
On the Correctness, Optimality and Precision of
Static Probabilistic Timing Analysis

Sebastian Altmeyer
University of Amsterdam, Netherlands

altmeyer@uva.nl

Robert I. Davis
University of York, UK
rob.davis@york.ac.uk

Abstract—In this paper, we investigate Static Probabilistic
Timing Analysis (SPTA) for single processor systems that use a
cache with an evict-on-miss random replacement policy. We show
that previously published formulae for the probability of a cache
hit can produce results that are optimistic and unsound when used
to compute probabilistic Worst-Case Execution Time (pWCET)
distributions.

We investigate the correctness, optimality, and precision of
different approaches to SPTA. We prove that one of the previously
published formulae for the probability of a cache hit is optimal
with respect to the limited information that it uses. We improve
upon this formulation by using extra information about cache
contention. To investigate the precision of various approaches to
SPTA, we introduce a simple exhaustive method that computes
a precise pWCET distribution, albeit at the cost of exponential
complexity. Further, we integrate this precise approach, applied
to small numbers of frequently accessed memory blocks, with
imprecise analysis of other memory blocks, to form a combined
approach that improves precision, without significantly increasing
its complexity. The performance of the various approaches are
compared on benchmark programs.

I. Introduction
Real-time systems such as those deployed in space,

aerospace, automotive and railway applications require guar-
antees that the probability of the system failing to meet its
timing constraints is below an acceptable threshold (e.g. a
failure rate of less than 10−9 per hour). Advances in hardware
technology and the large gap between processor and memory
speeds, bridged by the use of cache, make it difficult to
provide such guarantees without significant over-provision of
hardware resources. The use of deterministic cache replacement
policies means that pathological worst-case behaviours need
to be accounted for, even when in practice they may have
a vanishingly small probability of actually occurring. Further,
the quality of deterministic worst-case execution time estimates
for such systems can be highly sensitive to missing informa-
tion, making them overly pessimistic [2]. The use of cache
with random replacement policies can negate the effects of
these pathological worst-case behaviours while still achieving
efficient average-case performance, hence providing a way of
increasing guaranteed performance in hard real-time systems.

The timing behaviour of programs running on a processor
with a random cache replacement policy can be determined
using Static Probabilistic Timing Analysis (SPTA). SPTA com-
putes an upper bound on the probabilistic Worst-Case Execution
Time (pWCET) in terms of an exceedence function (1 - cumu-
lative distribution function (CDF)). This exceedence function
gives the probability, as a function of all possible values for
an execution time budget x, that the execution time of the

program will not exceed that budget on any single run. (See [6]
for examples of pWCET distributions, and [3] for a detailed
discussion of what is meant by a pWCET distribution and the
important difference between that and a probabilistic Execution
Time (pET) distribution).

SPTA comprises two main steps [6]: First, a probability
function is required that can be used to compute an estimate
of the probability of a cache hit for each memory access. This
probability function is valid if it provides a lower bound on the
probability of a cache hit. Typical probability functions used in
SPTA are a function of the cache associativity and the reuse
distance, defined as the number of intervening memory accesses
that could cause an eviction, since the memory block was last
accessed. The probability function is used to obtain a pWCET
distribution for each instruction. Second, SPTA computes the
pWCET distribution for a sequence of instructions by convolv-
ing the distributions obtained for individual instructions. For
convolution to give correct results, the pWCET distributions
obtained for the different instructions must be independent.
By independent, we mean that the estimate of the probability
of a cache hit for a given memory access remains a valid
lower bound irrespective of the behaviour of other memory
accesses. We note that the precise probability of a cache hit for a
given memory access is rarely independent, it typically depends
strongly on the history of previous accesses (i.e. whether or
not they were cache hits). Thus care needs to be taken in
the derivation of a suitable probability function to ensure that
independence is obtained.

SPTA has been developed for single processor systems
assuming evict-on-miss [9], [8], and evict-on-access [4], [2]
random replacement policies. This initial work assumed single
path programs and no pre-emption. Subsequently, Davis et
al. [6] provided analysis for both evict-on-miss and evict-on-
access policies for single and multi-path programs, along with
a method of accounting for cache related pre-emption delays.
As the evict-on-miss policy dominates evict-on-access we focus
on the former in this paper.

Despite the intensive research in this area over the past few
years, it remains an open problem [5] how to accurately and
efficiently compute the pWCET distributions for individual in-
structions and sequences of them. In particular, prior approaches
gave little information about the correctness and precision of
the pWCET distributions obtained.

In this paper, we re-visit the probability functions that
form the fundamental building blocks of SPTA. We show that
convolution of the probability functions given in [8] and [9]
is unsound (optimistic), as these probability functions do not
provide lower bounds on the probability of a cache hit that are
independent of the behaviour of previous memory accesses. By

978-3-9815370-2-4/DATE14/ c©2014 EDAA

contrast, we show that the probability function derived in [6]
provides a valid lower bound that is independent of the be-
haviour of previous memory accesses, enabling the calculation
of sound pWCET distributions via convolution. We prove that
this probability function is optimal with respect to the limited
information (reuse distances and the cache associativity) that it
employs, in the sense that no further improvement is possible
without considering additional information.

As well as correctness and optimality, we also investigate
the precision of SPTA. Despite claims to the contrary in the
conclusions of [4], SPTA does not provide a precise pWCET
distribution for a sequence of instructions when based on the
convolution of simple pWCET distributions for each instruc-
tion. Instead, precise analysis requires that the probabilities
of all possible sequences of cache hits and cache misses
are considered, leading to exponential complexity. Previous
work [2, 4, 8, 9] provides little indication of the precision of
existing SPTA techniques, while [6] provides some comparisons
with simulation.

In this paper, we improve the precision of SPTA in two
ways. First, we refine the probability function given in [6] using
the concept of cache contention. Second, we describe a simple
approach that exhaustively enumerates all cache states that may
occur for a given sequence of memory accesses. This provides
precise analysis at the cost of complexity that is exponential in
the number of pairwise distinct memory blocks. Nevertheless,
this approach enables us to quantify the precision of various
approaches to SPTA for small programs. We also introduce
a combined approach which integrates precise analysis of the
most important memory accesses (those made most frequently),
with imprecise analysis of the remaining memory accesses,
using a simple probability function. We show that this combined
technique is effective in improving the accuracy of SPTA while
avoiding the exponential increase in complexity that exhaustive
analysis brings.

A. Random Cache Replacement
A cache with the evict-on-miss random replacement policy

operates as follows: whenever a memory block is requested and
is not found in the cache, then a randomly chosen cache line
is evicted and the requested block is loaded into the evicted
location. We assume an N-way associative cache, and so the
probability of any cache line being evicted on a miss is 1/N.

Prior work considered mostly instruction cache only and
no data cache; however, this restriction is unnecessary for the
theoretical foundations of our analysis. We therefore define
traces as sequences of memory blocks directly (independent
of the content of the memory blocks) instead of sequences of
instructions as was done in [6]. Further, the restriction to a fully-
associative cache can be easily lifted, as a set-associative cache
with s cache sets can be analysed as s parallel and independent
fully-associative caches.

B. Traces and Reuse Distance
A trace T of size n is an ordered sequence of n memory

blocks [e1, . . . , en]. The set of all traces is denoted by T, and E
denotes the set of all elements. The reuse distance rd(e) of an
element e is the maximum number of evictions since the last
access to the same element, with reuse distance ∞ in the case
that there is no prior access to that memory block.

rd : E × T→ N ∪ {∞}

rd (el, [e1, . . . el−1]) =

{
l − j if ∃e j : e j = el ∧ ∀ j<i<l : el , ei
∞ otherwise (1)

We typically represent the reuse distance k using a superscript
and omit all infinite reuse distances. For example,

a, b, a1, c, d, b3, c2, f , a5, c5

We denote the event of a cache hit at memory block ei as
ehit

i and P(ehit
i) the corresponding probability, with emiss

i and
P(emiss

i) being the equivalent for a cache miss. Further, we use
P̂ to denote the approximations to distinguish them from the
actual values.

C. Review of prior Approaches
In this section, we present the different approaches that have

been proposed to compute the probability of cache hits and
misses and thus the pWCET distribution.

Zhou [10] proposed using the reuse-distance to compute
the probability P(ehit) of a cache hit at access e with reuse
distance k:

P̂Z(k) =

(
N − 1

N

)k

(2)

where N is the associativity of the cache. The rationale
behind (2) is that the second access to e can only be a hit,
if all intermediate cache misses evict cache lines other than
the one element e occupies. Equation (2) is not precise, but
a lower bound on the individual probability of a cache hit.
Remember that the reuse distance was defined as the maximum
number of evictions, and not the actual number. Therefore
P̂Z(rd(e)) < P(ehit) holds for some access sequences.

In 2009, Quinones et al. [9] proposed to derive the pWCET
distribution of a single path program via convolution of the
pWCET distributions of individual accesses obtained from (2).
However, (2) is only valid if considered in isolation and the
convolution for independent events cannot be used due to a
dependency stemming from the finite size of the cache (see [6]).
To correct (2), Davis et al. [6] proposed an independent lower
bound on the probability of a cache hit:

P̂D(k) =


(

N−1
N

)k
N > k

0 otherwise
(3)

The drawback of (3) is that all accesses with reuse distance
higher than the associativity are considered to be cache misses.

In 2013, Kosmidis et al. [8] proposed the following formula

P̂K(ehit) =

(
N − 1

N

)∑ P
(
emiss

j

)
(4)

where the summation in the exponent is over the probabilities
of misses of the intervening memory accesses. (We note that a
similar formula was also given by Zhou [10] as an approxima-
tion). Equation (4) may over-estimate the actual probability of a
cache hit as noted in [5], and thus lead to a pWCET distribution
that is optimistic.

Using one of the above estimates of the probability of a
cache hit, the Probability Mass Function (PMF) Ii of element
ei is defined as follows:

Ii =

(
hit-delay miss-delay

P(ehit) P(emiss)

)
(5)

with P(emiss) = 1 − P(ehit) and hit-delay (miss-delay) denoting
the execution time for a cache hit (cache miss). The pWCET
distribution is then derived by computing the convolution ⊗ of
the probability mass function of each memory access ei:

pWCET =
⊗
Ii (6)

Under the assumption of constant hit- and miss-delays,

computing the distribution of cache-hits and cache-misses is
sufficient to derive the pWCET distribution. We will therefore
concentrate only on the former, the latter can be obtained by
multiplying the constant delays by the number of hits and
misses.

II. Correctness Conditions and Optimality
As stated in [6], the probability that a single access is a

cache hit/miss is not independent of prior events. This means
that in general, the convolution for independent events cannot
be soundly applied, as it is only valid for independent events.
What can be done instead, however, is to provide a lower bound
approximation P̂ to the actual probability of a cache hit for
which we can soundly apply the basic convolution for indepen-
dent events. Sound in this context means that for any sequence
of cache accesses [e1, . . . , en], the approximation P̂ (i) does not
over-estimate the probability of a cache hit, and (ii) the value
obtained from convolution of the approximated probabilities
for any subset of a trace T describing the probability that all
elements in the subset are a hit, is at most the precise probability
of such an event occurring:

(i) ∀e ∈ [e1, . . . , en] : P(ehit) ≥ P̂(ehit),
(ii) ∀E ⊆ [e1, . . . , en] : P

(∧
e∈E ehit

)
≥

∏
e∈E P̂(ehit).

A. Counterexamples to Equation (2) and Equation (4)
Of the different approaches presented in Section I, only (3)

provides a valid and sound lower-bound. Equation (2) does not
fulfil (ii) and (4) fulfils neither (i) nor (ii) as shown below.

To show that (4) over-estimates (i) the probability of an
individual cache hit, we use the access sequence

a, b, c, d, a3, b3

and a cache with associativity 2.
Equation (4) computes the probability of a cache hit for

the second access to a of (1/2)3 = 0.125, which is correct
and precise. For the second access to b, however, (4) results
in (1/2)2+0.875 ≥ 0.1363 which is optimistic as the correct
probability of a cache hit is (1/2)3 = 0.125 in this case. (This
can be seen by enumerating the possible cache states that could
exist after the second access to a; out of 16 possibilities each
with probability 0.0625, only two contain b).

To show that (ii) does not hold using (4) we use an example
derived from that given in [5], we assume the access sequence

a, b, a1, b1

and a cache with associativity of 100. Further, we assume that
the latency of a cache hit is 1 and the latency of a cache miss
is 10. The first two accesses are certain misses, so using (4),
the probability distributions for the first three instructions are
as follows: (

1 10
0 1

)
,

(
1 10
0 1

)
,

(
1 10

0.99 0.01

)
(7)

According to (4), the probability of the 4th access being a
cache hit is then: P̂K(ehit) = 0.990.01 = 0.9998995. (Note this
value is rounded down slightly, which is a safe assumption).
So the overall pWCET is(

10
1

)
⊗

(
10
1

)
⊗

(
1 10

0.99 0.01

)
⊗

(
1 10

0.9998995 0.0001005

)
=

(
22 31 40

0.989900505 0.01009849 1.005e−6

)
(8)

However, the correct pWCET is(
22 31 40

0.99 0.0099 0.0001

)
(9)

This is easily seen by considering the scenarios that result in
a total of two and four cache misses respectively. (Recall that
the first accesses to a and b are certain to be cache misses).
If the first access to b does not evict a (probability 0.99),
then the second access to a can only be a cache hit, which
in itself does not evict b, and so in this scenario, which has a
probability of occurring of 0.99, there are two cache misses in
total. Alternatively, if the first access to b evicts a (probability
0.01), then the second access to a is certain to be a cache
miss, which in turn has a probability of 0.01 of evicting b and
so making the second access to b a cache miss. Hence the only
scenario with four cache misses in total has a probability of
occurring of 0.0001.

In this example, using (4) results in a pWCET distribution
that under-estimates the probability of obtaining four cache
misses and hence an execution time of 40, by two orders of
magnitude. This is a highly optimistic and unsound result.

To show that (2) also contradicts constraint (ii), we assume
an associativity of 4 and the access sequence:

a, b, c, d, e, a4, b4, c4, d4, e4

By construction, all probabilities of a cache hit P̂Z(ehit) for the
last five accesses are non-zero. Hence, the combined probability
of five hits is also non-zero, which contradicts the fact that at
most 4 elements can be stored simultaneously in the cache.

B. Optimality of Equation (3)
We can derive an estimate of the probability of a cache hit

that is more precise than (3) as we can simply enumerate all
possible cache states and the associated probabilities; however,
this solution is computationally intractable, as we will explain
in Section IV. If we aim at an estimate using only the reuse
distances and on which we can apply the convolution for
independent events, then (3) is optimal in the sense that there
is no function of k and N that is valid and returns any larger
value.

Proof: We assume that P̂′(k) is a probability function such
that P̂′(k) is more precise than P̂D(k). Hence:

∃k : P̂′(k) = P̂D(k) + ε (10)

for some ε > 0. We assume that the only input to P̂D and P̂′ is
the reuse distance k which must be valid for any sequence of
accesses [e1, . . . , en], and the associativity N. We make a case
distinction on k:

Case k < N: Assume the following ordered sequence with
accesses to k pairwise distinct elements

[ex, e1, e2, e3, . . . ek−1, ek, ex]

and an initially empty cache. The reuse distance
of the second access to ex is k. Each access to any
of the other elements results in a cache miss, the
probability of a cache hit P(ehit

x) is exactly P̂D(k)
and the assumption that ε > 0 contradicts (i).

Case k ≥ N: Assume the access pattern

[e1, e2, e3, . . . ek−1, ek, e1, e2, e3, . . . ek−1, ek]

for each second access to ei, the reuse distance is
k. Since the cache can store at most N elements
and k > N, we know that the probability of k hits

is 0, i.e, P
(∧

ei
ehit

i

)
= 0. However, since ε > 0 and

P̂D(k) ≥ 0, we can conclude that
∏

e∈E P̂′(ehit) > 0,
which contradicts (ii).

Hence, we can construct for any k and any N, an access
sequence where P̂D is optimal in the sense that it provides the
largest valid value of any function relying only on the reuse
distance and the associativity.

III. Probability of a cache hit using Cache Contention
Equation (3) provides a tight lower bound on the probability

of a cache hit, but it is imprecise even for simple access
sequences. If we consider for instance a random cache with
associativity 4 and the following access sequence,

a, b, c, d, f , a4, b4, c4, d4, f 4

all accesses are considered cache misses. The reason for this is
that for each of the last five accesses, the probability of a cache
hit is set to 0 to ensure correctness with respect to constraint
(ii), i.e, that the probability of the last five access all being hits
is zero. However, this can also be ensured by considering the
probability of a cache hit for the preceding accesses. To this
end, we define the concept of the cache contention con of a
memory block e which denotes the number of memory accesses
within the reuse distance of e that are considered possible hits
by P̂ (i.e. have a non-zero probability):

con : E × T→ N
con (el, [e1, e2, . . . , el−1]) =∣∣∣∣{ei ∈ [e1, . . . , el−1]

∣∣∣l − rd(el, [e1, . . . , l − 1]) ≤ i ∧ P̂(ehit
i) , 0

}∣∣∣∣ (11)

We only need to set the probability of a cache hit for an
access e to zero when the cache contention is greater than or
equal to the associativity N.

P̂N(ehit) =

 0 con(el,T) ≥ N(
N−1

N

)k
otherwise

(12)

The cache contention con and the probability P̂N are mutually
dependent; but the cache contention of an element e depends
only on the probability of a cache hit for the preceding
elements, which enables con and P̂N to be computed efficiently.

Table I presents the probability P̂N for the elements of
the example sequence. In contrast to (3), only one of the five
elements with finite reuse distance is assumed to have zero
probability of being a cache hit.

a, b, c, d, f , a, b, c, d, f
rd ∞ ∞ ∞ ∞ ∞ 4 4 4 4 4

con 0 0 0 0 0 0 1 2 3 4
P̂D 0 0 0 0 0 0 0 0 0 0
P̂N 0 0 0 0 0 (3

4)4 (3
4)4 (3

4)4 (3
4)4 0

TABLE I. Probabilities P̂N and P̂D for the access sequence

a, b, c, d, f , a, b, c, d, f , with reuse distances (rd) and cache contentions (con).

IV. Exhaustive State-Enumeration
We now describe a simple analysis to compute the exact

probability distribution of cache hits. This analysis is orthogonal
to the approaches presented in previous sections. Here, we
exhaustively enumerate all cache states that may occur during
the execution of a given trace.

The domain of the analysis is a set of cache states defined as
follows: A cache state CS is a triple (E, P,D) consisting of a set
of memory blocks E ⊆ E, a probability P ∈ R and a distribution

of cache misses D : (N→ R). A cache state CS = (E, P,D) has
the following meaning: the cache contains exactly the elements
E with probability P, and D denotes the distribution of cache
misses when the cache is in this state. The set of all cache
states is denoted by CS. Note that we model a distribution by
the function N → R which assigns each possible number of
cache hits a probability. We start with an initially empty cache,
i.e. CS init = (∅, 1,D) with

D(x) =

{
1 if x = 0
0 otherwise

Hence, our initial state space is the set containing the initially
empty cache: {CS init}.

The update function u describes the cache update when
accessing element e for a single cache state as follows:

u : CS × E→ 2CS

u ((E, P,R) , e) =

{
{(E, P,D)} if e ∈ E
miss((E, P,D), e) otherwise (13)

If the accessed element e is a cache hit, then the cache state
remains unchanged, and the output is the set containing the
input cache state. However, if the accessed element e is a cache
miss, then the update function generates a set of possible cache
states as follows:

miss((E, P,D), e) =
{
(E \ e′ ∪ {e}, P · 1/N,D′)|e′ ∈ E

}
∪

{
(E ∪ {e}, P · (N − |E|)/N,D′)| if |E| < N

}
(14)

with D′(0) := 0 and ∀x > 0: D′(x) = D(x − 1).
Each element e′ from the set E may be evicted from the

cache with probability 1/N and the element e, which is now
cached, is added to E. In the case that the set E is smaller than
the associativity of the cache, an empty cache line or a cache
line with unknown content will be evicted with probability (N−
|E|)/N. In either case, the miss-distribution will be shifted by
one to account for the additional cache miss.

In order to reduce the state space, we merge two cache states
if they contain exactly the same memory blocks. We thus define
the join operation for cache states as follows:

t : CS × CS→ 2CS

(E1, P1,D1) t (E2, P2,D2) ={ {
(E1, P1 + P2, (P1

P1+P2
· D1) ⊕ (P2

P1+P2
· D2))

}
if E1 = E2

{(E1, P1,D1), (E2, P2,D2)} otherwise
(15)

where ⊕ denotes the summation of two distributions (i.e. D1 ⊕

D2 := λx.D1(x) + D2(x)) and p ·D denotes the multiplication of
each element in D by p (i.e. p · D := λx.p · D(x)). This step is
necessary to weight each distribution by its probability.

We can lift the function u from single cache states to a set
of cache states as follows:

U : 2CS × E→ 2CS

U(S , e) =
⊔
{u(CS , e)|CS ∈ S } (16)

The set of cache states S res generated by a trace T =
[e1, . . . , en] executed on the initial cache state CS init is thus
given by the composition of U:

S res := U(. . . (U(U(CS init, e1), e2), . . . , en) (17)

The final distribution of all cache states in S res is then given
by the summation of all individual distributions of each cache

state weighted by their probabilities:

Dres =
⊕
{D · P|(E, P,D) ∈ S res} (18)

See Figure 1 for an example of the exhaustive enumeration
of all cache states, for a cache with associativity 4. Here, we
assume an initally empty cache. The access to block a leads
with probability 1 to the next cache state (where only a is
cached). The next access to b evicts memory block a with
probability 1/4 or is stored in a different cache line to a with
probability 3/4, and so on.

Unfortunately, a complete enumeration of all possible cache
states is computationally intractable. Due to the behaviour of
the random replacement policy, each element that was cached
once, may still be cached. Thus the number of different cache
states grows exponentially.

(∅, 1,D)

({a}, 1,D)

1

({a, b}, 3/4,D)

3/4

({b}, 1/4,D)

1/4

({a, b}, 15/16,D)

3/4 3/16

({a}, 1/16,D)

1/16

({a, b, c}, 15/32,D)

15/32

({b, c}, 15/64,D)

15/64

({a, c}, 18/64,D)

15/64 3/64

({c}, 1/64,D)

1/64

a

b

a

c

Fig. 1. The first four steps of exhaustive enumeration of all cache states for the
access sequence a, b, a, c, d, b, c, f , a, c The dotted arrows show the evolution of
the different cache states, annotated with the corresponding probability.

V. Combined Approach
So far, we presented two approaches, one precise but

computationally intractable, the other imprecise yet efficient. In
this section, we show how these approaches can be combined
to form a new approach with scalable precision. The idea is to
use the precise approach for a small subset of relevant memory
blocks, while using the imprecise approach for the remaining
blocks. So, instead of enumerating all possible cache states, we
abstract the set of cache states and focus only on the m most
important memory blocks, where m can be chosen to control
both the precision and the runtime of the analysis. In this way,
we effectively reduce the complexity of the precise component
of the analysis for a trace with l distinct elements from 2l to
2m (typically with m � l). We use the number of occurrences
of a memory block e within a trace T as a simple heuristic
indicating relevance. We therefore order the memory blocks
within a trace T by the number of occurrences and select the
m blocks with the highest frequency. Let R ⊆ E be the set of
these m blocks. For the access sequence

a, b, a, c, d, b, c, f , a, c

and m = 2, R = {a, c}. Thus, the state exploration conceptually
computes a precise probability distribution for the sequence

a, , a, c, , , c, , a, c

while the imprecise calculation is used to compute the proba-
bility of cache hits for the sequence

, b, , , d, b, , f , ,

We have to change the update function of the analysis
(see (13)) such that only elements from the set R are represented
explicitly, i.e. ∀(E, P,D) ∈ CS : E ⊆ R. Each access to a

memory block e which is not contained in the set R will be
considered a cache miss; however, e will not be added to the
set E (to ensure that E ⊆ R). Further, as we use (12) to compute
the probability of a hit for access e, and include the distribution
for e via convolution, we do not increase the miss counts of
the cache states in respect of e, i.e., we do not update the miss-
distributions D of a cache state (E, P,D).

u : CS × E→ 2CS

u((E, P,R), e) =


{(E, P,D)} if e ∈ E
miss((E, P,D), e) if e < E ∧ e ∈ R
miss′((E, P,D)) if e < R

(19)

with

miss′((E, P,D)) =
{
(E \ e′, P · 1/N,D)|e′ ∈ E

}
∪ {(E, P · (N − |E|)/N,D)| if |E| < N} (20)

The function miss′ computes the resulting set of cache states
in the case of a miss, without inserting the accessed element e
as it is not an element of R. Figure 2 shows the reduced cache
state exploration on the example sequence with R = {a, c}.

(∅, 1,D)

({a}, 1,D)

1

({a}, 3/4,D)

3/4

(∅, 1/4,D)

1/4

({a}, 1,D)

3/4 1/4

({a, c}, 3/4,D)

3/4

({c}, 1/4,D)

1/4

a

b

a

c

Fig. 2. The first four steps of the reduced cache state enumeration for the
access sequence a, b, a, c, d, b, c, f , a, c with R = {a, c}. The dotted arrows show
the evolution of the different cache states, annotated with the corresponding
probability. The access to memory block b is considered as cache miss, but
this block is not added to the cache states, since b < R.

We also have to update the definition of cache con-
tention (11) to consider all memory blocks of R as potentially
cached:

con(el,T) = |R|+∣∣∣∣{ei ∈ T |l − rd(el,T) ≤ i < l ∧ P̂(ehit
i) , 0 ∧ ei < R

}∣∣∣∣ (21)

Table II presents the probability P̂N for the elements of the
example sequence, assuming N = 4.

, b, , , d, b, , f , ,
rd ∞ ∞ 4 ∞

con 2 3 3 4
P̂N 0 0 (3

4)4 0

TABLE II. Probabilities P̂N for the access sequence a, b, a, c, d, b, c, f , a, c
and R = {a, c}, with reuse distances (rd) and cache contentions (con).

In the last step, we convolve the resulting distributions of
both approaches to obtain the final distribution of cache misses.

VI. Evaluation
In this section, we compare the precision of the various

approaches presented. Due to the limited space, here we only
give results for two benchmarks from the Mälardalen Bench-
mark Suite [7] (binary search and insertion sort). An extended
evaluation covering 6 additional benchmarks, including 4 with
much longer traces, and an assessment of the tractability (run-

time) of the combined approach can be found in the technical
report [1].

The selected benchmarks are simple but allow us to clearly
focus on the code characteristics that impact the precision of
the results: (i) the number of distinct memory blocks and (ii)
the overall number of memory accesses. We assumed a fully-
associative instruction-only cache with an associativity of 16
and a block-size of 8.

To derive an approximation to the actual performance of
the random cache, and thus a baseline for our experiments,
we performed 109 simulations of the cache behaviour for each
benchmark (red line). The other lines on the graphs are the
imprecise approach using only the reuse distance (3) (light blue
line), the cache-contention approach (12) (black line), and the
combined approach using 4, 8 and 12 relevant memory blocks
(green, dark blue and pink lines respectively).

When the number of distinct memory blocks is smaller than
or close to the cache associativity, then the cache-contention
approach results in no improvement or only a slight im-
provement over the imprecise approach using only the reuse
distance. This was the case with insertion sort (see Figure 3).
Yet, the combined approach with 8 blocks reduces the over-
approximation by 50% to 60% and with 12 blocks results in
exact or nearly exact results. When the number of distinct
memory blocks exceeds the associativity of the cache as with
binary search (see Figure 4), the cache-contention approach
significantly improves upon the imprecise approach using only
the reuse distance, which predicts hardly any cache hits.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

p
ro

b
a
b

ili
ty

misses

1-CDF (#misses)

reuse distance
cache contention

state enum.(4)
state enum.(8)

state enum.(12)
simulation

Fig. 3. Insertion Sort. 707 memory accesses in total, 21 distinct memory
blocks.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 40 50 60 70 80 90 100

p
ro

b
a
b

ili
ty

misses

1-CDF (#misses)

reuse distance
cache contention

state enum.(4)
state enum.(8)

state enum.(12)
simulation

Fig. 4. Binary Search. 132 memory accesses in total, 25 distinct memory
blocks.

The experiments have a short runtime when the number of
relevant blocks is small (less than one minute for 8 blocks or
less) but the runtime quickly grows to about 15 minutes for 12
blocks (on a 2.3 GHz CPU) and several hours for a complete

state-enumeration; even for these simple programs (see [1] for
a detailed evaluation of tractability (runtime)).

VII. Conclusion and FutureWork
In this paper, we investigated the correctness, optimality

and precision of Static Probabilistic Timing Analysis (SPTA)
for systems that use a cache with an evict-on-miss random
replacement policy.

The main contributions of this paper are: (i) Showing that
the formula for the probability of a cache hit (previously
published in DATE 2013 [8]) is not sound for use in SPTA,
since it can produce results in the form of probabilistic Worst-
Case Execution Time (pWCET) distributions that are optimistic
by orders of magnitude and thus unsafe. (ii) Proving the
optimality of the probability function given in [6] with respect
to the limited information (reuse distance and associativity)
that it uses, and deriving an improved probability function that
uses information about cache contention. (iii) Introducing an
approach with scalable precision, combining precise analysis
for frequently used memory blocks with imprecise analysis for
those memory blocks that are used less often. Evaluation shows
that this technique is effective in reducing pessimism in SPTA
without the problems of exponential complexity inherent in an
exhaustive cache state exploration.

In future, we intend to investigate how our combined
approach may be extended from traces to multi-path programs,
improvements that may be obtained by dividing a trace into
independent sub-traces (see the technical report [1] for initial
work in this area), and explore other heuristics and methods of
choosing which memory blocks to select for precise analysis.

Acknowledgment
This work was partially funded by COST Action IC1202:

Timing Analysis On Code-Level (TACLe), the UK EPSRC
Project MCC (EP/K011626/1), and the EU FP7 Integrated
Project PROXIMA (611085).

References
[1] S. Altmeyer and R. I. Davis. On the correctness, optimality and precision

of static probabilistic timing analysis. Technical Report YCS-2013-487,
University of York, 2013. Available from http://www.cs.york.ac.uk/ftpdir/
reports/2013/YCS/487/YCS-2013-487.pdf.

[2] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. D. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis,
C. Lo, and D. Maxim. Proartis: Probabilistically analyzable real-time
systems. ACM Trans. Embedded Comput. Syst., 12(2s):94, 2013.

[3] L. Cucu-Grosjean. Independence - a misunderstood property of and for
probabilistic real-time systems. In N. Audsley and S. Baruah, editors,
In Real-Time Systems: the past, the present and the future, pages 29–37,
2013.

[4] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quiones, and F. J. Cazorla.
Measurement-based probabilistic timing analysis for multi-path programs.
In ECRTS 2012, pages 91–101.

[5] R. Davis. Improvements to static probabilistic timing analysis for systems
with random cache replacement policies. In RTSOPS 2013, pages 22–24.

[6] R. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean.
Analysis of probabilistic cache related pre-emption delays. In ECRTS
2013, pages 129–138.

[7] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen
WCET benchmarks – past, present and future. In WCET 2010, pages
137–147.

[8] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. A cache design
for probabilistically analysable real-time systems. In DATE 2013, pages
513–518.

[9] E. Quinones, E. D. Berger, G. Bernat, and F. J. Cazorla. Using randomized
caches in probabilistic real-time systems. In ECRTS 2009, pages 129–138.

[10] S. Zhou. An efficient simulation algorithm for cache of random replace-
ment policy. In NPC 2010, pages 144–154.

