
Trace-Driven Steady-State Probability Estimation in FSMs with Application to
Power Estimation*

Diana Marculescu, Radu Marculescu, Massoud Pedram

Department of Electrical Engineering - Systems
University of Southern California, Los Angeles, CA 90089

Abstract - This paper illustrates, analytically and
quantitatively, the effect of high-order temporal correlations on
steady-state and transition probabilities in finite state machines
(FSMs). As the main theoretical contribution, we extend the
previous work done on steady-state probability calculation in
FSMs to account for complex spatiotemporal correlations
which are present at the primary inputs when the target
machine models real hardware and receives data from real
applications. More precisely: 1) using the concept of
constrained reachability analysis, the correct set of Chapman-
Kolmogorov equations is constructed; and 2) based on
stochastic complementation and iterative aggregation/
disaggregation techniques, exact and approximate methods for
finding the state occupancy probabilities in the target machine
are presented. From a practical point of view, we show that
assuming temporal independence or even using first-order
temporal models is not sufficient due to the inaccuracies
induced in steady-state and transition probability calculations.
Experimental results show that, if the order of the source is
underestimated, not only the set of reachable sets is incorrectly
determined, but also the steady-state probability values can be
more than 100% off from the correct ones. This strongly
impacts the accuracy of the total power estimates that can be
obtained via probabilistic approaches.

1. Introduction

In the last decade, probabilistic approaches have received a lot of
attention as a viable alternative to deterministic techniques for
analyzing complex digital systems. Logic synthesis [1],
verification [2], testing [3] and more recently, low-power design
[4] have benefited from using probabilistic techniques. In
particular, the behavior of FSMs has been investigated using
concepts from the Markov chain (MC) theory.

Studying the behavior of the MC provides us with different
variables of interest for the original FSM. In this direction, [5][6]
are excellent references where steady-state and transition
probabilities (as variables of interest) are estimated for large
FSMs. Both techniques are analytical in nature but, in order to
manage complexity, make some simplifying assumptions,
temporal independence of the primary inputs being the most
notable one. As we will show in this paper, temporal correlations
longer than one time step can significantly affect the overall
behavior of the FSM and therefore result in very different values
for the actual transition probabilities compared to those predicted
in [5][6]. More interestingly, it will be shown that if one ignores
the effect of finite-order statistics at the primary inputs of the
FSM, it is possible to wrongly predict non-zero steady-state
probabilities for some transient states (which normally occur in
the beginning of operation, but disappear once the machine
reaches its steady-state regime). Knowledge of correct state
occupancy probabilities is important in timing verification, state
assignment, re-encoding for low-power and power estimation via
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probabilistic or statistical approaches.
Addressing these issues, the present paper extends the

previous work reported in [5] to explicitly incorporate complex
spatiotemporal correlations in steady-state and transition
probabilities calculation for FSMs. The analysis itself relies on
time-homogeneous discrete-parameter MCs which are used in
two different ways:

1) an input modeling MC is used to model the binary input
stream that typifies the application data (called alsotrace)
feeding the target FSM1;

2) a composite MC is used to model the serial connection of
the input-modeling MC and the MC of the FSM itself.

Studying the composite MC requires reachability analysis on
the target machine. At this point, our work differs substantially
from what other researchers have considered in the past, in the
sense that ourreachability analysis is constrained by the actual
input sequence and accounts for the very specific way in which
the input source excites the target FSM.

Last but not least, analysis of MCs involves sophisticated
numerical techniques. To date, Gauss-Jacobi and power method
have been extensively used in steady-state probability calculation
[5]. We present instead two different algorithms based on
stochastic complementationand iterative aggregation/
disaggregation, which provide a deep insight into theoretical
aspects of MC analysis and an efficient solution for a large class
of MCs, i.e.nearly completely decomposable(NCD) systems.
The present paper thus improves the state-of-the-art in two ways:

1) using the concept ofconstrained reachability analysis, it
constructs the correct set of Chapman-Kolmogorov equations;

2) based on stochastic complementation and iterative
aggregation/disaggregation techniques, it presentsexact and
approximate techniques for finding the state occupancy
probabilities in the target machine.

The paper is organized as follows. Section 2 presents the basic
definitions and notations on FSMs and MCs that will be used
throughout the paper. In Section 3 we formulate the problem we
want to solve and present the basic Markov model. Section 4
focuses on constrained reachability analysis issue. In Section 5
we present exact and approximate methods for steady-state
probabilities calculation, and we point out some issues regarding
complexity and convergence of algorithms. Finally, we present
some experimental results for common sequential benchmarks,
and we conclude by summarizing our main contribution.

2. Preliminaries on finite-order MCs

In this section we present the basic definitions and notation. For a
complete documentation, we refer the reader to [7][8]. We
consider only time-homogeneous discrete-parameter MCs with
finite state space and assume that all states arerecurrent (i.e. the
probability of returning to it aftern ≥ 1 steps is greater than zero)
since alltransient states vanish after a finite number of steps.

1We point out that although the Markov model is derived for a particular input trace,
it is completely general and represents in a compact form the whole class of input
sequences having the same characteristics.



Definition 1. A discrete stochastic process {xn} n ≥ 0 is said to be
a lag-k MC if at any time stepn ≥ k:

                    (1)

If k = 1, the conditional probabilities

are calledsingle-step transition probabilitiesand represent the
conditional probabilities of making a transition from statexn-1 to
statexn at time stepn. In homogeneous MCs these probabilities
are independent of n and consequently written as

 for all n = 1, 2,... The matrixQ = { pij}

is called thetransition probability matrix. We note thatQ is a
stochastic matrix because its elements satisfy the following two

properties: .

An equivalent description of the MC can be given in terms of
its state transition graph (STG). Each node in the STG
represents a state in the MC, and each edge from nodei to nodej
is labelled with the one-step transition probability from state i to
statej (pij). It should be noted that any lag-k MC can be reduced
to a lag-one MC based on the following result.
Proposition 1.[8] If { un} n ≥1 is a lag-k MC then {vn} n ≥1, where
vn = (un, un+1,..., un+k-1), is a multivariate lag-one MC.

For clarity, we will thus refer subsequently only to lag-one
MCs; using Proposition 1, all results translate to lag-k MCs.
Definition 2. A MC is said to be nearly completely
decomposable if its transition matrixQ can be written in the form

, where all non-zero elements in the off-

diagonal blocks are small (the precise meaning of ‘small’ will be
defined later in Section 5) compared to those in the diagonal
blocks. If the off-diagonal blocks are exactly zero, then the MC
is said to becompletely decomposable.

We now turn our attention to distribution defined on the states
of a MC. We shall denote byπi(n) the probability that the MC is
in statei at stepn, that isπi(n) = p(xn = i). In vector notation,π(n)
= (π1(n), π2(n),..., πi(n),...), whereπ is a row vector andπ(n) =

π(0)⋅Qn, whereπ(0) denotes the initial state distribution of the
chain. For nondecomposable and aperiodic MCs, it is shown that
the limiting distribution  always exists and it is

independent of the initial probability distribution [7]. In addition,
the following important result holds.
Proposition 2. [7] For a nondecomposable MC, the equation

 with  has a unique solution that represents

thestationary distribution of the MC.
The unique solution of the equation in Proposition 2 (called

the set of Chapman-Kolmogorov equations) can actually be
determined by solving the system of equations

.

3. FSM steady-state analysis: problem formulation

In this section, we introduce formally the problem we want to
solve and present two Markov models that we use to solve it: one

associated to the state lines of the FSM and another one for the
input sequence that feeds the target FSM.

The probabilistic behavior of an FSM can be studied by
regarding its STG as a MC. More precisely, by attaching to each
out-going edge of each state in the target FSM a transition
probability that corresponds to that particular transition, one can
actually obtain a MC as defined in previous section. Furthermore,
studying the behavior of the underlying MC gives us different
variables of interest for the original FSM. To this end, the set of
equations to solve is the one from Proposition 2 (whereQ = QS is
the transition matrix associated to the FSM).

To set up the matrixQS, the authors in [5] consider that all
external input combinations are equiprobable during the normal
operation of the machine and therefore, the one-step transition
probability matrix can be obtained from the transition relation in
a straightforward manner. However, in practice, the situation can
be quite different: various input sequences may exercise the
machine in different ways and thus produce substantially
different STG structures. Due to the feedback lines, the behavior
of the state lines themselves is strongly dependent on the
characteristic of the input sequences present at primary inputs
and therefore, to set up theQS matrix which actually accounts for
the influence of correlations at the primary inputs on the state
lines of the FSM is a key (and nontrivial!) task. To construct the
correct QS matrix which accounts for the effect of the actual
input trace, we have to associate a finite-order MC to the primary
input stream.

4. Sequence-driven reachability analysis

In this section we first present a theoretical framework for
sequence-driven reachability analysis, followed by a practical
solution to this problem. We point out that sequence-driven
reachability analysis differs from classical reachability analysis
in that it accounts for constraints on the inputs, that is, the
possible set of input vectors applicable to the circuit and their
sequencing.

In [9] it has been shown that to any first-order MC, one can
associate aStochastic Sequential Machine (SSM) that generates
symbols according to the conditional probabilities of the initial
MC. Specifically, a synthesis procedure for the SSM modeling
the input sequence has been proposed by the authors. Based on
this, the target FSM and its input can be viewed as in Fig.1a.

Fig.1: FSM analysis using input sequence modeling
The primary inputs of the SSM in Fig.1a (calledauxiliary

inputs) are generated according to a prescribed probability
distribution such that the states of the SSM have exactly the
desired probability distribution. Thus, the analysis can be done
on the product machine (input SSM, target FSM) which has
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temporally uncorrelated inputs with a prescribed probability
distribution. What we are interested in is the probability
distribution on the state lines of the target FSM.

Referring to the general FSM in Fig.1b, we proposed until
now two interacting Markov models: one for the primary inputs
{ xn} n ≥ 0 and another one for the states {sn} n ≥ 0 (which
characterizes the behavior of the machine itself). In fact, these
two models can be conceptually merged via joint transition
probabilities  and . These probabilities

completely characterize the input that feeds the next state and the
output logic of the target circuit.

For convenience, we introduce a new formulation based on
matrices. As we can see in Fig.1b, the first-order MC at the
primary inputs xn can be characterized by the matrix of

conditional probabilities , where

 and {v1, v2,...,vl} represents the set of

possible input patterns. On the other hand, the MC defined
jointly for the primary inputs and state lines {xnsn} n≥0 can be

characterized by the matrix , where

 and {u1, u2,..., um} is the

set of reachable states (QXS is the stochastic matrix of the product
machine mentioned above). From this joint characterization, we

can easily derive the state probabilities as:

which are actually our variables of interest. Based on Theorem 2
in [17], the following result provides the starting point in finding
the correct matrixQXS.
Proposition 3. The matrix QXS can be written in the form

, where {Bi} 1 ≤ i ≤ l is a set ofm×m

degenerate (i.e., containing only 0s and 1s) stochastic matrices
defining the next state function for inputvi. Specifically, if

 then

.

Corollary 1. The product machine (input SSM, target FSM) (as in
Fig.1a) is also a SSM whose auxiliary inputs are excited using
the same probability distribution as the one used for the input
SSM.

From this point on, to compute the steady-state probability for
the state lines of the target machine, we can apply any existing
approach that computes the probabilities for the states of the
product machine (input SSM, target FSM) which has the virtue of
having temporally uncorrelated inputs. However, this approach
can be very inefficient: the task of synthesizing the exact input
SSM may require huge memory and computation time. Instead,
we propose to model the input as aDynamic Markov Treeof
order 1 (DMT1) [10]. The DMT1 model contains information
about not only the possible binary vectors that can appear on the
inputs of the FSM, but also the sequencing of these vectors.

Additionally, the wordwise conditional probabilities for the
primary inputs are easily extracted from such a model. The
benefits of using DMT1 for input modeling are threefold:

• the structure DMT1 is constructed “on demand”, therefore it
offers a very compact representation;

• the model provides a set of parameters that completely
capture spatiotemporal correlations;

• its structure is compatible with that ofBinary Decision
Diagrams (BDDs) [11] which have been successfully used in
reachability analysis for FSMs [12][13].

To see how these advantages can be exploited, consider the
following example.
Example 1: For the sequence S1, the DMT1 is given in Fig.2a.
The corresponding BDD for this DMT1 is depicted in Fig.2b.
Every possible combination with non-zero probability of
occurrence in DMT1 is part of the ON-set of the corresponding
BDD; everything else, represents the OFF-set.

Fig.2: The tree DMT1 and the corresponding BDD
The BDD corresponding to a given DMT1 actually represents

the transition relationδ of the machine that models theinput to
the target FSM (“INPUT SSM” in Fig.1a). Having this
representation for the input, our task is then to find all the
reachable combinations (input, state). Let B = {0, 1}, N the
number of primary input variables andδ: BNx BN→ B defined as
δ (x-, x+) = 1 if vectorx+ can followx- on the input modeled as a
lag-one MC (that is, if the corresponding conditional probability
is non-zero) and zero otherwise. Also, letM be the number of
state variables andnext: BMx BN→ BM be the next state function
of the FSM. Then, we may employ the following standard
procedure [13] to compute the setC of reachable combinations
(input, state) for the given FSM and input characterization:

C0 = {(x0, s0) | x0 is any possible initial input,s0 is any
possible initial state},

Ci+1 = Ci ∪ {(x, s) | ∃ (x’, s’) ∈ Ci s.t.δ (x’, x) = 1 andnext (s’,
x’) = s},

C = Ci if Ci = Ci+1.
The above steps can be performed completely symbolically

with the aid of BDDs [12][13]. After having the complete setC
of possible (input, state) combinations, we can easily build the
matrix QXS based on Proposition 3. We should point out that in
general, the matrixQXS 1) may have transient states or 2) may be
decomposable. However, these can be dealt with in a similar way
to the approach presented in [5] where: 1) transient states are
eliminated and 2) the problem is reduced to finding the steady
state distribution for each strongly connected component of the
underlying MC. In what follows, we will thus refer only to
irreducible MCs or matrices, that is, those in which each state is
reachable from any other state in a finite number of steps. This
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hypothesis has no theoretical limitation to be extended to the
case of reducible MCs or MCs with multiple components.

5. Steady-state probability computation

We have constructed by now the correct matrixQXS (which
completely characterizes the FSM behavior) and are therefore
ready to solve the basic equationπ·QXS = π (with Σπi = 1).

5.1 Classical methods
Finding the stationary distribution of MCs with relatively few
states is not a difficult problem and standard techniques based on
solving systems of linear equations do exist [15]. To find the
stationary distribution of a MC, one can always employ direct or
iterative methods to solve the Chapman-Kolmogorov equations.
Both types of methods work with the stochastic matrix as a
whole. However, when the matrix size is large, we must resort to
decompositional methods that try to solve smaller problems and
then aggregate their solutions to find the needed stationary
distribution.

5.2 Stochastic complementation
For large-scale problems, it is natural to attempt to somehow
uncouple (or decompose) the original MC into smaller chains
(which are therefore easier to analyze) and finally, having these
partial solutions, to produce the global stationary distribution that
corresponds to the original chain.
Definition 3. [16] Let Q be an×n irreducible stochastic matrix
partitioned as

                                                                    (2)

where all diagonal blocks are square. For a given indexi, let Qi
denote the principal block submatrix ofQ obtained by deleting
the ith row andith column of blocks fromQ, and letQi*  andQ*i
designate:

                                (3)

That is,Qi*  is theith row of blocks withQii  removed andQ*i  is

the ith column of blocks withQii  removed. The stochastic
complement ofQii  is defined to be the matrix

                                                         (4)

whereI is the unit matrix.
It can be shown that every stochastic complement inQ is also

an irreducible matrix. In addition, the following theorem has
been proven [16].
Theorem 1.Let Q be ann×n irreducible stochastic matrix as in
(2) whose stationary probability vectorπ can be written as

 with Φi·e = 1 for i = 1, 2,...,p; e is a

column vector defined as:e = (1,1,...,1)T. ThenΦi is the unique
stationary probability vector for the stochastic complementSii
andξ = (ξ1, ξ2,…, ξp) is the unique stationary probability vector
for the p×p irreducible stochastic matrixA (called thecoupling
matrix) whose entries are defined byaij  = Φi ·Qij·e.

The coupling matrixA corresponds to an MC in which states
belonging to the same block of the partition arecollapsed into a

single state. Thus,ξ describes the steady-state probability of
being in such a set of states. Using this important theorem, the
following exact procedure can be used to compute the
stationary probability vector. (The input to this procedure is the
matrixQ given in Definition 3).

Fig.3: The stochastic complementation algorithm
We point out that the analysis based on stochastic

complementation does not depend in any way on matrixQ being
NCD and when implementing the stochastic complement
approach, we may choose a partitioning solution that is
convenient for us. For instance, based on the functionality of the
FSM, we may partition matrixQXS such that combinations (xi,
si), (xj, sj) are put in the same block if and only ifsi = sj,. In this
case, the matrixQXS is partitioned as in (2) where each submatrix
Qij  (1 ≤ p, q ≤ m) has the form (using the notations in Proposition

3)1:

                                                  (5)

The following remarkable result holds:
Theorem 2. If the stochastic complementation algorithm is
applied to matrixQXS and the partitioning is done as  in (5),  then
A is the matrix associated with the MC for the state linesQS and
the corresponding probability distribution is given byξ.

This important result justifies basically the applicability of
stochastic complementation to FSM analysis. We also note that
this method has the important feature of beingexact, but
unfortunately, it is computationally inefficient on monoprocessor
machines (it involves the inversion of a large matrix (I - Qi)). Its
contribution lies primarily in the insight it provides into
theoretical aspects of NCD systems.

5.3 Iterative aggregation/disaggregation
In this section, we present an iterative algorithm based on
approximate decomposition that rapidly converges to the exact
solution when the MC is NCD. The pioneering work on NCD
systems comes from Simon and Ando [18] who studied the
dynamic behavior of linear systems. The idea behind the
dynamic behavior of NCD systems is the existence of two
operational regimes:

- a short-run dynamics, when strong interactions within each
subsystem are dominant and quickly force each subsystem to a
local equilibrium almost independently of what is happening in
the other subsystems;

- a long-run dynamics, when weak interactions among groups
1This partitioning isstate-oriented, while the one in Proposition 3 isinput-oriented.
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begin to become important and the whole system moves toward a
global equilibrium; in this global equilibrium the relative values
attained by the states at the end of the short-run dynamics period
are maintained.

As a consequence, the state space of the global MC can be
partitioned into disjoint sets, with strong interactions among the
states of a subset, but with weak interactions among the subsets
themselves. This way, each subproblem can be solved separately
and the global solution is then constructed from partial solutions.

Iterative aggregation/disaggregation (IAD) methods are
particularly useful when the global MC is NCD. More precisely,
IAD methods work on partitioned state space as anaggregation
(or coupling) step followed by adisaggregation one. The
coupling step involves generating a stochastic matrix of block
transition probabilities (thecouplingor aggregation matrix) and
then determining its stationary probability vector. The
disaggregation step computes an approximation to the
probability of each state aggregated within the same block. The
basic iterative algorithm is called KMS (after its authors
Khoury-McAllister-Stewart) [14] and is described in Fig.4
(Once again, the input of the algorithm is the matrixQ as in
Definition 3.)

Fig.4: The KMS algorithm
In this case, the partitioning criterion is purely numerical.

States are aggregated within the same block if they interact
strongly enough to favor short-run dynamics. This way, the off-
diagonal elements in the global matrix are smaller than those in
the blocks on the main diagonal and therefore, the interactions
among subsets are minimized. In practice, finding the
partitioning of a NCD stochastic matrix is not a trivial task. One
way to do it is to ignore the entries in the matrix that are less than
some thresholdε and then find the strongly connected
components of the underlying MC [15]. Next, the threshold may
be increased and the same analysis is done on the components
already found. We should note that the lower the threshold, the
higher the rate of convergence, at the expense of larger blocks.
On the other hand, if the partitioning is done until the blocks
become manageable, the convergence rate slows down due to the
larger threshold used. More formally, under fairly general
conditions, the following result holds for NCD matrices:
Theorem 3. [14] If the matrixQ is partitioned such that ||Qii ||1 =

O(1) and ||Qij ||1 = O(ε) for i ≠ j, then the error in the approximate
solution using the iterative aggregation/disaggregation algorithm
is reduced by a factor ofε at each iteration.

In practice, the KMS algorithm offers the attractive feature of
working on individual blocks instead of the whole matrixQXS.
As a consequence, its complexity per iteration is given by
O(nmax

3), wherenmax is the maximum order over all diagonal
blocks in the partitioned matrixQXS. Compared to the classical
power method (which is also iterative in nature) [5], the KMS
algorithm has the significant advantage of being applicable to
any irreducibleMC (aperiodic or periodic) and also having a
higher rate of convergence for NCD systems. In these cases, a
few iterations will suffice for all practical purposes. We should
point out that we can always trade-off space versus time
complexity: if the partitioning is such thatnmax is still too large,
we can use a higher value for the threshold such that the size of
the largest subset (i.e.nmax) becomes manageable. In this case,
the convergence rate will be smaller and thus, the time needed for
convergence will increase. Also, the size of the coupling matrix
will be larger and hence step 4 in the KMS algorithm becomes
critical. However, there is a solution to this problem: when
solving the Chapman-Kolmogorov equations for the coupling
matrix, we can apply the KMS algorithm in a recursive manner.
This approach is called thehierarchical KMS algorithm [15].

6. Experimental results

In this section we provide our experimental results for some
common benchmark circuits. In particular, we compare the
probability distribution for the states where the order of the input
sequence is assumed by default to be one, against the case where
the actual order of the source is taken into consideration.

We provide in Table 1 the results obtained for stochastic
complementation when Fibonacci-type sequences (that is,
second-order sequences) are applied at the primary inputs of
somemcnc’91 and ISCAS’89 benchmarks. We considered for
this only small benchmarks because the exact method based on
stochastic complementation is, in general, computationally
inefficient. For each example, an appropriate dynamic Markov
tree has been built and based on it, a sequence-driven reachability
analysis has been performed. Using the obtained set of reachable
combinations (input, state) (denoted by #(x, s)), and sparse
matrix techniques, the matrixQXShas been built and further used
to determine steady-state probabilities. The partitioning was
determined by the same functional criterion as in Theorem 2. We
also report for each benchmark the number of reached states (#s)
and their corresponding probabilities.

In Table 2, we report our results obtained when applying the
KMS algorithm for a larger set of benchmarks. Once again, the
input sequences were generated using Fibonacci series. For
comparison, we also provide the results when the input is
considered by default as having order one. For each case, the
sequence-driven reachability analysis is carried out as above and
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∑=

πk
m( ) πk

m( )
Qkk⋅ π j

m( )
Qjk⋅

j k<
∑ zj

m( )
Qjk⋅

j k>
∑+ +=

Table 1: Steady-state distributions obtained with stochastic
complementation for second-order input sequences

Circuit
PIs/
FFs

#(x,s) #s State probability distribution

bbara 4/4 28 3 [0.5 0.25 0.25]

bbtas 2/3 18 6 [0.0556 0.3333 0.3333 0.0556 0.0556 0.1667]

dk17 2/3 6 2 [0.6667 0.3333]

donfile 2/5 9 5 [0.1667 0.1667 0.1667 0.1667 0.3333]

s400 3/21 12 3 [0.6667 0.1667 0.1667]

s526 3/21 17 9 [0.3333 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833
0.0833 0.0833]



then, using theQXS matrix, the KMS algorithm is applied using a
numerical partitioning criterion with a threshold of 0.001. In all
cases, we report the number of (input, state) combinations
reached and the number of reached states. The number of
iterations needed to converge for an error less than 10-5 was≤ 3
for the second-order model and between 7 and 15 for the first-
order model. The average run-time per iteration was 2 sec. for
each block-matrix on a Sparc 20 workstation. For the larger sized
matrices, the hierarchical KMS algorithm was used. For
comparison, for first-order models we also provide the maximum
and mean percentage errors obtained when comparing the results
to the actual second order model (MAX% and MEAN%).

 As we can see, considering the input of the target FSM as
having only one-step temporal correlations may significantly
impair the ability of predicting the correct number of reached
states. In addition, for the subset of states correctly found as
being reached, there is a significant error in the value of steady-
state probabilities and total power consumption. For example,
when excited using a second-order type of input, benchmark
planet has a number of 34 reached states, whereas if the order is
(incorrectly) assumed to be one, the number of reached states
becomes 48. Moreover, the error in predicting the steady-state
probability can be as high as 513% for the first-order model.
Generally speaking, a lower order model covers all the states
from the original one, but it may also introduce a significant
number of extra states and, furthermore, the quality of the results
in estimating the steady-state probabilities is seriously impaired.

Since the values of these probabilities strongly affect the total
power values, we also show the impact of these results on
probabilistic power estimation techniques. Knowledge of the
steady-state probability distribution for inputs and states and the
conditional probabilities from matrixQXS, allow us to reduce the
problem of power estimation for sequential circuits to the one for
combinational circuits; therefore techniques like [19] can be
successfully applied. We provide in the ‘Total power’ columns a
comparison between the values of power estimated when the
order of the input sequences was considered arbitrarily as being
one vs. those determined when the actual order has been taken
into account (all values are inµW at 20 MHz). As we can see,
underestimating the actual order of the input sequence, strongly
impacts the accuracy of the values of total power consumption;
the error introduced can be as much as 25% for circuitplanet.

7. Conclusion

In this paper we investigated from a probabilistic point of view
the effect of finite-order statistics of the input sequence on FSMs
behavior. In particular, the effect of temporal correlations longer
that one clock-cycle was analyzed for steady-state and transition

probabilities calculations. The results presented in this paper can
be used in low-power design, synthesis and verification and
represent an important step towards understanding the FSM
behavior from a probabilistic point of view.
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