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Abstract—Probabilistic Timing Analysis (PTA) reduces the
amount of information needed to provide tight WCET estimates
in real-time systems with respect to classic timing analysis. PTA
imposes new requirements on hardware design that have been
shown implementable for single-core architectures. However, no
support has been proposed for multicores so far.

In this paper, we propose several probabilistically-analysable bus
designs for multicore processors ranging from 4 cores connected
with a single bus, to 16 cores deploying a hierarchical bus design.
We derive analytical models of the probabilistic timing behaviour
for the different bus designs, show their suitability for PTA and
evaluate their hardware cost. Our results show that the proposed
bus designs (i) fulfil PTA requirements, (ii) allow deriving WCET
estimates with the same cost and complexity as in single-core
processors, and (iii) provide higher guaranteed performance than
single-core processors, 3.4x and 6.6x on average for an 8-core and
a 16-core setup respectively.

I. INTRODUCTION

Computational demands for many industries such as avion-
ics, automotive, railway and medical have experienced an
unprecedented growth to cope with more sophisticated func-
tionalities. The value of Critical Real-Time Embedded Systems
(CRTES) increasingly depends on their software component,
hence, achieving high guaranteed performance is of paramount
importance in all these markets. This has motivated the use
of processors with high-performance features including cache
memories and multicores. Unfortunately, the adoption of such
performance-improving features challenges the computation of
tight worst-case execution time (WCET) estimates [12].

In this context, Probabilistic Timing Analysis
(PTA) [10][8][9] has appeared as an alternative to conventional
timing analysis. PTA provides probabilistic WCET (pWCET)
estimates, for arbitrarily low exceedance probabilities (e.g
10−15). In that sense, PTA expresses timing correctness with
probabilities of failure, as occurs with current system reliability
of an embedded safety-critical system that is expressed in
terms of probabilities for hardware failures, software functional
faults and for the system as a whole. The main advantage of
PTA is that it is less dependent on execution history, allowing
to significantly reduce the amount of information required to
obtain tight WCET estimates in comparison to other timing
analysis approaches. pWCET estimates have shown to be
competitive with the estimates obtained with other timing
analysis techniques [29].

PTA can be applied either in a static (SPTA) [8] or
measurement-based (MBPTA) [9] manner. In this paper we
focus on the latter as it is closer to industrial practice. MBPTA
derives probabilities by collecting execution time observations
of end-to-end runs of an application running on the target hard-
ware. MBPTA requires that the timing events under considera-
tion, i.e. the observed program execution times, have a distinct
probability of occurrence and can be modelled with independent
and identically distributed (i.i.d.) random variables. Solutions
for single-core architectures [17][9] show how processor cores
with a similar processor architecture to the Aeroflex Gailser
LEON3 and LEON4 [4] can be easily adapted to achieve PTA
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requirements. In particular, limited modifications are required
in the cache placement and replacement [17] policies to make
them PTA-compliant.

Multicores offer several benefits to CRTES such as higher
performance per watt than single-core systems and co-hosting
several tasks into the same chip, reducing the overall hardware
procurement, hence reducing size, weight and power costs.
Unfortunately, to the best of our knowledge, no multicore
architecture has been proven to meet PTA requirements. The
main stumbling block in proving probabilistic bounds to the
execution time of applications in multicores is the deterministic
and history-dependent behaviour of shared resources such as bus
policies, which impeded the application of PTA approaches.

The interconnection network is one of the most critical
shared resources in multicore processors. Several studies show
that hierarchical bus configurations scale well to systems with
high number of cores, while providing good area-performance
trade-offs and retaining many of the advantageous features of
simpler bus arrangements [26]. In the same line, other studies
show that bus-based networks decrease energy consumption and
simplify network protocol design and verification, with no loss
in performance [11].

In this paper, we describe new low-cost PTA-compliant bus
arbitration policies that break (1) the deterministic behaviour
of the bus and (2) the dependence of a given application’s
execution time on the behaviour of co-hosted applications by
means of randomised arbitration policies.
• Lottery arbitration bus: Under this bus arbitration, which is

based on [19], on every round the arbiter selects one core
to access the bus randomly. This breaks any dependence
between applications in the access to the bus, but makes
that a request may have to potentially wait an infinite
number of arbitration rounds to be granted access to the
bus, which degrades the pWCET estimates derived with
PTA techniques.

• Randomised-permutation arbitration bus: We propose this
new bus arbitration policy under which every N rounds,
where N is the number of bus contenders, the arbiter
generates a random permutation for the contenders. That
sequence determines when each contender can use the bus.
This arbitration provides an upper-bound to the number of
rounds a request has to wait and leads to tighter pWCET
estimates than the lottery arbitration bus.

Our results show that our proposed bus designs (i) fulfil PTA
requirements which is proven by using proper independence and
identical distribution tests, (ii) allow deriving pWCET estimates
with exactly the same methods and tools as for single-core
processors, thus keeping timing verification costs low, and (iii)
allow increasing guaranteed performance, for an exceedance
probability of 10−15 per run, by 1.8x, 3.4x and 6.6x for 4,
8 and 16-core setups respectively.

II. BACKGROUND ON PTA
PTA generates a distribution function, or pWCET function,

that upper-bounds the execution time of the program under
analysis, guaranteeing that the execution time of a program
only exceeds the corresponding execution time bound with a



Fig. 1. Block diagram of the PTA-compliant core architecture used in [17].

probability lower than a given target probability (e.g., 10−15

per hour). The probabilistic timing behaviour of a program
or an instruction (or in fact any component) can be repre-
sented with an Execution Time Profile (ETP). The different
execution times of a program (or latencies of an instruction
or a particular resource) and their associated probabilities are
defined in the ETP. That is, an ETP represents a probability
distribution function, see Equation 1, where pi is the probability
of the program/instruction/resource to take latency li, with∑k

i=1 pi = 1.

ETP = {
→
l ,
→
p} = {{l1, l2, ..., lk}, {p1, p2, ..., pk}} (1)

The convolution function, represented by ⊗, is used to
combine ETPs, leading to a new ETP in which all possi-
ble pairs of execution times from the two ETPs are added
and the probabilities multiplied [8]. For example, let E1 =
{(2, 101, 200), (0.1, 0.4, 0.5)} and E2 = {(2, 101), (0.6, 0.4)}
be two ETPs. Then their convolution is:
Er = {{2+2, 2+101, 101+2, 101+101, 200+2, 200+101} ,

{0.1×0.6, 0.1×0.4, 0.4×0.6, 0.4×0.4, 0.5×0.6, 0.5×0.4}} .

And given that 101 + 101 = 2 + 200 we
collapse duplicate pairs resulting in: Er =
{(4, 103, 202, 301), (0.06, 0.28, 0.46, 0.2)}.

PTA requirements on hardware design. MBPTA requires
that the events under analysis, program execution times, can be
modelled with i.i.d. random variables [8]1.

The observed execution times fulfil the i.i.d. properties if
observations are independent across different runs and a prob-
ability can be attached to each potential execution time. The
existence of an ETP for each dynamic instruction ensures that
i.i.d properties are achieved at the level of end-to-end execution
time observations [3]. ETPs, however, cannot be derived with
standard (deterministic) processor architectures since events
affecting execution time (e.g., bus access policy) on those
architectures cannot be attached a probability of occurrence.

In a multicore, ETPs cannot be obtained for some determin-
istic bus policies such as fixed priority arbitration, while for
others like round robin [23] ETPs can be derived.

Functional (causal) dependencies, such as those produced by
data dependencies, do not break the i.i.d. behaviour, because it is
not required that the probability distribution for an instruction
is independent of the sequence of preceding instructions, but
that the observed timing behaviour for each dynamic instruction
across different runs is i.i.d [3], [18].

III. PTA IN MULTICORE SYSTEMS

One of the difficulties in the use of multicores in CRTES
emanates from inter-task interferences when accessing shared
resources. Inter-task interferences appear when two or more
tasks sharing a hardware resource, access it simultaneously.
An arbitration mechanism determines which contending task

1Two random variables are said to be independent if they describe two
events such that the occurrence of one event does not have any impact on the
occurrence of the other event. Two random variables are said to be identically
distributed if they have the same probability distribution function.

is granted access to the shared resource, which affects the
execution time and the WCET of running tasks.

A. Single-core Probabilistically Analysable Hardware Designs

The basic principle to design probabilistically analysable
hardware is to control the sources of execution time variation
(i.e. jitter) [8][9]. Jitterless resources have a fixed latency,
independent of the input request or of the previous history of
requests accessing that resource. Jitterless resources (e.g. integer
adders) are easy to model: its ETP has a single latency with
probability 1. Resources with jitter, or jittery resources have a
variable latency. Their latency depends on the execution history
of the program or on the particular request sent to that resource.
Jittery resources have a variable impact on the WCET estimate
for a given program. Jittery resources are either (i) enforced
to always respond on their worst-case latency, so their upper-
bounded timing behaviour also becomes i.i.d., or (ii) redesigned
so that their timing behaviour depends on random events.

Following this approach [17] proposes a PTA-compliant
single-core pipelined architecture, see Figure 1. The architecture
comprises fetch (F), decode (D), execute (E) and write-back
(WB) stages. In between all stages there are latches or queues.
Additionally, the WB stage comprises a write buffer in which
stores are put until they are sent to cache. Loads are processed
in program order in the execute stage. The accesses to the
instruction and data caches happen in the fetch and execute
stages respectively. This pipeline design is similar to LEON3/4
designs given that core operations have a fixed latency.

Data and instruction caches deploy random placement and
random replacement policies [17] as needed to satisfy PTA
requirements. A fixed-latency memory controller (mc) serves
as the bridge between caches and memory.

In general, for a cache with S sets and W ways, start-
ing from an empty cache state and given the sequence <
Ai, B1, ..., Bk, Aj >, where Ai and Aj correspond to accesses
to the same cache line and no Bl (where 1 ≤ l ≤ k) accesses
the cache line where Aj is, the miss probability of Aj is as [17]:

PmissAj
(S,W )=

1−(W − 1

W

)l=k∑
l=1

PmissBl

·(1−(S − 1

S

)k
)

(2)

Note that the equation becomes an approximation when Bl

accesses repeat and/or the initial cache state is not empty.
However, this is irrelevant for MBPTA, since what really matters
is that each access has a probability of hit/miss rather than the
particular value of that probability.

The hit probability is used to compute the ETP of each cache
access as follows where lathit and latmiss are the cache hit and
miss latency respectively:

ETPcache = {{{lathit, latmiss},{PhitAj
(S,W ), PmissAj

(S,W )}} (3)

On the event of a miss in the instruction or data cache,
the missing instruction generates an access to the shared bus
hierarchy. Next, we present several bus architectures and their
corresponding probabilistic analyses. The resulting ETP for
each bus should be composed with the miss part of the
ETPcache. For instance, if the ETP of the bus is ETPbus =
{{l1, l2, l3}, {p1, p2, p3}}, the resulting ETP of composing
cache and bus effects would be:

ETPcache = { {lathit, latmiss + l1, latmiss + l2, latmiss + l3},
+bus {Phit, Pmiss · p1, Pmiss · p2, Pmiss · p3}} (4)



Fig. 2. Baseline multicore architecture considered in this paper. ‘c’ stands for
core, ‘s’ for switch and ‘mc’ for memory controller.

B. Bus Designs for Time-Probabilistic Multicores

Historically, clustered architectures have been considered in
computer architecture. At the processor core level, execution
pipelines are split into clusters (e.g. the IBM POWER7 [15]) to
decrease hardware cost while efficiently exploiting instruction-
level parallelism. At the chip level, processor implementations
of many-core architectures (e.g. ARM Cortex A15 MPCore [5])
may group several cores into clusters as a means to reduce
implementation costs. Besides, clusters enable voltage and fre-
quency scaling as well as power-gating at the granularity of
several cores, since having those mechanisms on a per-core basis
has high hardware cost [21][1].

Following this philosophy, we use a baseline clustered archi-
tecture as shown in Figure 2, where cores are equipped with
private data and instruction caches. We evaluate our designs in
several setups in which we vary the number of clusters and the
number of cores per cluster.

Inter-task interferences cause that the execution time of a
task depends on the accesses of other tasks to shared resources,
e.g. the bus. Taking into account the effect that any instruction
of any task may have on any other instruction of any other
task is infeasible. This would simply make the usage of the
probabilistic approach intractable. To break this dependence we
design our multicore such that we make that the worst effect that
one task can incur on the execution of any other task due to
inter-task interferences can be probabilistically bounded. This
makes our design time composable, meaning that the pWCET
estimate obtained for a given task is independent of the tasks
that may run concurrently in the processor.

Overall, our bus designed so that every individual processor
instruction can be characterised by a distinct ETP that has no
dependence on any instruction of any other task. Next, we
present the proposed bus designs, which allow deriving an ETP
for each instruction independently of any other task.

C. Lottery Bus

We define an arbitration round or simply round as the number
of processor cycles that each core needs to send any request to
the bus. In this approach, on every round the arbiter selects one
core to access the bus using a random policy. A similar bus
was analysed in [19]. However, unlike [19], we assume that
all bus contenders have always pending requests, although in a
given cycle, only a subset of the contenders may have pending
requests. This assumption makes our design time composable,
upper-bounding inter-task interferences, and hence independent
of the traffic generated by any other task running concurrently
on the processor. Otherwise, ETP for memory operations of
one task would depend on the traffic generated by other tasks,
breaking time composability.

In a N core single-bus processor, the probability of a request
to be selected in round k + 1 is given by Formula 5, where
the first element is the probability of the request not being

Fig. 3. Probability of not being granted access as a function of the number
of arbitration rounds for a bus with 4 cores.

granted access in the first k rounds and the second element
the probability of being selected in the k + 1 round.

pklotarb =

(
1− 1

N

)k

· 1
N

(5)

Blue diamonds in Figure 3 shows the probability of a bus
request not to be granted access after k arbitration rounds
for a bus shared by 4 cores. We observe that the larger the
number of rounds in which a contender participates, the lower
its probability not to be selected. There is a probability the
contender not to be granted access after a large number of
rounds. However, this probability decreases exponentially and
more importantly, it is probabilistically computable.

If arbitration rounds have durations longer than 1 cycle, say
L cycles, then a request may become ready in the middle of a
round. In that case, the request has to wait until an arbitration
round boundary before it can compete to get access to the bus.

Equation 6 shows the ETP for a bus access. (1) The first
element convolved in the equation is the delay to align the
request with the cycle at which the next round starts. A bus
access request is initiated on a miss to the data or instruction
cache. Given that the event ‘cycle in which an access misses
in the data or instruction cache’ is a random event (and hence
so is the cycle in which the access to the bus happens), the
probability of a bus request to arrive in a particular cycle can
be computed. In particular, every request to the bus may arrive
in any cycle of the arbitration round (0, ..., L− 1) with a given
probability pcyci to arrive in cycle i with 0 ≤ i ≤ L− 1. Note
that for the ETP it does not matter whether pcyci follow any
particular distribution as long as it is probabilistic.

(2) The second element convolved is the number of rounds
that the request waits. Each round has L cycles and Equation 5
is used to compute the probability of a request to be selected
in a given round.

(3) Finally, the last element convolved is the actual latency of
the bus access request: it takes L cycles with 100% probability.
ETPbuslot = {{0, 1, ..., L− 1}, {pcyc1, pcyc2, ..., pcycL−1}} ⊗

{{0, L, 2L, ...}, {p0lotarb, p1lotarb, p2lotarb, ...}} ⊗
{{L}, {1}} (6)

D. Randomised Permutations
An arbitration window or simply window refers to N con-

secutive bus arbitration rounds. Under this arbitration policy,
in each window one round is randomly assigned to each of
the N contenders. Each round has a duration of L cycles,
the maximum bus cycles that any request may take. In this
approach, at every window boundary the arbiter generates a ran-
dom permutation for the N contenders (cores). This sequence
determines the order in which contenders can use the bus.

Analogously to the fact that the arrival cycle of a request in a
round follows a given probability distribution function, there is
a probability defining the round in a window in which requests
arrive. This is so since the accesses to the bus are initiated



on random events: miss to the data or instruction caches. As
explained before, MBPTA is not dependent on the particular
distribution function this is as long as it is probabilistic. Without
loss of generality and for the purpose of this explanation we
assume that the probability function describing the arrival round
of each request is uniform, that is, there is a probability 1

N a
request to arrive in a particular round2. We identify two extreme
cases:
• The shortest delay (0 cycles) occurs when a request be-

comes ready when the core it belongs to gets its round.
• The worst delay occurs when (i) a request belongs to a core

that gets the first round in the current permutation and (ii)
the last round in the next permutation, and (iii) the first
round of the current permutation has just elapsed. In this
case, the request should wait 2N−2 rounds corresponding
to the N − 1 remaining rounds of the current permutation
and the first N − 1 rounds of the next one.

The probability of a request to wait k rounds to get access
to the bus, with 0 ≤ k ≤ 2N − 2 is as follows:

pkperarb =
max(N − k, 0)

N2
+

min(N−1,2N−k−1)∑
i=max(1,N−k)

i

N3
(7)

The first addend in the equation is the probability of finding
the appropriate round in the remaining part of the current
permutation, whereas the second part stands for the probability
of finding the appropriate round in the next permutation if and
only if such round was not found in the current permutation.
Green triangles in Figure 3 show the probability of a bus request
not to be granted access after k arbitration rounds. We observe
that after 2N − 2 rounds, the probability not to be selected is
0.

The ETP of the random permutation bus, shown in Equa-
tion 8, is obtained as the convolution of three components, as
for the lottery bus. The first component in the convolution is the
time and associated probability to align the request to the start
of the next round; the second one stands for the waiting rounds
until the request is granted access, and the final one stands for
the actual bus access latency of the request.

ETPbusper = {{0, 1, ..., L− 1}{pcyc1, pcyc2, ..., pcycL−1}} ⊗
{{0, L, ..., k · L, ..., (2N−2) · L},
{p0perarb, p1perarb, ..., pkperarb, ..., p2N−2

perarb}} ⊗
{{L}, {1}} (8)

E. Deterministic Bus

Alternatively to time-randomised buses, a deterministic bus
deploying round-robin policy could be used [14]. This requires
that a task is assumed always to suffer the worst latency when
accessing the bus [23], with probability of 1. As a result, the
ETP still remains as a safe upper-bound at deployment and is
analogous to that of randomised buses except for the second
term, which is now fixed: {{(N − 1) ·L}, {1}} (see Figure 3).

F. Hierarchical Buses

Based on the ETPs derived for simple buses we can derive
the ETP for a hierarchical bus network. In our bus setup, on
the one hand, we have an intra-cluster bus (“ibus”) per cluster,
which is accessed by Nco contenders (cores) and has an access
latency of Li cycles. Each cluster has a switch that connects the
intra-cluster bus to the inter-cluster bus (“ebus”). The simple

2For our processor setup, our results show that the arrival of bus requests
across rounds in the window is uniform.

switch adds a fix latency to the end-to-end latency of the inter-
connection network, S. The ebus is connected to each of the
Ncl clusters and has a latency Le. Usually, Le ≥ Li as the ebus
is longer than the ibus as the ebus connects distant clusters.

All three resources of the hierarchical bus are accessed
serially: ibus, switch and ebus. The ETPs of each resource can
be easily composed as shown in Equation 9. Note that the bus
ETPs are characterised by parameters L, latency, and N , number
of contenders, as described Sections III-C and III-D.

ETPhbus = ETPibus ⊗ ETPswitch ⊗ ETPebus (9)

ETPibus = ETP (Li, Nco)bus
ETPswitch = {{S}, {1}}
ETPebus = ETP (Le, Ncl)bus

IV. RESULTS

A. Experimental Setup
We use a cycle-accurate PowerPC simulator [27] to model the

probabilistically analysable processor. Cores are as presented
in Section II: 4-stage, In-order pipelined cores with a memory
hierarchy composed of separated instruction and data caches.
The size of each cache is 4-KB with 64-byte line size and 4-
way associativity. The latency of the fetch stage depends on
whether the access hits or misses in the instruction cache: a hit
has 1-cycle latency and a miss has variable latency to access
to memory. After the decode stage, memory operations access
the data cache so they can last 1 cycle or a variable latency
to access memory in case of a miss. The remaining operations
have a fixed execution latency (e.g. integer additions take 1
cycle). The bus latency is L = 8 cycles for all buses. For the
memory controller we use the solution proposed in [22] which
upperbounds the effect of inter-task interferences on the requests
of a core to the memory controller.

We use different multicore setups featuring the hierarchical
bus architecture presented in Section III-F, varying the number
of cores from 4 to 16, distributed in clusters of 4 or 8 cores.
Each configuration is represented with a pair of numbers: the
first one denotes the number of cores per cluster and the second
one the number of clusters. For instance, an 8 core configuration
with 2 clusters of 4 cores each will be a 4x2 configuration.

Following the method in [9] we carried out up to 1,000 runs
per program and used EVT to extract pWCET estimates for each
of the EEMBC Autobench benchmarks suite [24] that mimic
some real-world automotive critical applications’ behaviour. We
used: a2time, aifirf, cacheb, canrdr, puwmod, rspeed, tblook and
ttsprk.

B. Hardware Overhead
Lottery bus: The lottery arbitration simply requires dlog2 Ne

bits to select which contender is granted access in each round.
Given that the number of contenders, N , is typically a power-
of-two, using exactly log2 N bits produced by a pseudo-random
number generator (PRNG) is enough to select the particular
contender that is granted access. Note that efficient PRNGs
already exist in real processors implementing, for instance,
random-replacement policies in cache [13], [28].

Random permutations can also be implemented with very
low cost. A randperm register with N · log2 N bits is needed to
store the N identifiers of log2 N bits for each of the contenders.
In order to generate a random permutation, N − 1 random bits,
called randbits generated by a PRNG are used. We swap the
identifiers in the randperm register in a hierarchical way based
on the values of randbits. For instance, if N = 4, we need 3
random bits. The first bit in randbits determines whether the
first and second identifiers in randperm are swapped (1) or not



Fig. 4. pWCET estimates for canrdr under different multicore setups.

Fig. 5. pWCET reduction when using randomised permutations arbitration in
the buses with respect to using lottery and deterministic arbitration respectively.

(0). The second random bit determines whether the third and
fourth identifiers in randperm are swapped. The third random
bit determines whether the first pair of identifiers is swapped
with the second pair. If the current state of randperm is ‘00-
01-10-11’ (so contenders order is 0, 1, 2, 3) and randbits is
‘101’, the new permutation will be ‘10-11-01-00’ (the first and
second ids were swapped, and the first and second pair were also
swapped), so the new contenders order will be 2, 3, 1, 0. It can
be seen that the probability of a particular contender to reach any
particular position in the permutation is exactly 1

N regardless
of its position in the previous permutation since log2 N random
bits will determine its new position. It can be also seen that all
permutations cannot be generated. For instance, in the example
before contenders 2 and 3 cannot be in different halves of the
permutation. However, this is irrelevant because any particular
contender occupies each position in the permutation with the
same probability and the order of contenders in the remaining
positions has no effect on the current contender. For instance,
in the example before it is irrelevant for contender 3 whether
the contender in the first position is 0, 1 or 2.

C. Fulfilling the i.i.d Properties
Our bus designs guarantee that observed execution times fulfil

the properties required by MBPTA given that we are able to
derive ETPs. We contrast this empirically by analysing whether
execution times of EEMBC benchmarks are i.i.d.

In order to test independence we use the Wald-Wolfowitz
independence test [7]. We use a 5% significance level (a
typical value for this type of tests), which means that absolute
values obtained with this test must be below 1.96 to prove
independence. For identical distribution, we use the two-sample
Kolmogorov-Smirnov i.d. test [6]. For 5% significance, the
outcome of the test should be above the threshold (0.05) to
indicate i.d. Both tests were passed for all benchmarks when
running each benchmark 1,000 times.

TABLE I
PWCET ESTIMATE FOR 10−15 FOR EACH EEMBC UNDER ALL SETUPS

W.R.T THEIR PWCET ESTIMATE IN SINGLE-CORE.

benchmark/cores 4x1 4x2 4x4 8x1 8x2
a2time 3,31 3,35 3,73 3,59 3,72
aifirf 3,29 3,75 3,76 3,72 3,90

cacheb 3,25 3,49 3,63 3,55 3,81
canrdr 1,74 1,78 1,87 1,95 2,01

puwmod 1,80 1,80 1,79 1,91 1,92
rspeed 1,67 1,70 1,74 1,75 1,79
tblook 3,39 3,44 3,50 3,52 3,60
ttsprk 2,07 2,10 2,14 2,11 2,21

D. Comparison of Arbitration Policies

Section III-D shows that the ETP derived for the random-
permutation arbitration is better than for the lottery and deter-
ministic arbitration, i.e. the area below the random-permutation
curve in Figure 3 is smaller than for lottery and deterministic
arbitrations.

Lottery and deterministic arbitration need N − 1 rounds on
average to grant access to the shared resources, where N stands
for the number of contenders. Conversely, random-permutation
arbitration needs around N

2 rounds. For instance, for 4, 8 and
16 contenders lottery and deterministic arbitration need 3, 7 and
15 rounds on average, whereas random-permutation needs 1.8,
4.2 and 8.8 rounds on average.

This translates into lower pWCET estimates for the random-
permutation arbitration, as shown in Figure 5. We consider
an exceedance probability of 10−15 per run, which is low
enough to meet highest safety levels according with avionics
standards [29][2]. We observe that pWCET reductions range
between 3.5% and 6.7% w.r.t. lottery arbitration and between
1.5% and 9.6% w.r.t. deterministic arbitration. pWCET reduc-
tions w.r.t. lottery arbitration are higher because its impact on
average delay is similar to that of deterministic delay, but lottery
arbitration introduces more variability (recall that with lottery
arbitration there is a probability contenders not being granted
access after a large number of rounds). Hence, although the best
case of lottery arbitration is better than that of deterministic one,
its worst case is worse than that of deterministic arbitration, thus
leading to worse pWCET estimates.

E. MBPTA: EVT Projections

In this section, we provide pWCET estimates obtained with
MBPTA [9] for EEMBC benchmarks under several multicore
setups. In all setups we deploy random-permutation arbitration
in buses, since, as it has been shown in Section IV-D, outper-
forms the other policies. Note that MBPTA has been used so
far only on top of single-core architectures.

As an example, Figure 4 shows the EVT projections for
canrdr. We observe that the higher the number of cores, the
bigger the pWCET estimate, because bus contention increases.
Also, configurations with many cores per cluster, 8x1 (1 cluster
with 8 cores) and 8x2, have higher pWCET than the other con-
figurations with same number of cores, 4x2 and 4x4 respectively.
Since latency in buses depends on the number of contenders and
not on their specific traffic, it is better to reduce the maximum
number of contenders in any bus. The big discrepancy between
the single-core and multicore setups is due to the fact that with
only 1 core there is low memory contention, which increases
for the multicore case.

Table I shows pWCET estimates for each EEMBC under the
different multicore setups with respect to the pWCET estimate
obtained when each benchmark runs in a single-core setup.
Although per-task pWCET estimates increase in a multicore,
the fact that a larger number of tasks can be scheduled in
the multicore, increases the guaranteed load that can be run



Fig. 6. Guaranteed performance when using randomised permutations arbitra-
tion in the buses with respect to the single-core case.

by the (multicore) CPU.: The guaranteed IPC (instructions per
cycle) for a benchmark b under a given processor setup(s) and
exceedance probability (e), gIPCb

se, is given by the number of
instructions b executes divided by its pWCET at that exceedance
probability. The average guaranteed IPC per core under a
given setup s is obtained as gAvgIPCse =

∑B
i=1 gIPCi

se

B
where B stands for the number of benchmarks. Finally, the
guaranteed performance for a given setup s with N cores is
Total − gIPCse = gAvgIPCse ·N .

Figure 6, shows Total − gIPCse with s =
{4x1, 4x2, 4x4, 8x1, 8x2} and e = 10−15. We observe
how TotalgIPCse grows by 1.8x in the 4-core setup (4x1),
3.4x and 3.2x in the 8-core setups (4x2 and 8x1 respectively)
and by 6.6x and 6.3x in the 16-core setups (4x4 and 8x2
respectively), thus proving that multicores equipped with our
time-randomised bus design provide much higher guaranteed
performance than its single-core counterparts.

V. RELATED WORK

Recent proposals enable the use of multicores in real-time
systems [20][30]. A commonality of all these proposals is that
they are meant to work in conjunction with static timing analysis
or measurement-based timing analysis and not with probabilistic
timing analysis as it is the focus of this paper.

At the processor core level, several proposals enable the
execution of non-hard real-time tasks and hard real-time tasks,
making the execution of the former transparent. That is, non-
hard real-time tasks are prevented from affecting the execution
time of hard real-time tasks [20]. At the chip level, several tech-
niques deal with the communication bus by proposing means
to upper-bound the effect (interferences) that one task running
on one core can cause on the other running tasks [23][25][16].

Regarding probabilistic timing analysis, several tech-
niques [8][9] have been proposed to cover PTA’s static and
measurement-based variants respectively. At hardware level, a
PTA-compliant single-core architecture is presented in [17].
However, to the best of our knowledge, no multicore PTA-
compliant architecture has been presented so far.

VI. CONCLUSIONS AND FUTURE WORK

PTA enables deriving pWCET estimates of applications run-
ning on complex hardware in safety-critical real-time systems,
while reducing the amount of information about the hardware
and software to that end. Yet, PTA relies on some properties
that existing multicore processors fail to provide. In this paper
we have focused on one of the resources in which most inter-
task interferences appear on a multicore: the bus. We have
described several low-cost PTA-compliant bus designs that
break the deterministic behaviour of the bus and the dependence
of a given application execution time on the behaviour of co-
hosted applications by means of randomised arbitration policies.
Our results prove that the proposed designs (i) fulfil PTA
requirements, (ii) can be analysed with existing PTA tools for
single-core processors and (iii) provide improved guaranteed

over single-core designs: 1.8x, 3.4x and 6.6x for 4, 8 and 16-
core setups respectively.
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