslr.txt.

[21] PORTOKALIDIS, G., AND KEROMYTIS, A. D. Fast and practical
instruction-set randomization for commodity systems. In Proceedings
of the 26th Annual Computer Security Applications Conference.

[22] SCUT. Writing MIPS/Irix shellcode. http://www.thc.org/root/docs/
exploit writing/mipsshellcode.pdf, 2001.

[23] SOVAREL, A. N., EVANS, D., AND PAUL, N. Where’s the feeb? the
effectiveness of instruction set randomization. In Proceedings of the
14th conference on USENIX Security Symposium - Volume 14.

[24] STANDARD PERFORMANCE EVALUATION CORPORATION. SPEC
CPU2006.


