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Abstract than the topological delays. The circuit shown in Figure 1

Waveform narrowing is an attractive framework for illustrates this poi_nt [12]. Many techniques have been de-
circuit delay verification as it can handle different delay Veloped to deal with the problem of false path [1]-[9]. Path
models and component delay correlation efficiently. The oriented timing verifiers suffer from poor performance as
method can give false negative results because it relies onthey may have to enumerate a very large number of paths,
local consistency techniques. We present two methods tohOWever, it is possible to improve the performance by
reduce this pessimism: 1) global timing implications and Memorizing inconsistencies between sub-paths [9], and
necessary assignments, and 2) a case analysis procedurethus reduce the search space. In [5] the authors reduced the
that finds a test vector that violates the timing check or Problem of determining whether the delay of the circuit is
proves that no violation is possible. Under floating-mode, greater thad to an ATPG problem. In [6] an exact method
global implications eliminate timing check violation with- ~Pased on timed Boolean functions and an OBDD represen-
out case analysis in the c1908 benchmark, while for a tight- tation was formulated, however, it may experience expo-

er requirement case analysis finds a test vector after only 5 Nential space explosion for certain circuits. Our group has
backtracks. developed a method based on abstract waveform narrow-

ing [2] inspired by constraint logic programming (CLP) us-

ing relational interval arithmetic [17]. It can efficiently
1. Introduction handle component delay correlation [1] and adapt to differ-

ent circuit-delay modes (two-vector transition or floating

Verifying delays in gate-level circuits is more difficult  mode) by a simple change in the abstract waveforms ap-
as the details of the design are fading away from the view plied to the inputs of the circuit.
of the designers who must rely on tools that synthesize No exact delay calculation algorithm performs effi-
blocks from descriptions in high level languages and then ciently on all circuits, and the time complexity is exponen-
connect them together, often manually. Due to circuit com- tial on some circuits. A trade-off between tightness of the
plexity, traditional manual verification or simulation is not upper bound on the max. circuit delay and the efficiency of
suitable, and considering just the topological delay of the the method is thus necessary. The method of [1, 2] is an ex-
circuit is too conservative and may be costly in useless re- cellent candidate for such a trade-off. Exact answers can
design effort. Unfortunately, computing the delay of a still be obtained by performing case analysis over the
combinational circuit is an NP-Complete problem. Conse- waveforms on certain circuit nets, guided by heuristics. In
quently, exact methods are exponential in nature, and morethis paper we show how the addition of global timing im-
research into heuristics and user interfaces is required toplications and a new heuristic for the selection of nets for
satisfy industrial expectations from static timing verifica- the case analysis can considerably improve the perfor-
tion tools. mance of the algorithm. When combined with delay corre-
The complexity of the problem is caused by the fact lation [1], the resulting algorithm is closer to what is

that in general not all sighal paths in a circuit can propagate needed in industrial applications. Presently we are integrat-
transitions (false paths). When the longest paths are false,ing our engine with a timing verifier developed at Nortel,
the actual delay of the circuit is less than this value, i.e., less with the objective to test the method on industrial circuits.
than the topological delay of the circuit. Hrapcenko [12] The paper is organized as follows: Section 2 gives ba-
presented early an extended discussion on the subject, andic definitions and terminology. Section 3 formalizes the
proved that minimal circuits may have delays that are less problem of whether a circuit has a floating delay greater



than or equal td as a constraint satisfaction problem. Sec- 3.1 Domains
tions 4 and 5 introduce global timing implications and the
improved case analysis. Section 6 contains experimental
results and Section 7 concludes the presentation.

A real digital signal waveform is a mappii®R - R.
Abstracted to a binary waveform in discrete time, it be-
comes a mappin§Z - {Q } . The space of all binary

2. Definitions and Terminology waveforms isBW = {1:Z - {0, 1}} .

A combinational logic circuitis represented by a di- ~ 3.1.1 Abstract Waveforms
rected acyclic grapk = (gates nets where gates are
the vertices and delayless nets are the edges.

A gateis one Of:AND, NAND, OR, NOR, NOT, BUFFER
DELAY, XOR, XNOR. Delays are intervals [g,, dnad, al-
though in the max. floating-mode delay calculation only

Definition 1: An abstract waveform{AW) is a subset of
BW defined asw = v\lnr:ilx = {f O0BW| [Ot>max

f(ty=vO 0 [Imin,maih f(t)#v}. The abstract
waveformspace iAW = {v|,"°* | vO{0, 1} , Imin, max

the d,axbound is used. 0z

A pathis an alternating sequence of nets and gaggs ( v\mﬁx contains binary waveforms that are stable at
Jo, N1, 91,---, Nk, Ok Nk+1)- Ng iS @ net connected to an input  valuev after timemaxand undergo the last transition at or
of gg, Nk+1 IS @ net connected to the output of ggteand after timelmin. Obviously, not any subset 8W can be
n; connects the output of gajg, to an input ofy;, j=1 to k. represented by aabstract waveformThis leads to some
A side inputof a path Gy, 9g, N1, 91,--.» Nks G» Nk+) IS aNy approximations when the union operation is definedt®n
input net of gatey;, | = 0, ..., k, other than,. Thepath stract waveformss it is not equivalent to the correspond-
length dpaehis the sum of thegh, delays of theELAY el- ing set union. Referenceswdmin andmaxof anabstract
ements lying on the path. Thepological delayop of a cir- waveform ware denoteav.v, w.Imin andw.max respec-

cuit is the length of its longest path. The topological delay tively. w.vis theclassand v.Imin, w.maj the last-transi-
top, of a nemn is the length of the longest path starting at a tion interval of w. If w.Imin>w.maxthen fv.Imin, w.max}
primary input and ending at The topological delaiop,;. is empty andv itself is also empty, denoted k= @.
n2 between two nets; andn;, is the length of the longest ) , )
path starting at; and ending at,. Relatlons and Operations oPAW having the samelass
A controlling value at a gate input uniquely deter- are defined as follows: ,
mines the gate output value.ndn controlling valueat a Equality: wy = w; iff wymax = wp.max [ w.min =
gate input is a value that is maintrolling. wy.Imin or both are empty.
Thefloating mode circuit delayis the minimum time Narrowngss:wl is said to benarrowerthanwz, de_noted
after which all the outputs of the circuit settle to a final sta- W1 < Wz iff (wpmax < w.max U wi.Imin >ws.Imin) [
ble value for all possible input vectors applied at time 0, as- (W1-Max < w.max U w.Imin 2 waImin). wy <w, iff

suming that the initial state of all circuit nets is unknown (W1 <Wp) (W = w5). o
(non-controlling). Narrowing anabstract wavefornmeans changing its

Imin and/ormaxto make it narrower than its previous val-
ue. Anabstract waveform ythat isnarrowerthanw, con-
tains feweibinary waveformshanw,.

Inclusion: w; Ow, iff w; <w,. Intersection: wyn @ =

A timing-checkis a tuplec = (&,s,0) wher€ isa
combinational circuitsis a primary output o€ , and i
an (integer) delay value. It represents the following deci-
sion problemDoes s of circui€ have a delay greater than

or equal tod ? @, Onwy = @, Wz @) O Wz @) O w=wynw, with
W.V = Wq.V =W,V andw.Imin = maximung,.Imin, ws.Imin)
3. Overview of Waveform-Narrowing andw.max= minimumgv;.max wp.max. Union: w; [J @ =

wy, @Owy =wy, Wz @) O Wz @) O w=w; 0w, with
A timing-checko = (&, s, d) is transformed into a  w.v=wy.v=w,.vandw.Imin = minimumgv,.Imin, w,.Imin)

constraint system that is consistent iff the ousthds a de- andw.max= maximumgv;.max w,.may.

lay greater than or equal & . A constraint system is com-

posed of a finite set of variableXf, Xs,..., X} which take Lemma 1:If (wi# @) O (Wp# @) then (vmax + 1 2
values from their respective domaidg, D,..., Dy, and a wq.Imin) O (wy.max+ 1= wy.Imin) < (wqOw, = {f{OBW
set of relational constraint€f, Cy,..., Cr}, €ach specify- | (fOwy O fOwy)}). _ _ _ _
ing which values of the variables are mutually compatible. The result of performingW union may in general in-

The variables and the relational constraints represent theclude binary waveforms that were not originally included
signal values on circuit nets and the gates, respectively. in the operandsw = w; Ow, includes, besidg and
The specific circuit-delay mode and the output timing con- W, & minimal subset d8W that makes bothv; andw;

straint3 introduce further restrictions on the domains. representable by a single AW, andwionarrower thanw
contains botlw, and,



3.1.2 Abstract Signals

Definition 2: An abstract signal Ss a pair of abstract
waveforms(w, W) w.v = 0 andv.v = 1

The componentsy an@  &fare denote® an8 | re-
spectively. The space of adibstract signalsis AS =
{wDOAW|w.v =0} x{wO AW|w.v = 1} ; it is the do-

main of the variables in the constraints in our method.

Relations and Operations orAS.

Equality: S; = S, iff (§,=8,)) (5, =S,).

Narrowness: S, <S, iff ((§,<S))0($,<S)) O
((5,=8)U(S1<%)): S8, iff (§<S) [
(S51=5).

Inclusion: S; O°S, iff Sl

Intersection: S; n S, = Sz Sin

Union: S, 0°S, = (S, O 52 S$10Sy).

3.2 Gate Constraints

Gate constraints are derived from the Boolean gate
functions. Letg:BW x BW - BW be the timed Boolean
function [6] of a 2-input gat€&. For example, in the case of
a 2-input AND with fixed delay d, g(14(t),1,(t))=
[,(t—d)O,(t—d). LetD;,D;,andDg be the domains
in AS associated with the variables of the inpits X j ,
and the outpuX , respectively. bat X; ,axd  be sub-
sets oBW such that

x, = {wOBW|wOD; OwODj},

Xj = {wOBW|wO DJ Ow0d D, it

Xs = {wOBW|wOD,OwD Ds}

The projections oD, Dj anDg
G are then as follows:

i ={w, O XiiD’Vz O Xj, Ow, O Xg, g(Wy, Wo) = Wg},
j = {w, O X Ow,y O, Ovg O Xg, 9wy, Wy) = Wa},

= {wg O xg|Owy O x;, Oy, O X, g(wy, wy) = wg} .

The constraint reIationg(Xi, Xj, Xs)  derived from
g, is an operator that changes the valueB,0fD; ,Dg
to become thearrowestspossible to contain’; x’ j and
X', respectively. The projections and the operator&®n
are used to define a system of equations 8&which is
solved by computing the greatest fixpoint [1, 2]

Examplellz'sletD = (Oi 1\100) D = (Oi (p) and
D, = (Oi , Q) . Applyrng the constrarnts o? the 2-input
AND gate wrth delay 0 t®;, D D, [ at output) Yrelds
the foIIowrng new valtsies D' = (o 1\500) ,
D' = (Oi35, ¢) andD’g = (0i35, o) .

to the terminals of

3.3 Constraint System

Given atiming-checko = (&, s, 8), the construction
of the constraint system is straight forward following the
circuit description. Le€( {Gate; Gate, , ..Gate,}
{Net;, Net,, ..., Net } )be the circuit om gates anch

-3-

as

nets where each gate is connected to a subset of the nets.
We build a constraint system composed wériablesX; ,
X5, .., X, associated with tmedomainsD; D, ,..D, ,
respectively, anchrelational constraint€; G, ,.G,,
where C; operates on the domains corresponding to the
variables of the nets connectediatg . The initial values
for aII the domains of the constraint system f are
(Oi o 1\ ) so as to contain any possible BW. For float-
ing-mode deIay calculation, we restrict the primary input
domains_ to waveforms that are stable after time O:
F = (Oigm, 1\?00). To verify if the outputs has a delay
greater than or equal @ , we restrict the signal domain of
s to the Waveforms havrng transitions at or after tine
i.e.,Dg = (Oi i

The constraint system is tightened (solved) by repeat-
edly applying the local projections of domains as induced
by the gate constraints (Section 3.2) untilnaorowing of
any domain is possible, i.e., the (unique) greatest fixpoint
of the system of equations is reached. We implemented this
iterative computation efficiently using an event-driven
scheduler. It also includes selective state saving needed for
backtracking in case analysis.

Definition 3: Given atiming-checko = (&, s,d) and its
corresponding constraint system composed of the variables
X1y X5,y X, their respective domaibs D, ,D,,
and the constraint€; C, , .G, binary waveform
wlDy is said to bey -compatible iff it is part of a solution,

i.e., iff there is a waveform in ea&h, izk, such that with

w from Dy, the constraint system is satisfigds said to be

o -incompatibleif it is not o -compatible

Theorem 1: The fixpoint of the evaluation is reached in a
finite number of steps.

Theorem 2:If Dy = {@, @} then no transition is possible
on outputs at or after timé

Example 2: Consider thetiming-checko = (¢, s, 61)
whereg is the circuit of Figure 1 [12]. Assuming the max.
delay of 10 on the output of each gdts = 70 and the
floating-modedelay is 60, because the patty{ g, n,
93, N3,04,N,,95,Ng,97,N;,0g ,S }isfalse. We now
illustrate our method on this example. lI}gl Dq e, Dea ,
D De,De,De ,Dn ,Dn ,Dn Dy Dn D,

Dn7, Dy be the ddmains associatéd wrth the varra%les of
the correspondrng nets. The initial values af@;
_(Oi o 1\ |D{1 2 3 4,5, 6, 7}: the floating- mode in-
puts; D, (Oi D{l 2, 3,4,5, 6, 7}: any possi-
ble waveform D (Oisl , 1\61) only the waveforms that
violate the timing check, i.e., transitions after time 60.
Waveforms propagation yields:g, O Dnl =0, 12.)

the maximal delay ofj; is 10; therefore, no transition is

possible onn,  after time 10,0 D, (@Eg,lizo) ;

—00
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Figure 1 False path circuit

30 .30 40
93D Dn3 = (500‘_001 1‘_00)’ g4|:| DI’] 50 (0‘ 60 1‘—00)'
950 Dy, =(0%, 11%): 950 D, (0%, or o) 970
Dl’l7 5(00‘—00' 1 —oo) ; g8 D60 DSGO (0‘61' 1‘61) and
DnSZ(O\_m’ o) anan7 0|, 1f5,) : theast-transition-

intervalonsis propagated to;, and the controlling wave-
forms onng are removed because they block the way on

. — - 0.
n7, 97'340Dn(3 0 (0\41' 1\41) andD, _((‘0’ 1) 1960
:(0%L 1‘31) and Dy, 0|, 9) ; 9,0 2(|)3n320_

0 %0
(0\21,1\21) and D, :((p,l\_m) g3D D, =(0\11,1\11
0 10 , 1
andD4:(0\_oo o) ; gZEID l—(O\l,l\l) andD3
(9, @) which thenyieldD, €@, @) :hence no transition is

possible ors at or after t = 61.

4. Global Timing Implications

The method based on waveform narrowing uses local
gate constraints, i.e., the global circuit function is not taken

B.A, B:A; BA B.A,

B.A

B.A,

into account. By analyzing the circuit topology, however,
we can deduce some of the functionallBgatic learning

[14] is used to identify some of thedassbased implica-
tions. It is implemented in a pre-processing stage that de-
termines tables of implications. Whenckass becomes
empty in the domain of a ndgarning tables are used to
imposeclassrestrictions on other domains. In addition we
use the notion ddtaticanddynamic timing dominator®
identify global implications related to the existence of tran-
sitions at or after a certain tin@in, as described next.

The propagation of thiast-transition intervalis the
main mechanism in proving that no violation is possible. In
Example 2, only one path was the potential carrier of the vi-
olation. There was no ambiguity in deciding which net s its
cause when the gate constraints were applied: apgate it
was able to decide that nef cannot be the cause of the
violation because (largest B, ng-Max afn;i] .max 5) +10
< (smallest ofDg.Imin andDg.Imin ). Thid is why|”
was narrowed tap img and thast-transition interval
was propagated to, . In more complex circuits, e.g., the
carry-skip adder in Figure 2, we may not be able to make
such an unambiguous decision. Consider the ou@put
Suppose that the topological delay fr@p to C; is 750
and that the timing constraint @3 is to require transitions
at or after time 750, i.eq = (&4, C,, 750)

The gate constraints are able to propagatelasie
transition intervalfrom C to X only because no other sub-

BA BAQ

situation atX. To simplify the pre-

‘ tions. Figures 2 and 3 illustrate the

sentation, assume that thenD

Select,

gate drivingX is delaylessClass0

of M (controlling) is removed be-
cause it blocks the way d&handP.
The last-transition intervalpresent
atX propagates tolassO onN and

P, but not to class 1, because both

path can be the carrier of the transi-

%@

Figure 2 Carry-skip adder

inputs do not need to have transi-
tions to propagate tX. We thus

Class 0 is eliminated as it is conflicting with X
M
No narrowing is possible on class 1
Class 0 is narrowed: binary waveforms that |
are stable at and after Dy./min are removed N
No narrowing is possible on class 1 T
Class 0 is narrowed: binary waveforms that | |
are stable at and after Dy./min are removed p
No narrowing is possible on class 1 I
D I/ D :
.Imin .max
X X X

Figure 3 Situation at the driving gate of X




cannot decide which net is responsible for transition prop-
agation, i.e.Jmin can be increased, (the domain narrowed)
only in thecontrolling classe®f theNAND gate. However,
the circuit topology implies that all paths@ longer than
749 containCg. Therefore, we can restrict waveforms on
Cg to those having transitions at or after time
(minimun( B;.Imin, Dy.Imin) - max. topological delay
from Cg to X).

4.1 Static Timing Dominators

Definition 4: A net x of & is a static carrier of
o = (&, 0) iff Opath in& containing ands of length
greater than or equal &

Definition 5: The sub-circuit composed of thatic carri-

ersofo = (&, s, 0) and their driving gates & is tseat-
ic-carrier circuit of 0.
For example, the static-carrier circuit of

o = (&, C4, 750) whereg, isin Figure 2, is the sub-cir-
cuit of &; composed of the shaded nets and their driving
gates.

Definition 6: Let W be thestatic-carrier circuit of
0 = (§,s0). Let¥' be a DAG derived fromd  as fol-
lows: each net i corresponds to a verteXd¥in  ; each
gate inW with k inputsy,x,,... X, and one output, corre-
sponds to k edges, from the vertex corresponding to
those corresponding ig, i=1 to k. Add a terminal vertek
to W', and an edge b from each vertex of an input &f
W’ is a DAG with one source vert&(corresponding te)
and one sink vertek. The nets o  corresponding to the
dominators [15] off (vertices lying on every path fro&
to T) are thestatic timing dominatorof o .

For example, foro = (§;, C;, 750) wheré, isin
Figure 3,C+, X, Cg, C5 arestatic timing dominatorsf o .

Lemma 3: Let d be a static timing dominator of

o = (&, s, 8). Waveforms onl that are stable at and after
time (& -topy.g arec—incompatible

Proof: Follows from Lemma 6.1 in [10].

4.2 Dynamic Timing Dominators

The propagation of thiast-transition intervalof the
output to thestatic dominator®f the circuit represents glo-
bal necessary assignments. Additional global implications

vided that the domaib satisfiesD, n (1[;” ., 0[;".)
#Z (@, ). A net x is adynamic carrierof ¢ h‘f Ok=0

such that x is &-dynamic carrierf o .

Definition 8: Let W be the circuit composed of tthgnam-
ic carriers ofg = (&, s, ) and their driving gates¥ is
the dynamic-carrier circuitof o, and theopological de-
lay top,_sbetweerx ands of W is thedynamic distancef
X.

Intuitively, thedynamic distancef x is the maximum
time a transition ax takes to reack, and is equal to the
largest integek such thak is ak-dynamic carrierof ¢ . In
fact, the concept afynamic carrierds formulated by nec-
essary conditions for a net to be the cause of a violation of
the timing check, and the domain of a net that is riyt-a
namic carrierof 0 = (&, s, d) does not contain transitions
that propagate to tHast-transition intervalbf s.

Definition 9: The definition ofdynamic timing domina-
tors is obtained by replacing “static” with “dynamic” in
Def. 6.

Theorem 3: For atiming-checka = (§,s, &) and ady-
namic timing dominator detk be the largest integer such
thatd is k-dynamic carrierof o . The waveforms od that

are stable at and after timé ( k)-arec—incompatible

Proof: Theorem 3 is a direct consequence of the fact that
any netx [0 W cannot be the cause of a timing violation,
i.e.,D, does not contain transitions that propagate to within
thelast-transition intervabns. This can be proven by con-
tradiction: Suppose that there is a path(x, g , N, , ...

» N, 9y, S) such that the domain afcontains fransitions
thaf prdpagate along to thelast-transition intervalon s.

This implies that the same property is true for all the nets
of p. Thenn,  has transitions at or after tind (- max. de-
lay of g, ) and consequently, iD( - max. delay of
g, )-dynamic carrierof o . Similérlyxis (5 - length of)-
dyhamic carrierof 6. x 0 W contradicts the original as-
sumption.

Corollary 1: Let d be a dynamic dominator of
o = (&, s, &) andk thedynamic distancef d. Narrowing

the domain of d b¥ intersecting it  with
1 +o00 0 0 )

( ‘6 - édynan]ilc-ﬁistancf d)’ ‘6 - dynamic_—disfancf d

maintains all the solutions of the original system.

The proof follows from Theorem 3.

can be determined by analyzing the contents of the abstract

signal domains.

Definition 7: Let o = (§, s, 0) be aiming-checkandC
its constraint system. L&t be the domain associated with
outputs. If Dg# (¢,¢) thensis said to be 8-dynamic car-
rier of 0. If nety is ak-dynamic-carrierand it is the output
of gateg with max. delaydy,4 then an input net of gate
gis ak’-dynamic-carrierof o wherek’ = (k + dy,5,), pro-

Figure 4 exhibits the timing verification algorithm
making use of Corollary 1.

5. Case Analysis

When the net domains remain non-empty after the fix-
point calculation we cannot definitely conclude that a vio-
lation is possible. We adapted the FAN algorithm [13, 14]



source of the violation. The backtrace is initiated each time
functionverify (&, s, 8) { the size of the decision stack changes as a result of back-
construct the constraint system CS associated (&5, 8) | tracks. Moreover, decisions are performed in 3 phases, fol-
:2: 32ﬂ2?;2'Zf’ifgfépta%“tsﬁdf (O & 1) lowing stem correlation pre-processing stage:
st Tlheol Stem correlation: We perform partial correlation on all re-

. 0,0
set domain o§to (0], 1|,) ; . - L
schedule all constraints operating on inputssmu EventQueue; convergent fanout stems that dsgamic carriers This is

returnevaluatgCS, EventQueue); done, for a stem Y, by computing the domaig & each
} variable X of the constraint system as follows; © Dy
functionevaluatgCS, EventQueue) { D _DXl where I3(0 anqo'?(l are the Va"i";-‘os of pwhen DY
if EventQueue is empty return PossibleViolation; is intersected witi{0|__, @) anfp, 1|_ ) , respectively.
if (reach_fiXﬁoic_t(?S. EventQueue) = = NoViolation) This has the effect of removing some of the incompatible
return NoViolation; . . .
determine dynamic dominators; V\(ave_forms from the domains of the variables and no deci
for each dominatad do { sion is yet taken.
i”éeL%OECI domain od with 1+ Phase 1:Let dj, dy, ..., d, be the consecutiveynamic-
( 5 - dynarmic-distance of t>/5 - dynamic-distance of ) dominatorsof (&, s,d) computed before any decision is

if the domain ofd changed then schedule all constraints

operating on it on EventQueue; taken,(dy =s) .Let€, 4 ~ be the sub-circuit f com-

posed of the fan-in cone df ~ excludidg, ;, . We fix the

returnevaluatg(Cs, EventQueue); classvalue of nets iy 4  i,= 0 tok-1, using the mod-
} ified FAN algorithm. Then; we fix thelassof nets in the
functionreach_fixpoint(CS, EventQueue) { fan-in cone ofd, .

while EventQueue not empty { Phase 2:We perform decisions on the whole circuit using

take a constraint out of EventQueue;
apply constraint on the domains;

the modified FAN algorithm.

schedule all constraints operating on the Phase 3:We perform decisions o and then on the pri-
domains that were modified on EventQueue; mary inputs after complete backtrace fronjustifiednets.
if the domain ofs is empty return NoViolation: An output of a gate G isnjustifiediff its domain is restrict-

else return PossibleViolation; ed to oneclas§and if we can+intersect the domain on each
} input with (O|__, @) or(,1|_ ) to get non empty input

When the function verify (£, s, 8) returns NoViolation, the domains that are inconsistent with the gate constraint.

output s cannot have transitions at or after time o.

6. Experimental Results

Figure 4 Algorithm of the method Experiments were executed on a Sun SPARCstation
to perform case analysis by waveform splitting on nets, i.e., 10- The basic constraint system evaluation without global
by restricting their domains to omtassat a time with the ~ implications ontiming dominatorswas able to eliminate
objective of finding a test vector or proving that no viola- timing check violation in the c5315 and ¢7552 of o
tion is possible. We usesicoap [16] controllability to gate implementations of thecAs85 benchmarks [11]
guide the algorithm. with delays of 10 on the outputs of all gates. The usenef

The main idea is to compute timitial objectivesso as ing dominatorseliminated timing violations from c1908
to set those nets which are inputs of gates irdymamic- and c3540. Stem correlation eliminated timing-check vio-
carrier circuit W of o that are notlynamic carriersto a lation from ¢2670 and c6288. The case analysis found test
non-controllingvalue regarding the gates they feeddn . Vvectors for all circuits except c6288. Table 1 contains the

This is justified by the following reasoning: the timing vi- results. Note that the value 6ffor_ which a test vector is _
olation at outpus is originating in¥ , hence we need to found represents the exact floating-mode delay of the cir-
sensitize the paths ¥ . To favor the longest paths, we es-Cuit when the constraint system is inconsistent§ot ()
tablished thebjectivesto be a tripletk, ny(k), n;(K)) as in on all outputs. The _columns_ of Table 1 <_:on'Fa|n, from left to
[13], but the semantics are different: a pathabdelay right, the following information: 1) the circuit name, 2) the
(ny) is potentially enabled by setting the ke 0 (1). The max. topological delay of the_cwcwt, 3) 'Fhe timing con-
backtrace procedures are identical to the ones in [13] andStraintd, 4) the result of the first evaluation of the con-
[14], except that at fanoutsy (ny) receives the largest in-  Straint system beforg the usettpl‘ung dominators5) the
coming 1y (ny) instead of their sum. In the contextoPa, result after thu_:—) use diming dominators6) the resglt after
backtrace is performed a minimal number of times. In our Stem correlation, 7) the number of backtracks in the case
case such a strategy resulted in poor performance, becaus@_nalyms, 8) the result of case analysis, and 9) the total CPU
decisions on nets may have profound effectn , the time.



Table 1 Results for ISCAS’85 circuits

[3] D. Brand and V. lyengar, “Timing

Analysis Using Functional Analysis,”

CIRCUIT CIRCUIT 5 BEFORE AFTER AFTER C.A. C.A. CPU IEEE Trans. Comp Oct. 1988’ C-
MAX . TOP. G.I.T.D. G.I.T.D. STEM C. #BTRCK RESULT (S) 37(10)1309_1314
c17 50 56 P P P 0 v 0.05 | 4] S. Devadas, K. Keutzer and S. Malik,
432 190 196 P P P 1 v 18.82 “Delay Computation in Combina-
c499 250 | 25B| P P P 5 v | 710 tional Circuits,” ICCAD-91 Nov.
c880 200 206 P P P 0 \Y 3.06 1991.
c1355 270 278 P P P 1 v 8.17 1 [5] S. Devadas, K. Keutzer and S. Malik,
1908 340 311 P N - - - 0.90 “Computation of Floating Mode De-
c1908 340 316 P P P 5 Vo | 1158 lay in Combinational Logic Circuit:
2670 250 241 P P N 0 N 3.67) Theory and Algorithms,” IEEE
c2670 250 248 P P P 7 v 1707 Trans. Computer-Aided Desigwiol.
€3540 410 391 P N - - - 5.12 12, no. 12, Dec. 1993, 1913-1923.
€3540 410 396 P P P 3 V.| 56.00| [g] W.K.C.Lam, R. K. Brayton and A.
5315 460 451 N - - - - 1.56 L. Sangiovani-Vincentelli, “Circuit
5315 460 458 P P P 16 v 21.97 Delay Models and their Exact Com-
6288 1230 1221 P P N 0 N 56.3p putation Using Timed Boolean Func-
c6288 1230 1229 P P P A A A tions,” 30th DAG June 1993, 128-
c7552 380 3N N - - - - 0.72 134.
7552 380 376 P P P 1 v 8.34 | [7] S. Devadas, et al., “Certified Timing

Legend: (G.I.T.D. stands for Global Implications on Timing Dominators.)

P: Possible violation of the timing-check constralfitNo violation of the timing-check constraint on any circuit output
is possibleV: Test vector found.(dash): Procedure not used (was not necesganfbandoned due to excessive num-
ber of backtracks Fj: Value represents exact floating-mode del4y. Value represents upper bound on the maxir{lg"

floating-mode delay.

Not included in Table 1 is the timing check performed
on a 16 bit carry-skip adder, partly shown in Figure 2. The
adder has a topological delay of 2000 and a floating-mode [9]

delay of 1000. This was determined in 25 secondsrof

time after a total of 1636 backtracks. Bor1001 the case
analysis proved that the constraint system is inconsistent on

all outputs, and fod=1000 found a test vector.

The use ofiming dominatorsvas very effective on the

traditionally difficult c1908 circuit. It proved that output
57 912 (topological delay of 340) cannot have a delay [11]
greater than 200 in 0.76 seconds. This particular case has 5
timing dominatorsand no narrowing was performed on 3

of them by the original method.

7. Conclusions

We showed in this paper how global timing implica-
tions enhance the performance of the timing verification
; . [14]
method based on waveform narrowing. Further refine-
ments were achieved by enforcing correlation on reconver-
gent stems and new heuristics included in the case analysis.
We are developing constraint models for complex gates [15]

(Mux, etc...), and we processF backannotation to test our

method on industrial circuits.
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