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Abstract
Waveform narrowing is an attractive framework for

circuit delay verification as it can handle different delay
models and component delay correlation efficiently. The
method can give false negative results because it relies on
local consistency techniques. We present two methods to
reduce this pessimism: 1) global timing implications and
necessary assignments, and 2) a case analysis procedure
that finds a test vector that violates the timing check or
proves that no violation is possible. Under floating-mode,
global implications eliminate timing check violation with-
out case analysis in the c1908 benchmark, while for a tight-
er requirement case analysis finds a test vector after only 5
backtracks.

1. Introduction

Verifying delays in gate-level circuits is more difficult
as the details of the design are fading away from the view
of the designers who must rely on tools that synthesize
blocks from descriptions in high level languages and then
connect them together, often manually. Due to circuit com-
plexity, traditional manual verification or simulation is not
suitable, and considering just the topological delay of the
circuit is too conservative and may be costly in useless re-
design effort. Unfortunately, computing the delay of a
combinational circuit is an NP-Complete problem. Conse-
quently, exact methods are exponential in nature, and more
research into heuristics and user interfaces is required to
satisfy industrial expectations from static timing verifica-
tion tools.

The complexity of the problem is caused by the fact
that in general not all signal paths in a circuit can propagate
transitions (false paths). When the longest paths are false,
the actual delay of the circuit is less than this value, i.e., less
than the topological delay of the circuit. Hrapcenko [12]
presented early an extended discussion on the subject, and
proved that minimal circuits may have delays that are less

than the topological delays. The circuit shown in Figure 1
illustrates this point [12]. Many techniques have been de-
veloped to deal with the problem of false path [1]-[9]. Path
oriented timing verifiers suffer from poor performance as
they may have to enumerate a very large number of paths,
however, it is possible to improve the performance by
memorizing inconsistencies between sub-paths [9], and
thus reduce the search space. In [5] the authors reduced the
problem of determining whether the delay of the circuit is
greater thanδ to an ATPG problem. In [6] an exact method
based on timed Boolean functions and an OBDD represen-
tation was formulated, however, it may experience expo-
nential space explosion for certain circuits. Our group has
developed a method based on abstract waveform narrow-
ing [2] inspired by constraint logic programming (CLP) us-
ing relational interval arithmetic [17]. It can efficiently
handle component delay correlation [1] and adapt to differ-
ent circuit-delay modes (two-vector transition or floating
mode) by a simple change in the abstract waveforms ap-
plied to the inputs of the circuit.

No exact delay calculation algorithm performs effi-
ciently on all circuits, and the time complexity is exponen-
tial on some circuits. A trade-off between tightness of the
upper bound on the max. circuit delay and the efficiency of
the method is thus necessary. The method of [1, 2] is an ex-
cellent candidate for such a trade-off. Exact answers can
still be obtained by performing case analysis over the
waveforms on certain circuit nets, guided by heuristics. In
this paper we show how the addition of global timing im-
plications and a new heuristic for the selection of nets for
the case analysis can considerably improve the perfor-
mance of the algorithm. When combined with delay corre-
lation [1], the resulting algorithm is closer to what is
needed in industrial applications. Presently we are integrat-
ing our engine with a timing verifier developed at Nortel,
with the objective to test the method on industrial circuits.

The paper is organized as follows: Section 2 gives ba-
sic definitions and terminology. Section 3 formalizes the
problem of whether a circuit has a floating delay greater
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than or equal toδ as a constraint satisfaction problem. Sec-
tions 4 and 5 introduce global timing implications and the
improved case analysis. Section 6 contains experimental
results and Section 7 concludes the presentation.

2. Definitions and Terminology

A combinational logic circuit is represented by a di-
rected acyclic graph  where gates are
the vertices and delayless nets are the edges.

A gate is one of:AND, NAND, OR, NOR, NOT, BUFFER,
DELAY, XOR, XNOR. Delays are intervals [dmin, dmax], al-
though in the max. floating-mode delay calculation only
the dmax bound is used.

A path is an alternating sequence of nets and gates (n0,
g0, n1, g1,...,nk, gk, nk+1). n0 is a net connected to an input
of g0, nk+1 is a net connected to the output of gategk, and
nj connects the output of gategj-1 to an input ofgj, j=1 to k.
A side input of a path (n0, g0, n1, g1,...,nk, gk, nk+1) is any
input net of gategl, l = 0, ..., k,  other thannl. Thepath
length dpath is the sum of the dmax delays of theDELAY el-
ements lying on the path. Thetopological delaytop of a cir-
cuit ξ is the length of its longest path. The topological delay
topn of a netn is the length of the longest path starting at a
primary input and ending atn. The topological delaytopn1-

n2 between two netsn1 andn2 is the length of the longest
path starting atn1 and ending atn2.

A controlling value at a gate input uniquely deter-
mines the gate output value. Anon controlling value at a
gate input is a value that is notcontrolling.

The floating mode circuit delay is the minimum time
after which all the outputs of the circuit settle to a final sta-
ble value for all possible input vectors applied at time 0, as-
suming that the initial state of all circuit nets is unknown
(non-controlling).

A timing-check is a tuple  where  is a
combinational circuit,s is a primary output of , and  is
an (integer) delay value. It represents the following deci-
sion problem:Does s of circuit  have a delay greater than
or equal to ?

3. Overview of Waveform-Narrowing

A timing-check  is transformed into a
constraint system that is consistent iff the outputs has a de-
lay greater than or equal to . A constraint system is com-
posed of a finite set of variables {X1, X2,...,Xn} which take
values from their respective domainsD1, D2,..., Dn, and a
set of relational constraints {C1, C2,...,Cm}, each specify-
ing which values of the variables are mutually compatible.
The variables and the relational constraints represent the
signal values on circuit nets and the gates, respectively.
The specific circuit-delay mode and the output timing con-
straintδ introduce further restrictions on the domains.

ξ gates nets,( )=

σ ξ s δ, ,( )= ξ
ξ δ

ξ
δ

σ ξ s δ, ,( )=

δ

3.1 Domains

A real digital signal waveform is a mappingf: .
Abstracted to a binary waveform in discrete time, it be-
comes a mappingf: . The space of all binary
waveforms is .

3.1.1 Abstract Waveforms

Definition 1: An abstract waveform (AW) is a subset of
BW defined asw =  = {

}. The abstract
waveform space isAW = { , lmin, max

Z}.

 contains binary waveforms that are stable at
valuev after timemax and undergo the last transition at or
after timelmin. Obviously, not any subset ofBW can be
represented by anabstract waveform. This leads to some
approximations when the union operation is defined onab-
stract waveforms as it is not equivalent to the correspond-
ing set union. References tov, lmin andmax of anabstract
waveform w are denotedw.v, w.lmin andw.max, respec-
tively. w.v is theclass and [w.lmin, w.max] the last-transi-
tion interval of w. If w.lmin > w.max then [w.lmin, w.max]
is empty andw itself is also empty, denoted byw= .

Relations and Operations onAW having the sameclass
are defined as follows:
Equality: w1 = w2 iff w2.max = w1.max w2.lmin =
w1.lmin or both are empty.
Narrowness: w1 is said to benarrower thanw2, denoted
w1 < w2 iff (w1.max w2.max w1.lmin w2.lmin)
(w1.max w2.max w1.lmin w2.lmin).  iff

.
Narrowing anabstract waveform means changing its

lmin and/ormax to make it narrower than its previous val-
ue. Anabstract waveform w1 that isnarrower thanw2 con-
tains fewerbinary waveforms thanw2.
Inclusion:  iff . Intersection: w1  =

, w1 = , (w1 )  (w2 ) w = w1 w2 with
w.v = w1.v = w2.v andw.lmin = maximun(w1.lmin, w2.lmin)
andw.max = minimum(w1.max, w2.max). Union: w1  =
w1, w1 = w1, (w1 )  (w2 ) w = w1 w2 with
w.v = w1.v = w2.v andw.lmin = minimum(w1.lmin, w2.lmin)
andw.max = maximum(w1.max, w2.max).

Lemma 1: If (w1 )  (w2 ) then (w2.max + 1
w1.lmin)  (w1.max + 1 w2.lmin)  (w1 w2 = {f BW
 (f w1 f w2)}).

The result of performingAW union may in general in-
clude binary waveforms that were not originally included
in the operands.  includes, beside  and

, a minimal subset ofBW that makes bothw1 andw2
representable by a single AW, and now’ narrower thanw
contains both  and .

R R→

Z 0 1{ , }→
BW f :Z 0 1,{ }→{ }=

v
lmin
max

f BW∈ t max.>∀
f t( ) v= ∧ t' lmin max[ , ].∈∃ f t'( ) v≠

v
lmin
max

| v 0 1,{ }∈
∈

v
lmin
max

φ

∧

≤ ∧ > ∨
< ∧ ≥ w1 w2≤

w1 w2<( ) w1 w2=( )∨

w1 w2⊂ w1 w2≤ ∩ φ
φ φ ∩ φ ≠ φ ∧ ≠ φ ⇒ ∩

∪ φ
φ ∪ ≠ φ ∧ ≠ φ ⇒ ∪

≠ φ ∧ ≠ φ ≥
∧ ≥ ⇔ ∪ ∈

∈ ∨ ∈

w w1 w2∪= w1
w2

w1 w2
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3.1.2 Abstract Signals

Definition 2: An abstract signal S is a pair of abstract
waveforms  :  and .
The components  and  ofS are denoted  and , re-
spectively. The space of allabstract signalsis AS =

; it is the do-
main of the variables in the constraints in our method.

Relations and Operations onAS.
Equality:  iff .
Narrowness:  iff

;  iff
.

Inclusion:  iff .
Intersection: .
Union: .

3.2 Gate Constraints

Gate constraints are derived from the Boolean gate
functions. Let  be the timed Boolean
function [6] of a 2-input gateG. For example, in the case of
a 2-input AND with fixed delay d, =

. Let , , and  be the domains
in AS associated with the variables of the inputs ,
and the output , respectively. Let , , and  be sub-
sets ofBW such that:

,
,
,

The projections of , , and  to the terminals of
G are then as follows:

,
,
.

The constraint relation  derived from
g, is an operator that changes the values of , ,  as
to become thenarrowests possible to contain ,  and

, respectively. The projections and the operators onAS
are used to define a system of equations overAS which is
solved by computing the greatest fixpoint [1, 2].

Example 1: let ,  and
. Applying the constraints of the 2-input

AND gate with delay 0 to  (Ds at output) yields
the following new values: ,

 and .

3.3 Constraint System

Given atiming-check , the construction
of the constraint system is straight forward following the
circuit description. Let , , ..., ,

, , ..., )be the circuit ofm gates andn

w w,( ) w.v 0= w.v 1=
w w S S

w AW∈ w.v 0={ } w AW∈ w.v 1={ }×

S1 S2= S1 S2=( ) S1 S2=( )∧
S1 S2< S1 S2<( ) S1 S2≤( )∧( ) ∨

S1 S2≤( ) S1 S2<( )∧( ) S1 S2≤ S1 S2≤( ) ∧
S1 S2≤( )

S1 S2⊂ S1 S2≤
S1 S2∩ S1 S2∩ S1 S2∩,( )=

S1 S2∪ S1 S2∪ S1 S2∪,( )=

g:BW BW× BW→

g I1 t( ) I 2 t( ),( )
I 1 t d–( ) I 2 t d–( )⋅ Di D j Ds

Xi X j,
Xs xi xj xs

xi w BW∈ w Di∈ w Di∈∨{ }=
xj w BW∈ w Dj∈ w Dj∈∨{ }=
xs w BW∈ w Ds∈ w Ds∈∨{ }=

Di D j Ds

x′i w1 xi∈ w2 xj∈∃ w3 xs∈∃ g w1 w2,( ) w3=, ,{ }=
x′ j w2 xj∈ w1 xi∈∃ w3 xs∈∃ g w1 w2,( ) w3=, ,{ }=
x′s w3 xs∈ w1 xi∈∃ w2 xj∈∃ g w1 w2,( ) w3=, ,{ }=

Cg Xi X j Xs, ,( )
Di D j Ds

x′i x′ j
x′s

Di 0 ∞–
33

1
50
100,( )= D j 0

25
75 φ,( )=

Ds 0
35
125 φ,( )=

Di D j Ds, ,
D′i φ 1

50
100,( )=

D′ j 0
35
75 φ,( )= D′s 0

35
75 φ,( )=

σ ξ s δ, ,( )=

ξ( { Gate1 Gate2 Gatem}
{ Net1 Net2 Netn}

nets where each gate is connected to a subset of the nets.
We build a constraint system composed ofn variables ,

, ...,  associated with then domains , , ..., ,
respectively, andm relational constraints , , ..., ,
where  operates on the domains corresponding to the
variables of the nets connected to . The initial values
for all the domains of the constraint system of  are

 so as to contain any possible BW. For float-
ing-mode delay calculation, we restrict the primary input
domains to waveforms that are stable after time 0:

. To verify if the outputs has a delay
greater than or equal to , we restrict the signal domain of
s to the waveforms having transitions at or after time ,
i.e., .

The constraint system is tightened (solved) by repeat-
edly applying the local projections of domains as induced
by the gate constraints (Section 3.2) until nonarrowing of
any domain is possible, i.e., the (unique) greatest fixpoint
of the system of equations is reached. We implemented this
iterative computation efficiently using an event-driven
scheduler. It also includes selective state saving needed for
backtracking in case analysis.

Definition 3: Given atiming-check  and its
corresponding constraint system composed of the variables

, , ..., , their respective domains , , ..., ,
and the constraints , , ..., , abinary waveform
w Dk is said to be -compatible, iff it is part of a solution,
i.e., iff there is a waveform in eachDi, i k, such that with
w fromDk, the constraint system is satisfied.w is said to be

-incompatible if it is not -compatible.

Theorem 1: The fixpoint of the evaluation is reached in a
finite number of steps.

Theorem 2: If  then no transition is possible
on output  at or after time .

Example 2: Consider thetiming-check
where  is the circuit of Figure 1 [12]. Assuming the max.
delay of 10 on the output of each gate,top = 70 and the
floating-mode delay is 60, because the path { , , ,

, , , , , , , , , } is false. We now
illustrate our method on this example. Let , , ,

, , , , , , , , , ,
,   be the domains associated with the variables of

the corresponding nets. The initial values are:
= , i {1, 2, 3, 4, 5, 6, 7}: the floating-mode in-
puts; , i {1, 2, 3, 4, 5, 6, 7}: any possi-
ble waveform; : only the waveforms that
violate the timing check, i.e., transitions after time 60.
Waveforms propagation yields: =

the maximal delay of  is 10; therefore, no transition is

possible on  after time 10; = ;

X1
X2 Xn D1 D2 Dn

C1 C2 Cm
Ci

Gatei
σ

0 ∞–
+∞

1 ∞–
+∞,( )

F 0 ∞–
0

1 ∞–
0,( )=

δ
δ

Ds 0 δ
+∞

1 δ
+∞,( )=

σ ξ s δ, ,( )=

X1 X2 Xn D1 D2 Dn
C1 C2 Cm

∈ σ
≠

σ σ

Ds φ φ,{ }=
s δ

σ ξ s 61, ,( )=
ξ

n1 g2 n2
g3 n3 g4 n4 g6 n6 g7 n7 g8 s

De1
De2

De3
De4

De5
De6

De7
Dn1

Dn2
Dn3

Dn4
Dn5

Dn6
Dn7

Ds
Dei

0 ∞–
0

1 ∞–
0,( ) ∈

Dni
0 ∞–

+∞
1 ∞–

+∞,( )= ∈
Ds 0

61
+∞

1
61
+∞,( )=

g1 ⇒ Dn1
0 ∞–

10
1 ∞–

10,( )
g1

n1 g2 ⇒Dn2
0 ∞–

20
1 ∞–

20,( )
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 = ;  = ;

= ; = ;

 = ;  =  and

=  and = : thelast-transition-

interval ons is propagated to  and the controlling wave-

forms on  are removed because they block the way on

;  =  and  = ;

=  and = ;  =

 and = ; =

and = ; =  and  =

 which then yields = : hence no transition is

possible ons at or after t = 61.

4. Global Timing Implications

The method based on waveform narrowing uses local
gate constraints, i.e., the global circuit function is not taken

g3 ⇒ Dn3
0 ∞–

30
1 ∞–

30,( ) g4 ⇒ Dn4
0 ∞–

40
1 ∞–

40,( )
g5 ⇒ Dn5

0 ∞–
50

1 ∞–
50,( ) g6 ⇒ Dn6

0 ∞–
50

1 ∞–
50,( ) g7 ⇒

Dn7
0 ∞–

60
1 ∞–

60,( ) g8 ⇒ Ds 0
61
70

1
61
70,( )

Dn5
0 ∞–

50 φ,( ) Dn7
0

51
60

1
51
60,( )

n7

n5

n7 g7 ⇒ Dn6
0

41
50

1
41
50,( ) De7

φ 1, ∞–
0( ) g6 ⇒

Dn4
0

31
40

1
31
40,( ) De3

0 ∞–
0 φ,( ) g4 ⇒ Dn3

0
21
30

1
21
30,( ) De5

φ 1, ∞–
0( ) g3 ⇒Dn2

0
11
20

1
11
20,( )

De4
0 ∞–

0 φ,( ) g2 ⇒Dn1
0

1
10

1
1
10,( ) De3

φ φ,( ) Ds φ φ,( )

into account. By analyzing the circuit topology, however,
we can deduce some of the functionality.Static learning
[14] is used to identify some of theclass-based implica-
tions. It is implemented in a pre-processing stage that de-
termines tables of implications. When aclass becomes
empty in the domain of a net,learning tables are used to
imposeclass restrictions on other domains. In addition we
use the notion ofstaticand dynamic timing dominators to
identify global implications related to the existence of tran-
sitions at or after a certain timelmin, as described next.

The propagation of thelast-transition interval is the
main mechanism in proving that no violation is possible. In
Example 2, only one path was the potential carrier of the vi-
olation. There was no ambiguity in deciding which net is its
cause when the gate constraints were applied: at gate  it
was able to decide that net  cannot be the cause of the
violation because (largest of  and ) + 10
< (smallest of  and ). This is why
was narrowed to  in  and thelast-transition interval
was propagated to . In more complex circuits, e.g., the
carry-skip adder in Figure 2, we may not be able to make
such an unambiguous decision. Consider the outputC7.
Suppose that the topological delay fromC2 to C7 is 750
and that the timing constraint onC7 is to require transitions
at or after time 750, i.e., .

The gate constraints are able to propagate thelast-
transition interval fromC7 toX only because no other sub-

path can be the carrier of the transi-
tions. Figures 2 and 3 illustrate the
situation atX. To simplify the pre-
sentation, assume that theNAND

gate drivingX is delayless.Class 0
of M (controlling) is removed be-
cause it blocks the way onN andP.
The last-transition interval present
atX propagates toclass 0 onN and
P, but not to class 1, because both
inputs do not need to have transi-
tions to propagate toX. We thus

g8
n5
Dn5

.max Dn5
.max

Ds.lmin Ds.lmin 1 ∞–
50

φ n5
n7

σ ξ1 C7 750, ,( )=

Figure 1 False path circuit

Figure 2 Carry-skip adder

X

P N M

X

P

N

M
Class 0 is eliminated as it is conflicting with X

No narrowing is possible on class 1

Class 0 is narrowed: binary waveforms that

No narrowing is possible on class 1

are stable at and after DX.lmin are removed

Class 0 is narrowed: binary waveforms that

No narrowing is possible on class 1

are stable at and after DX.lmin are removed

DX.lmin DX.max

Figure 3 Situation at the driving gate of X
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cannot decide which net is responsible for transition prop-
agation, i.e.,lmin can be increased, (the domain narrowed)
only in thecontrolling classes of theNAND gate. However,
the circuit topology implies that all paths toC7 longer than
749 containC6. Therefore, we can restrict waveforms on
C6 to those having transitions at or after time
(  - max. topological delay
from C6 to X).

4.1 Static Timing Dominators

Definition 4: A net x of ξ is a static carrier of
 iff ∃ path in  containingx ands of length

greater than or equal toδ.

Definition 5: The sub-circuit composed of thestatic carri-
ers of  and their driving gates of  is thestat-
ic-carrier circuit of .
For example, the static-carrier circuit of

 where  is in Figure 2, is the sub-cir-
cuit of  composed of the shaded nets and their driving
gates.

Definition 6: Let  be thestatic-carrier circuit of
. Let  be a DAG derived from  as fol-

lows: each net in  corresponds to a vertex in ; each
gate in  with k inputsx1,x2,...,xk and one outputx0 corre-
sponds to k edges, from the vertex corresponding tox0 to
those corresponding toxi, i=1 to k. Add a terminal vertexT
to , and an edge toT from each vertex of an input of .

 is a DAG with one source vertexS (corresponding tos)
and one sink vertexT. The nets of  corresponding to the
dominators [15] ofT (vertices lying on every path fromS
to T) are thestatic timing dominators of .

For example, for  where  is in
Figure 3,C7, X, C6, C5 arestatic timing dominators of .

Lemma 3: Let d be a static timing dominator of
. Waveforms ond that are stable at and after

time (  -topd-s) areσ−incompatible.
Proof: Follows from Lemma 6.1 in [10].

4.2 Dynamic Timing Dominators

The propagation of thelast-transition interval of the
output to thestatic dominators of the circuit represents glo-
bal necessary assignments. Additional global implications
can be determined by analyzing the contents of the abstract
signal domains.

Definition 7: Let  be atiming-check, andC
its constraint system. LetDs be the domain associated with
outputs. If Ds ≠ (φ,φ) thens is said to be a0-dynamic car-
rier of . If nety is ak-dynamic-carrier and it is the output
of gateg with max. delaydmax, then an input netx of gate
g is a k’-dynamic-carrier of where k’ = (k + dmax), pro-

minimum DX.lmin DX.lmin,( )

σ ξ s δ, ,( )= ξ

σ ξ s δ, ,( )= ξ
σ

σ ξ1 C7 750, ,( )= ξ1
ξ1

Ψ
σ ξ s δ, ,( )= Ψ′ Ψ

Ψ Ψ′
Ψ

Ψ′ Ψ
Ψ′

Ψ

σ
σ ξ1 C7 750, ,( )= ξ1

σ

σ ξ s δ, ,( )=
δ

σ ξ s δ, ,( )=

σ

σ

vided that the domainDx satisfies
. A net x is adynamic carrier of  iff

such that x is ak-dynamic carrier of .

Definition 8: Let  be the circuit composed of thedynam-
ic carriers of  and their driving gates.  is
thedynamic-carrier circuit of , and thetopological de-
lay topx-sbetweenx ands of  is thedynamic distance of
x.

Intuitively, thedynamic distance of x is the maximum
time a transition atx takes to reachs, and is equal to the
largest integerk such thatx is ak-dynamic carrier of . In
fact, the concept ofdynamic carriers is formulated by nec-
essary conditions for a net to be the cause of a violation of
the timing check, and the domain of a net that is not ady-
namic carrier of  does not contain transitions
that propagate to thelast-transition interval of s.

Definition 9: The definition ofdynamic timing domina-
tors is obtained by replacing “static” with “dynamic” in
Def. 6.

Theorem 3: For atiming-check  and ady-
namic timing dominator d, let k be the largest integer such
thatd is k-dynamic carrier of . The waveforms ond that
are stable at and after time (  -k) areσ−incompatible.
Proof: Theorem 3 is a direct consequence of the fact that
any netx ∉  cannot be the cause of a timing violation,
i.e.,Dx does not contain transitions that propagate to within
thelast-transition interval ons. This can be proven by con-
tradiction: Suppose that there is a pathp =

 such that the domain ofx contains transitions
that propagate alongp to thelast-transition interval on s.
This implies that the same property is true for all the nets
of p. Then  has transitions at or after time (  - max. de-
lay of ) and consequently  is (  - max. delay of

)-dynamic carrier of . Similarlyx is (  - length ofp)-
dynamic carrier of .  contradicts the original as-
sumption.

Corollary 1:  Let d be a dynamic dominator of
 andk thedynamic distance of d. Narrowing

the domain of d by intersecting it with

maintains all the solutions of the original system.
The proof follows from Theorem 3.

Figure 4 exhibits the timing verification algorithm
making use of Corollary 1.

5. Case Analysis

When the net domains remain non-empty after the fix-
point calculation we cannot definitely conclude that a vio-
lation is possible. We adapted the FAN algorithm [13, 14]

Dx ∩ 1 δ k′–
+∞

0 δ k′–
+∞,( )

≠ φ φ,( ) σ k 0≥∃
σ

Ψ
σ ξ s δ, ,( )= Ψ

σ
Ψ

σ

σ ξ s δ, ,( )=

σ ξ s δ, ,( )=

σ
δ

Ψ

(x gk0
nk1

…, , ,
nkp

gkp
s), , ,

nkp
δ

gkp
nkp

δ
gkp

σ δ
σ x Ψ∈

σ ξ s δ, ,( )=

1 δ dynamic-distanceof d( )–
+∞

0 δ dynamic-distanceof d( )–
+∞,( )
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to perform case analysis by waveform splitting on nets, i.e.,
by restricting their domains to oneclass at a time with the
objective of finding a test vector or proving that no viola-
tion is possible. We usedSCOAP [16] controllability to
guide the algorithm.

The main idea is to compute theinitial objectives so as
to set those nets which are inputs of gates in thedynamic-
carrier circuit  of  that are notdynamic carriers to a
non-controlling value regarding the gates they feed in .
This is justified by the following reasoning: the timing vi-
olation at outputs is originating in , hence we need to
sensitize the paths in . To favor the longest paths, we es-
tablished theobjectives to be a triplet (k, n0(k), n1(k)) as in
[13], but the semantics are different: a path tosof delay n0
(n1) is potentially enabled by setting the netk to 0 (1). The
backtrace procedures are identical to the ones in [13] and
[14], except that at fanouts, n0 (n1) receives the largest in-
coming n0 (n1) instead of their sum. In the context ofATPG,
backtrace is performed a minimal number of times. In our
case such a strategy resulted in poor performance, because
decisions on nets may have profound effect on , the

Ψ σ
Ψ

Ψ
Ψ

Ψ

source of the violation. The backtrace is initiated each time
the size of the decision stack changes as a result of back-
tracks. Moreover, decisions are performed in 3 phases, fol-
lowing stem correlation pre-processing stage:
Stem correlation: We perform partial correlation on all re-
convergent fanout stems that aredynamic carriers. This is
done, for a stem Y, by computing the domain DX of each
variable X of the constraint system as follows: DX = DX0
∪ DX1 where DX0 and DX1 are the values of DX when DY
is intersected with  and , respectively.
This has the effect of removing some of the incompatible
waveforms from the domains of the variables and no deci-
sion is yet taken.
Phase 1: Let  be the consecutivedynamic-
dominators of  computed before any decision is
taken, . Let  be the sub-circuit of  com-
posed of the fan-in cone of  excluding . We fix the
class value of nets in ,i = 0 tok-1, using the mod-
ified FAN algorithm. Then, we fix theclass of nets in the
fan-in cone of .
Phase 2: We perform decisions on the whole circuit using
the modified FAN algorithm.
Phase 3: We perform decisions ons, and then on the pri-
mary inputs after complete backtrace fromunjustified nets.
An output of a gate G isunjustified iff its domain is restrict-
ed to oneclass and if we can intersect the domain on each
input with  or  to get non empty input
domains that are inconsistent with the gate constraint.

6. Experimental Results

Experiments were executed on a Sun SPARCstation
10. The basic constraint system evaluation without global
implications on timing dominators was able to eliminate
timing check violation in the c5315 and c7552 of theNOR-
gate implementations of theISCAS’85 benchmarks [11]
with delays of 10 on the outputs of all gates. The use oftim-
ing dominators eliminated timing violations from c1908
and c3540. Stem correlation eliminated timing-check vio-
lation from c2670 and c6288. The case analysis found test
vectors for all circuits except c6288. Table 1 contains the
results. Note that the value ofδ for which a test vector is
found represents the exact floating-mode delay of the cir-
cuit when the constraint system is inconsistent for (δ + 1)
on all outputs. The columns of Table 1 contain, from left to
right, the following information: 1) the circuit name, 2) the
max. topological delay of the circuit, 3) the timing con-
straint δ, 4) the result of the first evaluation of the con-
straint system before the use oftiming dominators, 5) the
result after the use oftiming dominators, 6) the result after
stem correlation, 7) the number of backtracks in the case
analysis, 8) the result of case analysis, and 9) the total CPU
time.

0 ∞–
+∞ φ,( ) φ 1, ∞–

+∞( )

d0 d1 … dk, , ,
ξ s δ, ,( )

d0 s=( ) ξdi di 1+, ξ
di di 1+

ξdi di 1+,

dk

0 ∞–
+∞ φ,( ) φ 1, ∞–

+∞( )

functionverify  {
construct the constraint system CS associated with ;
set all domains, except inputs ands, to ;
set domains of inputs to ;

set domain ofs to ;
schedule all constraints operating on inputs ands on EventQueue;
returnevaluate(CS, EventQueue);

}

functionevaluate(CS, EventQueue) {
if EventQueue is empty return PossibleViolation;
if (reach_fixpoint(CS, EventQueue) = = NoViolation)

return NoViolation;
determine dynamic dominators;
for each dominatord do {

intersect domain ofd with

if the domain ofd changed then schedule all constraints
operating on it on EventQueue;

}
returnevaluate(CS, EventQueue);

}

functionreach_fixpoint(CS, EventQueue) {
while EventQueue not empty {

take a constraint out of EventQueue;
apply constraint on the domains;
schedule all constraints operating on the
domains that were modified on EventQueue;

}
if the domain ofs is empty return NoViolation;
else return PossibleViolation;

}

When the function verify  returns NoViolation, the
output s cannot have transitions at or after time .

ξ s δ, ,( )
ξ s δ, ,( )

0
-∞
+∞

1
-∞
+∞,( )

0
-∞
0

1
-∞
0,( )

0 δ
0

1 δ
0,( )

0 δ dynamic-distance of d–
+∞

1 δ dynamic-distance of d–
+∞,( )

ξ s δ, ,( )
δ

Figure 4 Algorithm of the method
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Not included in Table 1 is the timing check performed
on a 16 bit carry-skip adder, partly shown in Figure 2. The
adder has a topological delay of 2000 and a floating-mode
delay of 1000. This was determined in 25 seconds ofCPU

time after a total of 1636 backtracks. Forδ =1001 the case
analysis proved that the constraint system is inconsistent on
all outputs, and forδ=1000 found a test vector.

The use oftiming dominators was very effective on the
traditionally difficult c1908 circuit. It proved that output
57_912 (topological delay of 340) cannot have a delay
greater than 200 in 0.76 seconds. This particular case has 5
timing dominators, and no narrowing was performed on 3
of them by the original method.

7. Conclusions

We showed in this paper how global timing implica-
tions enhance the performance of the timing verification
method based on waveform narrowing. Further refine-
ments were achieved by enforcing correlation on reconver-
gent stems and new heuristics included in the case analysis.
We are developing constraint models for complex gates
(MUX, etc...), and we processSDF backannotation to test our
method on industrial circuits.
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CIRCUIT
CIRCUIT

MAX . TOP. δ BEFORE
G.I.T.D.

AFTER
G.I.T.D.

AFTER
STEM C.

C.A.
#BTRCK

C.A.
RESULT

CPU
(s)

c17 50 50E P P P 0 V 0.05
c432 190 190E P P P 1 V 18.82
c499 250 250E P P P 5 V 7.10
c880 200 200E P P P 0 V 3.06
c1355 270 270E P P P 1 V 8.17
c1908 340 311 P N - - - 0.90
c1908 340 310E P P P 5 V 11.58
c2670 250 241 P P N 0 N 3.67
c2670 250 240E P P P 7 V 17.07
c3540 410 391 P N - - - 5.12
c3540 410 390E P P P 3 V 56.00
c5315 460 451 N - - - - 1.56
c5315 460 450E P P P 16 V 21.97
c6288 1230 1221 P P N 0 N 56.36
c6288 1230 1220U P P P A A A
c7552 380 371 N - - - - 0.72
c7552 380 370E P P P 1 V 8.34

Table 1 Results for ISCAS’85 circuits

Legend: (G.I.T.D. stands for Global Implications on Timing Dominators.)
P: Possible violation of the timing-check constraint.N: No violation of the timing-check constraint on any circuit output
is possible.V: Test vector found.- (dash): Procedure not used (was not necessary).A: Abandoned due to excessive num-
ber of backtracks. (E): Value represents exact floating-mode delay. (U): Value represents upper bound on the maximal
floating-mode delay.
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