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Abstract

Industry trends aimed at integrating higher levels of circuit func-
tionality have triggered a proliferation of mixed analog-digital
systems. Magnified noise coupling through the common chip sub-
strate has made the design and verification of such systems an
increasingly difficult task. In this paper we present a fast eigen-
decomposition technique that accelerates operator application in
BEM methods and avoids the dense-matrix storage while tak-
ing all of the substrate boundary effects into account explicitly.
This technique can be used for accurate and efficient modeling of
substrate coupling effects in mixed-signal integrated circuits.

1 Introduction

Industry trends aimed at integrating higher levels of
circuit functionality resulting from an emphasis on com-
pactness in consumer electronic products and a widespread
growth and interest in wireless communications, have trig-
gered a proliferation of mixed analog-digital systems. Sin-
gle chip mixed-signal designs combining digital and analog
blocks built over a common substrate, provide reduced lev-
els of power dissipation, smaller package count, as well as
smaller package interconnect parasitics. The design of such
systems however, is becoming an increasingly difficult task
owing to the various coupling problems that result from the
combined requirements for high-speed digital and high-
precision analog components. Noise coupling through the
common chip substrate, caused by the nonideal isolation
has been identified as a significant contributor to the cou-
pling problem in mixed-signal designs [1, 2, 3, 4]. Fast
switching logic components inject current into the substrate
causing voltage fluctuation which can affect the operation
of sensitive analog circuitry through the body-effect, since
the transistor threshold is a strong function of substrate bias.

The most common way to deal with these problems

is to resort to costly trial and error techniques. Clearly
such a methodology, is not adequate in the face of rising
fabrication costs and increasing demands for shorter design
cycle times [4]. Several approaches have been presented in
the past to attempt to quantify the effects of noise coupling
through the substrate. Examples of such techniques include
Finite Element (FEM) and Finite Diference (FD) numerical
methods for computing all the currents and voltages in the
substrate [1, 2, 5, 6, 7]. Unfortunately such methods are
impractical for anything but simple problems, since the
number of unknowns resulting from the discretization is
too large because of volume-meshing of the entire substrate.
Device simulators such as MEDICI and PISCES can also
be used for this task. However they are in general too slow.

Boundary-Element methods (BEM) have been applied
with some success to the problem of modeling substrate
coupling. BEM methods are appealing for the solution of
this type of problems because by requiring only the dis-
cretization of the relevant boundary features they dramat-
ically reduce the size of the system to be solved. In [8]
a Green’s function for a two-layer substrate without back-
plane is used. In [9, 10] a distinct approach is taken in
that point to point impedances are precomputed and later
interpolated to find the admittance model. In both meth-
ods accuracy can be compromised due to the assumption
of infinite lateral dimensions if some of the contacts are
placed near the physical walls of the substrate. In [11] a
Green’s function is derived that takes into account the ac-
tual properties of the domain. Here a 2D DCT (Discrete
Cosine Transform), implemented efficiently with an FFT
algorithm, is performed thus avoiding repeated computa-
tion of the Green’s function.

In general the computational effort involved in comput-
ing a model using BEM methods is considerable mostly
because the matrices involved are dense. This fact has lim-
ited the usage of such methods to small to medium size



problems. In this paper we present a novel eigendecompo-
sition method, used in a Krylov subspace solver, that elim-
inates dense-matrix storage and speeds up operator-vector
application significantly. This method is used to speedup
the computations necessary for computing substrate mod-
els in a BEM formulation and allows for the extraction of
substrate models in problems containing several hundred
surface unknowns. The resulting model can readily be in-
corporated into standard circuit simulators such as SPICE or
SPECTRE to perform coupled circuit-substrate simulation.

In Section 2 we present some background on substrate
coupling modeling and BEM methods. Then, in section 3
we present our algorithm based on a functional eigende-
composition of the substrate current to voltage operator
and show how to use it to speed up substrate extraction.
In section 4 the efficiency and storage requirements of the
proposed method are discussed. In section 5 we include
examples that illustrate the efficiency and accuracy of the
techniques described. Finally, in section 6, we present
some conclusions from our work.

2 Background

2.1 Problem Formulation

For typical mixed-signal circuits operating at frequen-
cies below a few gigahertz, the substrate behaves resis-
tively [3, 9]. Assuming this electrostatic approximation,
the substrate can be modeled as a stratified medium com-
posed of several homogeneous layers characterized by their
conductivity, as shown in Figure 1. On the top of this stack
of layers a number of ports or contacts are defined, which
correspond to the areas where the designed circuit interacts
with the substrate. Examples of these contacts include pos-
sible noise sources or receptors, such as contacts from sub-
strate or wells to supply lines, drain/source/channel areas
of transistors, etc. Figure 1 exemplifies the typical model
assumed for the substrate and examples of contact areas
or terminals. The contacts on the substrate top are usually
assumed to be planar (bidimensional). The bottom of the
substrate is either attached through some large contact to
some fixed voltage (usually ground) or left floating.

In the electrostatic case the potential, satisfies
Laplace’s equation, ( ) 0, where is the substrate
conductivity, assumed constant in each layer. Application
of Green’s theorem, assuming a modified Green’s function

which accounts for the problem’s boundary conditions
gives the potential at some observation point due to
a unit current injected at some source point as
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Figure 1: 3D model of the substrate as an homogeneous
multilayered medium.

where is the surface current density.
The usage of the medium’s Green’s function greatly

simplifies the problem by implicitly taking into account the
boundary conditions, making it unnecessary to discretize
the boundaries. The substrate Green’s function has been
previously computed in analytical form and shown to be [3]

0

cos cos cos cos 2

where , , and are the substrate
lateral dimensions and the can be computed with the
help of recursion formulas. For the exact expressions and
their derivation see [3] or [11].

2.2 Computing a Resistive Model

Once the Green’s function is known, Eqn. (1) can be
used to compute the potential at any point from a current
distribution on the substrate contacts. Given a set of
contacts, we seek a model that relates the currents on those
contacts, to their voltage distribution ,

3

where is the admittance matrix of the system. The model
given by Eqn. (3) is a simple resistive network where the
contacts are the network nodes and entry in repre-
sents the conductance between nodes and . Inclusion of
such a model in a standard circuit simulator such as SPICE

or SPECTRE is a trivial task.
Accuracy concerns make it necessary to discretize each

of the contacts into a series of panels ( ). A set of



equations relating the currents and potentials on all panels
can then be formulated

4

where ,

1
5

and and are the surface areas of panels and re-
spectively.

Solving Eqn. (4) times with an appropriate choice of
contact potentials allows us to obtain the columns of
one at a time. The computational cost of such a task is
dominated by the construction of and the solution of (4),

times. If Gaussian elimination (i.e. LU-factorization) is
used to solve Eqn. (4), the computational cost will be 3

which is overwhelming for typical values of . Methods for
speeding up the solution of this problem are however well
known and have been applied to substrate extraction [9]. It-
erative algorithms and namely Krylov-subspace algorithms
can be used to speedup the solution of (4). An example of
such a method is the Generalized Minimum Residual algo-
rithm, GMRES [12]. GMRES solves the linear system by
minimizing the norm of the residual at
each iteration , of the iterative process. The major cost of
this algorithm is the computation of a matrix-vector prod-
uct which is required at each iteration. Thus, if the number
of iterations does not grow too rapidly and is kept small,
the total cost of obtaining the substrate admittance model is

2 where is the average number of GMRES
iterations per solution.

Using (2) directly to compute the elements of is
computationally very expensive. Furthermore, since
is dense, the storage requirements of such an algorithm are
quite large making it impossible to handle large problems.

Therefore general methods have to be devised to avoid
dense matrix storage and accelerate the computation of
Eqn. (4) in order to be able to handle problems involving
several hundreds of substrate contacts with high accuracy.

3 Sparsification via Eigendecomposition

In this section we describe the algorithm proposed for
extracting a substrate model. Here the computation and
thus the storage of is unnecessary as the iterative al-
gorithm GMRES is used to solve Eqn. (4) but direct com-
putation of the matrix-vector product, is avoided.
This operation corresponds in essence to computing a set
of average panel potentials given a substrate injected cur-
rent distribution. This can readily be done by means of
an eigenfunction decomposition of the linear operator that

relates injected currents to panel potentials. As we shall
see, this computation can be performed very efficiently by
means of 2D DCT’s.

3.1 Computation of the Operator Eigenpairs

The substrate top surface is first discretized in small
rectangular panels, where small means that the current that
flows across them can be considered uniformly distributed
in each one. Considering the top of the substrate as a 2D
surface, this discretization leads to an set of panels
(usually ). With this approximation the current
distribution in the by panels can be represented by
the following equation

1

0

1

0
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where is the total current at panel , is a
square-bump function that serves as an averaging function
and is defined as

2 2 2 2

0

and 1 2 , 1 2 .
We now assume that the current distribution function

can be represented (decomposed) by a sum of func-
tions of the form

0 0

7

where are the functions and are the coeffi-
cients of the decomposition. If are the eigen-
functions of the linear operator which takes us from
currents to potentials, then by definition, the potential can
be written as

0 0

8

where are the eigenvalues of . Therefore, if the
eigenpairs (eigenfunctions and eigenvalues) of implied
by Poisson’s equation are known, and an eigendecomposi-
tion of the injected substrate currents can be obtained such
as (7), then the potentials are trivially obtained from (8).

In order to compute the eigenpairs of we substitute (7)
in Poisson’s equation and note that the current distribution
on the contacts is represented along the axis as a delta
function at 0. We obtain

2 0 0 9



From the knowledge of the boundary conditions it is easy
to show that this equation is satisfied if

cos cos 10

and the eigenvalues are the solution of

2

2
2 11

evaluated at 0 ( 2 2). The
solution of Eqn. (11) can be readily obtained to be, for

0,

sinh cosh

cosh sinh
12

where is the number of layers in the substrate profile
with resistivities 1 , and its thickness. For

0, we get

00 13

The values of and can be computed in a recursive
manner as in [11].

3.2 Eigendecomposition Representation for
Panel Potentials

The expansion coefficients can be determined in the
usual manner to be

0 0
cos cos
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Since is constant by rectangles as given by (6),
replacing we obtain, after some algebra,

1

0

1

0

cos
1 2

cos
1 2

(15)

with

1 0 0

4 sin 2 0 0

4 sin 2 0 0

16
2 sin 2 sin 2 0 0
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From the knowledge of the potential distribution is

readily computed from Eqn. (8). The average potential in

each panel can then be obtained by taking the inner product
between Eqn.(8) and the square-bump function supported
over the given panel. The result of this operation is

0 0

cos
1 2

cos
1 2

(17)

with

1 0 0

2 sin 2 0 0

2 sin 2 0 0

4
2 sin 2 sin 2 0 0
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Numerical evaluation of the average panel potentials,

amounts to truncating Eqn. (17). The size of the summation
is controlled by the number of coefficients available,
and therefore by the number of cosine modes used in the
eigendecomposition.

3.3 Efficient Computation of the Panel Potentials

Computing the average panel potentials from (17) given
any arbitrary current distribution on the top of the substrate
requires the computation of the . Inspection of Eqn. (15)
reveals that, for 0 1 0 1, the coeffi-
cients are the result of a 2D type-2 DCT on the set .
Such an operation can be efficiently performed by means
of an FFT. Furthermore, after multiplication by the eigen-
values, computation of the average potentials from (17),
assuming truncation of the summation, again amounts, up
to a scaling factor, to the computation of an inverse 2D
type-2 DCT on the set .

If necessary, the accuracy of the potential computation
can be increased by further refining the substrate discretiza-
tion. However this directly affects the number of panels in
the system thus increasing the total computation time and
storage. In our method, higher accuracy can be obtained,
without refining the discretization, by increasing the size
of the eigendecomposition, i.e., by employing more cosine
modes. Apparently such an alternative would preclude us-
age of the efficient FFT algorithm for Eqn. (15) since there
would now be more coefficients than panels (i.e.
coefficients). However, by using the symmetry properties
of the DCT, it can be shown that all can
be related to the first cosines modes ( ). This pro-
cess is termed unfolding. Thus by simple computation of
the DCT implied in (15), it is possible to obtain an arbitrary
number of cosine mode coefficients without incurring in



any substantial extra cost. By a similar argument refolding
of these coefficients can be performed to obtain the average
panels potentials from (17). Specifically,

1

0

1

0

cos
1 2

cos
1 2

(19)

where is the 2D DCT of as seen in (15) and
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ˆ 2 and similarly for ,̂ where an
appropriate number of terms is used.

4 Complexity Comparisons

In order to compare the memory usage and the computa-
tional cost (for similar accuracies) of the eigendecomposi-
tion algorithm proposed versus the Green’s function based
algorithm we will assume, without loss of generality, that
the discretization of the substrate is such that .

The memory requirements for the eigendecomposition
method are 2 space to store the eigenvalues of the
system, the DCT coefficients and the vectors necessary for
the computation of the GMRES algorithm, and 2 for
the final admittance model (assuming contacts are being
used). The storage requirements for the Green’s function
based methods are 2 2 2 where is
the size of the 2D grid used in the DCT and resulting from
the panel discretization, is the number of panels and
the number of contacts (usually and ).
In [11] it is indicated that need not be explicitly com-
puted, thus reducing the memory requirements. However
this is done at the expense of increasing the computation
cost by repeatedly assembling the elements from the
results of the 2D DCT sequence. The interesting case to
consider is when the density of contacts is large, as is com-
mon in most designs where area is a major concern. In
that case can be a large percentage of 2, which is the
maximum number of contacts defined on a grid.
Typically and are of comparable magnitude for rea-
sons of accuracy, even though as we saw, in the eigen-
decomposition method one can increase accuracy without

increasing . But even assuming that and are com-
parable, if 20% 2, a small density of contacts, the
storage requirements of the Green’s function methods are
then 2 2 2 0 04 4 . For large
enough , the last term dominates the storage cost and the
Green’s function method requires substantially more space
that the eigendecomposition method whose cost is always

2 , albeit with a large constant.
The computational cost of both methods can also

be compared. For the Green’s function method this
cost is 2 2 log 2 2

2 2 log 2 , where the first term cor-
responds to the 2D type-1 DCT and the second term corre-
sponds to stenciling the matrix and to the multiple system
solutions if GMRES is used. It is easily seen that the second
term always dominates the total cost. In the eigendecom-
position method, the total cost is 2 2 log .
Experience shows that and , the average number of
GMRES iterations per contact in each method, are compa-
rable. Thus the difference between the cost of the two meth-
ods rely on the comparison of 2 log to 2 4.
As we saw previously, even for sparse designs in the num-
ber of contacts ( 1%) 2 2, which implies that the
eigendecomposition method is almost always much more
efficient.

5 Experimental Results

In this section we present examples that show the ac-
curacy and efficiency of the substrate coupling extraction
algorithm presented in this paper. We will use as an exam-
ple a layout from a simple mixed-signal circuit. Figure 2
shows the layout for an example problem with 52 contacts
on a 128 128 substrate.

Two experiments, using different substrate profiles were
conducted on this example layout in order to test the versa-
tility, accuracy and efficiency of the extraction algorithm.
The profiles used were taken from [11] and are described
in Figure 3. The high-resistivity substrate is used in vari-
ous BiCMOS processes, while the low-resistivity substrate
is used in CMOS due to their latch-up suppressing prop-
erties. For each of the substrate profiles, extraction was
performed and a resistive model was obtained as described
in Section 2.

Table 1 shows a selected set of relevant resistances com-
puted using the Green’s function based method and our
eigendecomposition based method for the case of the low-
resistivity profile. As seen from the table the accuracy of
both methods is comparable. Similar accuracies were noted
when the high-resistivity profile was employed.

In this example usage of a uniform discretization for
the Green’s function method would produce a problem
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Figure 2: Example layout from a mixed-signal design.
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Figure 3: Substrate profiles used in example problem.

with too many panels and the computation time and mem-
ory requirements would be overwhelming. Therefore an
efficient non-uniform discretization algorithm was imple-
mented. The results in Table 2 show that the discretization
using this algorithm produces a relatively small number of
panels. This is a very important observation because it
implies that an efficient discretization algorithm has to be
developed if the Green’s function method is to be applied
for extraction. Tables 3 and 4 summarizes the relevant
parameters obtained for the extraction applied to both the
low and high-resistivity profile examples, respectively. In
order to maintain similar accuracy between methods the
minimal discretization used for each method was different.
In particular a larger DCT was necessary for the Green’s
function based method. However, the cost of computing
the DCT is not very relevant relative to the total cost, as
seen in Tables 3 and 4. Also from Tables 3 and 4 one can
see that the memory requirements for the eigendecomposi-

Name Nodes Green’s func Eigendec.
1 2 non-uni. dis. unif. dis.

R0 1 BACK 2202.48 2203.45
R1 1 2 4689.54 4684.63

R400 9 21 5.55422e+06 7.46023e+06
R637 15 BACK 538.379 542.456
R678 16 19 5849.6 5711.85
R708 16 49 226888 245875
R712 17 BACK 1535.03 1539.48
R784 19 20 6626.83 6642.54
R839 20 42 7.82962e+07 7.83473e+07
R878 21 49 658.712 658.369

R1242 37 BACK 662.151 666.366
R1250 37 45 2632.51 2539.71
R1255 37 50 89315 94327.1
R1256 37 51 4.09985e+06 4.21027e+06

Table 1: Selected set of extracted resistances for the low-
resistivity substrate. Node numbers refer to contacts and
BACK refers to the grounded backplane.

Value Green’s func. Eigendec.
non-unif. disc. unif. disc.

# contacts 52 52
# panels 2647 17764
Avg. panels/contact 51 341
Size of DCT 512 512 256 256

Table 2: Summary of the relevant circuit parameters.

tion algorithm are much smaller. A factor of almost 6 was
obtained in terms of memory savings.

In terms of computational cost a factor of over 6 speedup
was obtained for the low-resistivity substrate profile, and a
speedup of almost 15 was recorded for the high-resistivity
substrate, which leads to a harder numerical problem.

6 Conclusions

In this paper we reviewed some of the commonly
used techniques for extracting and generating accurate
models for substrate coupling. We presented a new
eigendecomposition-based technique which when used in
a Krylov subspace solver enables efficient extraction of
a substrate coupling model in a BEM formulation. The
resulting model can readily be incorporated into standard
circuit simulators such as SPICE or SPECTRE to perform cou-
pled circuit-substrate simulation. Examples that show the
accuracy and efficiency of this extraction algorithm were



Value Green’s f. Eigendec.
non-uni. dis. unif. disc.

Memory usage 142MB 23MB

# GMRES iter. 1238 1868
Average per contact 23 35

Computation Times (seconds on an Ultra Sparc 1)

discretization 0.06 0.54
Green’s func. DCT 12.90 N/A
Total setup time 14241.5 12.5
Solve cost (GMRES) 16656.8 4111.4
Total extr. time 30965.5 4994.9

Table 3: Summary of the relevant parameters obtained for
the extraction of the example problem for the low resistivity
substrate profile.

Value Green’s f. Eigendec.
non-uni. dis. unif. disc.

Memory usage 144.6MB 25.5MB

# GMRES iter. 8030 2930
Average per contact 154 56

Computation Times (seconds on an Ultra Sparc 1)

discretization 0.06 0.54
Green’s func. DCT 10.33 N/A
Total setup time 14241.1 9.92
Solve cost (GMRES) 107278 6450.05
Total extr. time 123630 8405.64

Table 4: Summary of the relevant parameters obtained
for the extraction of the example problem for the high
resistivity substrate profile.

presented. A speedup of over 15 was obtained when com-
paring the new method with direct usage of the problem’s
Green’s function for two substrate profiles. This result cou-
pled with significant reductions in memory usage make the
method presented very competitive for the solution of this
problem.
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