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Abstract

Petri nets are a graph-based formalism appropriate to model
concurrent systems such as asynchronouscircuitsor network pro-
tocols. Symbolic techniques based on Binary Decision Diagrams
(BDDs) have emerged as one of the strategies to overcome the
stateexplosion probleminthe analysis of systems modeled by Petri
nets. The existing techniques for state encoding use a variable-
per-place strategy that leads to encoding schemes with very low
density. This drawback has been partially mitigated by using
Zero-Suppressed BDDs, that provide a typical reduction of BDD
sizes by a factor of two.

This work presents novel encoding schemesfor Petri nets. By
using algebraic techniques to analyze the topology of the net,
sets of places” structurally related” can be derived and encoded
by only using a logarithmic number of boolean variables. Such
approach allows to drastically decrease the number of variables
for state encoding and reduce memory and CPU requirements
significantly.

1 Introduction

Petri nets (PN) are a graph-based mathematical formalism ad-
equate to describe, model and analyze the behavior of con-
current systems. PNs alow the description of sequentia
and non-sequential behaviors (including concurrence and non-
deterministic choice). Sinceitsintroduction by C.A.Petri in 1962,
PNs have been extensively used in awide range of areas such as
communication protocols and networks, computer architecture,
distributed systems, manufacturing planning, digital circuit syn-
thesis and verification, and high-level synthesis. In particular,
they play an increasingly important role in the synthesis and ver-
ification of digital asynchronous circuits [17, 10, 4]. and have
been recently proposed to specify and synthesize systemsin hard-
ware/software codesign frameworks [9, 5].

Recently, it has been proposed an efficient enumerative tech-
niquefor the analysisof bounded Petri Nets[8, 16]. The proposed
technique defines an isomorphism between PNs and Boolean al-
gebras. Each marking in the PN isdescribed by meansof boolean
variables, and the specification of itsbehavior by meansof boolean
functions. The potential state explosion derived from the enumer-
ation of markingsis managed by using Binary Decision Diagrams
(BDD) [2, 1]. Experiments show that large sets of encoded mark-
ings can be represented with small BDDs, and therefore PNs can
be efficiently analyzed manipulating those sets.

The existing techniques for the symbolic analysis of safe PNs
use naive schemes to encode the markings [8, 16]. Each placeis
represented by meansof aboolean variable that is assertedin case
the place is marked. This scheme results in a very sparse state
space. Zero-suppressed BDDs have been proposed to efficiently
handlethis sparsity [18]. It isasowell-known that the number of
encoding variables is one of the crucial factors that influence on
the efficiency of BDD techniques. Encoding schemesthat reduce
the number of variables provide more compact representations,
and therefore allow the analysis of more complex systems.

In this work we propose a dense encoding scheme that re-
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sultsin an increased efficiency for the symbolic analysis of Petri
Nets. It is based on adrastic reduction of the number of variables
that produces very dense encodings. Moreover, such density is
achieved without introducing significant encoding overhead and
complexity in the analysis of the dynamic behavior of the net.

The paper is organized as follows. In Section 2 we review
some basic properties of PNs and sketch techniquesfor symbolic
analysis. Section 3 overviews the new method by means of an
example. The new encoding scheme is presented in Section 4.
Section 5 describesthe basic bool ean equationsrequired for BDD-
based symbolic analysis. Experimental results are presented in
Section 6. Section 7 concludes the paper including a discussion
of the current and future scope of this work.

2 Petri nets

An ordinary Petri Net (PN) is a 4-tuple N = (P, 7,F, Mo),
where P and 7 aredigjoint and finite sets of placesandtransitions,
F C(PxT)u(T x P)istheflowrelation,and Mo : P — IN
isthe initial marking. The set of places and transitions is called
the set of nodes of the net. The pre- and post-sets of nodes are
specifiedby adot notation, where*«v = {v € PUT|(v,u) € F}
iscaledthepre-set of u, and «* = {v € PU T|(u,v) € F}is
called the post-set of «. Thepre-set of aplace(transition) isthe set
of input transitions (places). The post-set of a place (transition)
is the set of output transitions (places). A marking of a PN is
an assignment of a non-negative integer to each place. If & is
assigned to place p by marking M, we will say that p is marked
with & tokens, i.e. M (p) = k.

PNs are graphically represented by drawing places as cir-
cles, transitions as boxes (or sometimes bars), the flow re-
lation as directed arcs, and tokens as dots. Figure 1 de-
picts a PN with the set of places P = {p1,...,p7}, the set
of transitions 7 = {t1,...,¢7}, and the flow relation F =
{(p1, t1), (p1, t2), (t1, p2),...}. Intheinitial marking Mo, place
p1 ismarked.

A transition ¢ is enabled in amarking M, denoted by M [¢),
when all placesin *¢ are marked. An enabled transition in A/
is allowed to fire. When it fires, it removes a token from each
placein *t and adds a token to each placein ¢*, reaching a new
marking M’ (M[t)M'). A marking M is reachablefrom M, if
there is a sequence of firings ¢1¢z . . . ¢, that transforms Mo into
M (Mo[tats . .. tn?M), hence t1¢> . . . t,, is a feasible sequence.
The set of reachable markings from M is denoted by [ Mo).

Thefinite automatathat containsthe set of reachable markings
and all the possible firing sequencesof a PN is called the reach-
ability graph. Figure 1.b depicts the reachability graph for the
PN previously presented in Figure 1.a. There are atotal of eight
reachable markings in [Mo), each one represented by the subset
of marked places.

A PN is safeif no marking in [Mo) can assign more than one
token to any place. This paper only covers the analysis of safe
PNs, although the extensionto unsafe PNsis straightforward [16].



Figure 1: (a) A Petri net with its initial marking, (b) its corresponding
reachability graph.

2.1 Algebraicanalysisof Petri nets

Let us represent the sets P and 7 as vectors, [p1...pjp|] and
[t1...t71], with some arbitrary order of places and transitions.
Given a subset of places R C P, x[R] denotesthe characteristic
vector of R w.r.t. P, defined as,

MR ={5 ek

The structure of a PN net can be represented by an incidence
matrix. The incidence matrix ¢ : P x 7 — {-1,0,1} is
defined as: Vi € 7 : C(—,t) = x[t*] — x[*t] A marking M
is represented as a | P| x 1 column vector [M (p1) ... M (pp)],
where the sth element of A/ denotes the token count of p;. The
incidence matrix of PN depicted in Figure 1 is the following:

-1 -1 0 0 O0 O 1

1 0 -1 0 O o0 O
1 0 0 -1 O o0 O
C = 0 1 0 0 -1 0 O
0 1 0 0O 0 -1 ©
0 0 1 0 1 0 -1
0O 0 O 1 0 1 -1

with Mo =[1000000].

The interpretation of the incidence matrix is as follows. The
non-zero elements of each row indicate the effect of the cor-
responding transitions on the token count of the corresponding
place: input transitions put atoken (1), whereas output transitions
remove atoken (-1).

Givenamarking M and afiring sequenceof transitions o such
that M [o) M then

where & is the firing count vector, i.e. #[:] is the number of
occurrences of transition ¢; in o. Equation (1) is known as the
state equation of the PN.

2.2 Place-invariantsand State Machines Components

Every solution X € Q'”! of the equation X7 - ¢’ = 0 is said
to be a P-invariant [15]. A P-invariant [ is called semi-positive
if I > 0and # 0. The support of a semi-positive invariant
1, denoted by (I), is the set of places p satisfying I(p) > O.
A semi-positive invariant 7 is minimal if no other semi-positive
invariant J satisfies(J) C (I).

In the example of Figure 1, thevector 7 = [2111111]
is a semi-positive P-invariant. However it is not minimal. The
vectors/; =[1101010]and 7, =[1010101] are minimal

semi-positive P-invariants'.

Notethat I = I1 + Io.

A Sate Machine (SM) is a PN such that each transition has
exactly one input place and one output place. GivenaPN N =
(P, T,F, My) and asubset of places P’ C P anew PN N’ =
(P',T',F', M{) can be generated as follows:

o T'={te *pup’lpe P’}
o« F'=Fn((P xT)u(T xP))
o M{(p) = Mo(p) for every p € P'.

ThePN N' generated by asubset of placesis said to be a State
Machine Component (SMC) of N if N’ is a strongly connected
State Machine. Figure 2.e shows two SMCs generated from the
PN of Figure 1. The SMCs have been generated by the sets
of places {p1, p2, pa, pe} (invariant I; = (110101 0]) and
{p1, p3, ps, p7} (invariant I, = [101 01 0 1]) respectively.

The places of an SMC are said to be covered by the SMC. A
PN issaid to be decomposableinto SMCsif thereisaset of SMCs
that cover all places of the PN. It is known that some classes of
PNs are decomposableinto SMCs [7]. In general, only a subset
of places can be covered by SMCs.

A key theorem for the contribution of this work is the follow-

ing.

Theorem 2.1 ([6])
Let N' = (P, T, F' Mg) be a Sate Machine Component of a
Petri Net N. Then x[P’] isaminimal semi-positive P-invariant
of N.

Informally this means that the token count of an SMC is pre-
served for all reachable markings. As a consequence, if an SMC
contains only one token, then one and only one place of the SMC
will be markedin all reachable markings of the PN. This suggests
that efficient encodings can be found for SMCs.

Calculating SMCsthat cover selected places can be efficiently
done by using linear programming techniques[14, 11]. An SMC
covering aplace p can be obtained by computing aminimal semi-
positive P-invariant Iy that includes p, with the additional re-
striction of only containing one token in the initial marking Mo.
Thisminimal P-invariant is computed by solving thelinear system
of equations [11]:

min Isu
Isv - C
Isu(p)
> 1(p) - Mo(p)
2.3 PN Symbolic Analysis

A marking in an ordinary and safe PN can be represented by a
set of places M = {p1,..,px} C P, where p; € M denotes
the fact that there is atoken in p;. Let Mp be the union of all
potential sets of places representing markings of a PN with |P|
places (| M p| = 271).

Themethods proposed so far to represent markingsof asafe PN
[16, 18] have used the fact that each marking can be represented
by the characteristic function of asubset of places. Thus, by using
a boolean variable for each place, any of the 2!”! safe markings
correspondsto aminterm of B!7!. With an abuse of notation, let
uscall p; the boolean variable representing the marking of place
Pi.

Thetransitionfunctioné = (81, .., §jp|) for atransitiont € 7
defines how the contents of each place Is transformed as a result
of firing ¢ (M' = §(M, t)). éi(p1, ..., pp|, t) isafunction only
defined for those markings in which ¢ is enabled:

v v
P B OO

1 !f pi €1°
5i(p1,...,p|73|,t) = 0 ifp; E_.t andp; ¢ t* 2
pi otherwise
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Figure 2: Encoding schemes: (a) one variable per place, (b) SMC-based, (c,d) with minimum number of variables. (e) two SMCs coveringthe PN.

The characteristic function of the set of markings in which
transition ¢ is enabled, F;, isdefined as:

by = /\Pz‘

piE®E

The function é also induces a binary relation between mark-
ings. Thus MR.M" iff M' = §(M, ). By using two different
sets of variables, P = {pl, ...,p|73|} and Q = {ql, ...,q|73|}, to
represent the current and the next marking before firing a transi-
tion ¢, the characteristic function of R, can be represented by a
transition relation?:

g

R«(P,Q) = /\(q = 51‘(P,t))

Finding the set of markings M’ that can be reached after fir-
ing transition ¢ from any marking in the set M (the image
computation for transitions) is reduced to compute: M’ =
Ip [M - R(P,Q)] . The transition relation of the PN for the
calculation of all markings reachable after firing one transition is

R(P,Q) = \/ R:(P,Q) €)

teT

Expression (3) suggests that R (P, Q) can be efficiently ma-
nipulated by representing it as partitioned transition relation in
disiunctive form [3].

3 Overview

The proposed encoding schemeis based on using the information
that canbeknownapriori fromthePN structure. Thisinformation
allows to discard sets of unreachable markings and find more
efficient encodingsfor those that are still potentially reachable.

Multiple encoding schemes can be applied to model the same
system depending on the objectives of the application. The ratio
between the number of statesin the system and the variables used
to represent each state definesthe density of the encoding.

We now describeand compare different encoding schemesfor
the example of Figure 1L.a

onevariableper place: eachmarkingisrepresented by the char-
acteristic vector of the marked places (see Figure 2.8). The
number of variablesis |P|.

_zNote that the operator a = b stands for a equivalent to & and it is defined as
a®b=ab+ab.

optimal number of variables: the markings are arbitrarily en-
coded with [log, |[Mo)|] variables (see Figures 2.c and 2.d).

SM C-based encoding: each SMC with & placesis encoded with
[log, k] variables. Each code correspondsto one place of
the SMC, the one containing the token. Figure 2.b shows
an encoding based on the SMCs SM1 and SM2 shown in
Figure 2.e. The encoding correspondsto p1 = 00, p2 = 10,
pa = 01 and ps = 11 for SM1 and p1 = 00, p3 = 10,
ps = 0l and p7 = 11 for SM2.

Deriving optimal encoding schemes with minimum number
of variablesis not a viable strategy because it requires knowing
the existing markings a priori, that it is in fact the problem that
was originally posed. Hence, the goal of this work is to propose
alternative encoding schemesfor PNs, that lay in betweenthe con-
ventional one-variable-per-place and the optimal schemes. The
proposed methodology should reduce the number of variables,
while maintaining a reasonable computation effort.

Besides minimizing the number of variablesto represent reach-
able markings, the proposed scheme will also attempt to reduce
the switching activity of the transitions, in other words, reducing
the Hamming distance between adjacent markings of the reacha-
bility graph. The goal of this strategy is to take advantage of the
efficiency of “ad-hoc” BDD procedures that have been specialy
devised for the manipulation of Petri nets (see Section 5.2).

Figures 2.c and 2.d depict two possible assignments using a
binary encoding scheme with three variables. The assignment
proposed in (c) requires switching 15/11 bits on average every
time a transition is fired, while the assignment in (d) requires
19/11 bits. Therefore encoding (c) would be preferable.

Next, the method proposed in this paper for encoding reachable
markings of PNs efficiently is sketched:

1. A set of SMCs of the Petri net is calculated. Algebraic
and linear programming techniques will be used for such
purpose. The primary goal will be to maximize the subset
of placescovered by SMCs. The calculation of the SMCsis
out of the scopeof this paper. We refer the reader to [14, 11]
for more details.

2. A SMC-based encoding is derived for the places covered
by SMCs. The rest of places are encoded by using the
conventional one-variable-per-place scheme.

3. Calculatethetransition relation of the PN and the reachability
graph by using symbolic traversal techniques.

4 SMC-based encoding

The proposed encoding schemeis based on the fact that Petri nets
can be totally or partially decomposed into SMCs that contain



an invariant number of tokens. The placesin each SMC can be
encoded separately using alogarithmic encodingtechnique. After
combining thevariablesin each component, theresult isareduced
number of boolean variables compared to the conventional sparse
techniques.

We first describe how an SMC can be encoded by using an
optimal number of variables. Given this result, it is necessary to
determine the set of SMCs that allows to encode the overall PN
while minimizing the total number of required variables. Two
different algorithms to select the set of SMCs are proposed, a
simple algorithm that does not consider the interactions between
SMCs, and a more elaborated algorithm that takes into account
those interactions.

4.1 Encoding SMCs

Let P; C P be the subset of places covered by one SMC S;
containing only one token. Since one and only one of the places
of P; will be marked at each reachable marking, a logarithmic
encoding canbefound for theplaces. Thus, any injective encoding
function €5, : P; — B", wheren = [log, | P:|]. is appropriate.

4.2 Selecting SMCs

The number of variables required to encode a PN will directly
depend on the selected SMCs. Given that the same place may
be covered by different SMCs, the density of the encoding may
decrease becausedifferent sets of variablesare used to encodethe
sameplaceat those components. To achieveadenseencodingitis
important to select aset of SMCsthat minimize the over-encoding
of common places.

Asan example, consider aPN with one of the SMCs covering
4 places. However 3 out of these 4 places are already covered
by other SMCs. If we strictly apply the SMC-based encoding,
we would require two additional variables for the new SMC. On
the other hand, encoding the only uncovered place with only one
variable would result in a smaller total number of variables.

Let SM = {S;} be aset of SMCsthat (totally or partialy)
cover the places of the PN. The problem of finding an optimal
subset of SM to encode the PN can be formulated as a Unate
Covering Problem[13] asfollows:

1. Letustake SM U P asthe set of covering objectsand P as
the set of covered objects. Each S; covers asubset of places
P; C P. Eachplacep; € P coversitself.

2. Foreach S; € SM, definecost(S:) = [loga|Pi|].

3. Foreachp; € P, definecost(p;) = 1.

4. Find aminimum cost cover of SMCs and places.

4.3 Example

To illustrate the proposed encoding scheme we will use the PN
depicted in Figure 4 as example. This PN has 14 places, 22
reachable markings and can be decomposed into six SMCs that
cover all places (see Figure 3). The following minimum cost
encoding (with density D = 5/10 = 0.5) can be found:

e SM; covering places {p1, p2, ps, ps} (2 variables).
S M3 covering places {ps, p10, p12, p14} (2 variables).
S M4 covering places {po, p11, p13, p14} (2 variables).
The rest of places encoded with one variable per place (ps,
pa, ps and p7).

4.4 |mproved encoding

The encoding scheme presented in the previous section can be
further improved by taking into account that some place may be
covered by morethan one SMC. Inthat case, the place can beover-
encoded, resulting in a less dense encoding scheme. Intuitively,
each place only needsto be encoded once even though it can be
covered by several SMCs.

The improved encoding scheme can be implemented as fol-
lows. Let us assume that a subset of SMCs, {51, ...,5i—1} is
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Figure4: PN for two dining philosophers(two instancesof p4 aredepicted
for clarity).

already used to encode some places of the PN. Let usinclude now
anew SMC S; covering the places P;. We can partition P; into
two subsets P; = Peov U Prew. Peow cONtains al those place
already covered by {51, ..., Si—1}, whereas P,.., contains the
places only covered by S;.

A validencodingfor S; would beany function&s, : P; — B™,
wheren = [l0g, | Prew|], suchthat for p, p’ € Prew andp # p':

Es,(p) # £5, ().
Notethat for eachplacep € Pr.. theremay beaset of places
P, with the same code asp, i.e.

Pp={p' € Peov|€s,(p) = Es,(p)}

Thisambiguity is only apparent since the marking of p can be
determined by the marking of the other SM Cs encoding the places
of P,. The calculation of the characteristic function correspond-
ing to each place will be discussed in the next section.

An exampleon how to usethe improved encoding schemewill
be presented in Section 5.4.

5 Symbolic Model Checking

This section describes how the characteristic functions for places
andtransition functions are derived. Thesefunctionsarethebasic
elementsto execute BDD-based symbolic traversal algorithmsfor
the analysis of the PN.

5.1 Characteristic functions of places

In general, every place p can be covered by several SMCs. By
using the improved encoding approach presented in Section 4.4,
only one of the SMCswill be usedto encode p, whereasthe other
SMCswill merely assign p acode already used for other places.

Let uscal S, the SMC used to encode place p and X5, =
z1...xy theset of variables used to encodethe placesof S,,. The
characteristic function of place p (markings with p marked) will
be the following:

Xl = (Xs, =&5,(0) - N\ Xo=E20) @
p'#p:€s,(p)=Es5,(p')

Informally, A placep is marked when some of the placeswith
code&s, (p) ismarkedin .S, (first factor of the product) but none
of the placeswith the same codeis marked in their corresponding
encoding SMCs (second factor of the product).

5.2 Toggling activity

Moving from one marking M1 to another marking 3, resultsin
switching somevariablesfrom 0to 1 and somevariablesfrom 1 to
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Figure 3: SM decompositionsfor the dining philosophers example.

SMC/ place SM1 SM3 SM2 SM4 P4 23
variables LD T3y rg zg z7 zg

p1 =00 |p9=(X)| p1=0 pg=0 |p4=1||p5=1|

Encoding pp=01||pjg=01||p3=0]||p11=0

pg =11 pp =11 pr=1 p3=1

p8=10 p14 = 10 pg:l pp=1

Table 1: PN encoding.

0. Implementing the firing of one transition with BDD operations
can bereducedto toggling somevariablesinthe BDD. Informally,
toggling one variable can be performed by simply interchanging
the then and else arcs of the nodes |labeled with the variable.

Wewill omit the detailson how thisis performed. Werefer the
reader to [18] for asimilar approach implemented for BDDs and
Zero-suppressed BDDs. The important aspect of this strategy is
that minimizing the switching activity for eachtransition resultsin
a speed-up of BDD operations for that transition. Therefore, one
of the goals of the encoding schemeis to minimize the number of
toggling bits for each transition.

The strategy used in this work is based on using a Gray-like
encoding for the places of each SMC component in such a way
that the firing of atransition will only producethe toggling of one
of the variables used to encode the SMC.

5.3 Transition functions

Given the encoding for each of the places of a Petri net, we
only need now to derive the expressions for the transitions func-
tions to be able to perform a symbolic traversal and calculate the
reachability graph.

The enabling function F; for each transition ¢ is simply ob-
tained asfollows:

Be= N xv] ©)
peE®t

Let us now derive expressions for é;( X, ¢), corresponding to
variable z; of the encoding. Letuscal S = (P, 7", F', Mg)
the SMC using variable z, for encoding. In caset € 7' (covered
by ), let uscall p the output placeof tin S, i.e. {p} =¢* NP’
Thus, the transition function, partially defined over the markings

inwhich ¢ is enabled, is the following:

1 ift € 7' and x[p] = =
§(X,H)=4¢ O ifte T andx[p] = 7% (6)
v, iftgT’

x[p1] = 71 - 72 x[pg] = z1- 72
X|p2] =T1- 22 x|pe]l =73 72
x[p3| = 75 - (w1 + x2) X[p10] = T3 - w4
X|pa] = =7 x|p11] = Te - (23 + x4)
x[ps| = =g x[p12] = w3 24
X[pe] = z1- 22 Xp13]:1’6 (Zz+ x4)
x[p7] = =5 - (1 + x2) xlpu] = v3-74

Table 2: Characteristic functionsfor the places.

Informally, the value of «; will not changeif ¢ is not covered
by S, and will takethe corresponding encoding value of the output
place of ¢ in S otherwise. The transition function for variables
corresponding to places not covered by SMCs is identical to the
one described by equation (2).

5.4 Example (cont.)

The conventional sparse encoding scheme requires 14 variables
for encoding each place of the PN in Figure 4. In Section 4.3 an
encoding with 10 variables was proposed. We now propose an
improved encoding.

Figure3 showsall SMCsof the PN. The encoding described by
Table 1 can be derived for the placesof the PN. The characteristic
function for each place is shown in Table 2. In total, 8 variables
arerequired.

Initially, SM1 and SM3 are taken as SMCs with all places
not covered by previously selected SMCs. Next, SM2 and SM4
cover some new places but partially overlap with SM1 and SM3.
In Table 1, codes in boxes correspond to places encoded by the
SMC. Finally, places ps and ps are encoded with one variable
each, since no reduction in variables can be obtained by using
new SMCs.

Note that each SMC is encoded using a Gray-like strategy
according to the adjacency of the placesin the SMC. Thisstrategy
allows to reduce the toggling activity of the variables for each
transition.

6 Experimental Results

The efficiency of the proposed encoding technique will be mea-
sured in terms of the BDD node count reduction to represent the
reachability set of the PNs, and the speed-up for that computa-
tion. Two experimental scenarioswill beanalyzed. First, number
of variables, BDD sizes and CPU times are compared between
the conventional sparse encoding and the proposed dense encod-
ing schemes. Second, the improvements achieved by using the
more dense code representation offered by ZDDs (as proposed
by Yonedaet al. [18]) are compared against the dense encoding



[[ PN I Sparse encoding Ii Dense encoding Il
[ name [ markings [V [ BDD [ CPU [[ V [ BDD | CPU ||
muller-30 | 6.0 x 107 || 120 | 4475 | 585 60 | 1315 32
muller-40 | 4.6 x 1010 || 150 | 4897 | 7046 80 | 2339 | 131
muller-50 | 3.6 x 1013 || 200 - to. 100 | 3651 | 449
phil-5 85 x 104 65 | 640 2 35 155 3
phil-8 78 x 107 || 104 | 2083 12 56 | 373 19
phil-10 74 x10° || 130 | 1689 ) 70 | 45 | 285
slot-5 1.7 x 108 50 | 4w 14 25 131 5
slot-7 7.9 x 108 70 | so7 | 109 B | 239 9
Slot-9 3.8 x 1011 % - to. 45 | 400 | 110

Table 3: Comparison between sparse and dense encoding schemes.

[[PN Ii ZDD [18] Ii Dense encoding Il
[|_name [ makings | V] zbD [ CPU¥ || V] BDD ] CPU ||
DMEspec8 | 7.8 x 10° || 137 | 32178 14 || 8 1748 12
DMEspeco | 3.5 x 108 || 154 | 71602 39 || % 2544 20
DMEcir5 | 85 x 10° || 401 | 92214 622 || 249 | 47952 | 418
DMEcir7 | 9.0 x 107 || 687 | 504324 | 10205 || 347 | 304334 | 7584
Joreg-a 1.8x 100 || 251 | 952246 | 2326 || 122 | 17874 | 8%
Jreg-b 1.1 x 10° || 248 | 181701 42 || 120 | 24355 | 397

Table 4: Comparison between ZDD compaction and dense encoding
schemes (x+ CPU timesfor ZDD usage HP-9000 (120MHz, 650M B)).

scheme. CPU times have been obtained by executing the algo-
rithms using the BDD library developed by David Long [12] ona
Sun SPARC 20 workstation (128MB).

6.1 Sparsev.s. denseencoding

Table 3 shows the experimental results obtained onto a number
of scalable PNs (Muller pipeline, dining philosophers and slotted
ring protocol) when using both sparse (one variable per place) and
dense encoding schemes. ColumnslabeledV show the number of
boolean variables required for each type of encoding. Columns
labeled BDD show the final size of the reachability set. Sinceitis
well known that BDD size strongly depend on variable ordering,
no special initial order has been used, while dynamic reordering
has been applied at each iteration for both encoding schemes.
Columns labeled CPU denote the total computation times for
both schemes, including the encoding time itself, which roughly
takes 1% of the total computation time in most cases.

The results show a variable reduction around 50% and aBDD
node reductions ranging from 2 to 4. CPU times are also reduced
at least one order of magnitude for muller and slot. Even with
the BDD node reduction, the computation time increases for phil.
This is produced by the cost of variable reordering, due to an
extremely bad initial order for this set of benchmarks. Deriving
good initial ordersis still an open line of research.

6.2 ZDDsv.s. denseencoding

Using ZDDs instead of BDDs allows a more compact represen-
tation of data without requiring any special encoding strategy.
The results in Table 4 show a number of PNs with BDD and
ZDD sizes for the reachability set, and computation times as
published in [18]. We have executed those benchmarks in our
framework obtaining results for both the sparse and dense encod-
ing schemes. The experimental results show important variable
reductions (around 40%) that result in significant BDD node re-
ductions compared to ZDDs [18].

7 Conclusions

As PNs become more popular in the specification, synthesis and
analysis of concurrent systems there is an increasing need of
manipulating them in an efficient way.

This paper has presented an encoding scheme that drastically
improves the efficiency of symbolic methods for the analysis of
PNs. Thestructural theory isthe key basisfor this scheme, which
allows to immediately identify sets of markings that will never

be reachable. This study is based on the identification of State
Machine components with only one token. The efficiency of the
encoding schemelies on the fact that two placesin the same State
Machine component will never be marked simultaneously.

The structural theory of PNs goes beyond the theory of P-
invariants and State Machines components. Although the struc-
ture is not enough for a detailed analysis of the PN, it provides
crucial information that can be efficiently combined with symbolic
enumeration techniques. The authors are now studying a more
general framework that combines the efficiency of the structural
theory with the accuracy of the symbolic enumeration techniques.
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