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Abstract

We propose a new approach to RT-level power modeling
for combinational macros, that does not require simulation-
based characterization. A pattern-dependent power model
for a macro is analytically constructed using only struc-
tural information about its gate-level implementation. The
approach has three main advantages over traditional tech-
niques: i) it provides models whose accuracy does not de-
pend on input statistics, ii) it o�ers a wide range of trade-
o� between accuracy and complexity, and iii) it enables
the construction of pattern-dependent conservative upper
bounds.

1 Introduction
Modeling power consumption at high level of abstrac-

tion is a challenging issue that has received considerable
attention in the last few years. Several e�orts have focused
on the development of power models for combinational
macros which are the functional building blocks of complex
designs described at the register-transfer level (RTL). As
a result, several power models have been proposed ranging
from constant estimators of the average power consump-
tion [1] to advanced models that try to capture the depen-
dence of power dissipation on the input patterns applied
to the circuit [2, 3].

The dependence on input pattern distribution is a
well-known property of power consumption in CMOS cir-
cuits. Advanced power models take this e�ect into ac-
count. We can distinguish two classes of approaches.
Pattern-independent models provide average power esti-
mates based on a compact description of the input statis-
tics, i.e., input transition activities and static probabili-
ties [4, 5]. In contrast, pattern-dependentmodels provide a
pattern-by-pattern power estimate during simulation [2, 3].
Pattern-dependent models are potentially more accurate
than pattern-independent ones, and they can be used to
estimate peak power as well as average power dissipation.
On the other hand, they are more complex and may require
long simulation runs to provide signi�cant estimates.

Both pattern-dependent and pattern-independent mod-
els require characterization. Characterization consists of
tuning model parameters in order to �t a sample of power
consumption data provided by a gate-level (or swicth-level)
simulation of the implementation of the macro. If the RTL
design is based on a given library of functional macros,
characterization is performed once for all for each macro
in the library and the resulting model is used to backanno-
tate its functional description. During design exploration
and RTL simulation, the same model is used to provide
power estimates for all instances of the same macro.

Simulation-based model tuning (i.e., characterization)
is attractive and practical: in principle it automatically
increases the accuracy of power models to match that of
a low-level simulator. Unfortunately characterization has
two drawbacks that come from its statistical nature: i) it
cannot guarantee out-of-sample accuracy, and ii) it does
not enable worst-case evaluation.

1.1 Out-of-sample accuracy

We call out-of-sample accuracy the accuracy of a model
evaluated for input conditions statistically di�erent from
those in which it was characterized. In contrast, we call in-
sample accuracy the accuracy of a model evaluated in the
same conditions used for characterization. Only in-sample
accuracy is increased by the characterization process. If
the input patterns applied to the circuit during charac-
terization are not representative of the actual operating
conditions, the model may produce unpredictable errors.

To improve out-of-sample accuracy two approaches
have been attempted: increase the complexity (and the

exibility) of the model [4, 6, 2], or improve the charac-
terization procedure [5, 7]. No general solutions have been
provided by the �rst approach: when the model complexity
increases the characterization process becomes even more
critical and the resulting model prone to out-of-sample er-
rors.

The second approach has been more successful [5, 7].
In [5] the authors proposed the usage of a look-up table
(LUT) of constant estimators statically pre-characterized
under di�erent input-output conditions.

The method presented in [7] relies on the availability of
a multilevel simulation environment to perform dynamic
model tuning by means of an adaptive algorithm (namely,
the LMS). Adaptive modeling achieves sizable improve-
ments over the accuracy of statically-characterized equiv-
alent models.

1.2 Worst-case evaluation

Even if it is possible to successfully trade o� model com-
plexity and/or characterization e�ort for out-of-sample ac-
curacy, no compromises are allowed when dealing with
worst-case estimates. Simulation-based characterization
does not provide conservative worst-case estimators, un-
less an exhaustive search is performed by simulating all
possible input transitions, i.e., all possible pairs of input
patterns. Needless to say, this is unfeasible even for small
circuits.

To perform conservative worst-case estimates, analyti-
cal approaches are required that look at the inner structure
of a macro in order to �nd the input conditions that max-
imize its internal switching activity [8, 9]. Unfortunately,
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Figure 1: Representation of a generic combinational unit with
n inputs and m outputs. Internal gate gj is also represented
together with its output function (gj(x)) and load capacitance
(Cj).

the complexity of the problem grows exponentially with
the number of inputs and gates in the circuit, and the
exact solution can be found only for small circuits. For
large combinational blocks, only conservative approxima-
tions are provided.

Independently of the accuracy of worst-case power es-
timates achievable for the macros, large errors are always
introduced when estimating the worst case consumption
of an entire RTL design which contains many instances of
library macros. In fact, the knowledge of worst-case power
consumptions of library elements provides little practical
information about the power consumption of the entire de-
sign. No compensation occurs when adding conservative
estimates, the overall error grows with the number of sys-
tem components.

Pattern-dependent upper bounds can provide more sig-
ni�cant (still conservative) worst-case power estimates at
the RT level. Given an input pattern, it is possible to
compute an upper bound to the power consumption of
the entire circuit for that pattern by simply summing the
pattern-dependent upper bounds of its components. Such
bound is much tighter than what could be obtained by just
summing the overall worst-case power consumption of all
macros in the circuit.

In this paper we present an analytical approach to
pattern-dependent power modeling that:

� provides power models whose accuracy does not de-
pend on the input statistics,

� provides pattern-dependent upper-bounds,

� e�ectively trades o� accuracy for complexity.

In sharp contrast with all previous approaches our model-
ing procedure exploits information on the internal struc-
ture of the combinational logic unit. While in the past
only black box models have been investigated, we propose
a white box methodology. The modeling task is addressed
in the next section. We discuss the modeling assumptions,
we describe the RTL model and we outline a symbolic al-
gorithm for its automatic construction. Approximation
criteria and algorithms are discussed in Section 3. Ex-
perimental results are reported in Section 4. Section 5
concludes the work.

2 RTL power modeling
Fig. 1 shows a combinational unit (U) with inputs x =

[x1; :::xn]
T .1 We assume that the unit is stable at time

1Hereafter we use boldface letters to denote vectors.

ti and tf (tf > ti) and that an input transition from xi

to xf occurs between ti and tf . We denote by e(xi;xf )
the supply energy drawn by the circuit in the time interval
[ti; tf ]. The task of modeling power consumption at the
RT level consists of �nding a simple but accurate model
for e(xi;xf ) (the corresponding power consumption being
p(xi;xf ; T ) = e(xi;xf )=T , where T = tf � ti).

In previous approaches, models are constructed by: i)
observing input-output information, ii) performing highly
accurate simulation to estimate the power dissipation that
corresponds to a given input transition, iii) correlating the
power measurement and the input-output transition pat-
tern with some model-�tting procedure. Our approach is
radically di�erent. We do not perform simulation, but we
directly construct a high-level model starting from a low-
level description of the internal structure of the combina-
tional unit, which we call golden model. It is important
to notice that the golden model must be available for the
characterization-based approaches as well, because it is re-
quired for performing accurate simulations.

There are many phenomena that contribute to
e(xi;xf ). For convenience, we partition them into struc-
tural and parasitic phenomena. For a given golden model
of the unit, we call structural (parasitic) phenomena those
phenomena that can (cannot) be appreciated at the ab-
straction level at which the golden model is provided.
Power modeling and characterization are abstraction pro-
cesses. The abstract model they provide cannot be more
accurate than the golden model itself. Hence, the only phe-
nomena that can be modeled are those that are structural
for the golden model.

Characterization-based models are 
exible because they
can leverage any low-level simulator. In other words, they
can be applied to any golden model (i.e., a gate-level
netlist, a transistor-level description). We give up some

exibility. We assume that our golden model is a gate-level
netlist with backannotated capacitances and zero propaga-
tion delays. At this level, the only structural phenomena
are the supply currents that charge capacitances associated
with raising signals. Their contribution to the overall en-
ergy is usually called dynamic consumption. Short-circuit
currents, internal charge redistributions and spurious tran-
sitions (glitches) are all parasitic phenomena.

By chosing an abstract golden model, we loose some
absolute accuracy. Two observations motivate this choice.
First, absolute accuracy is not always a key feature at the
RT level. During RTL design some absolute accuracy may
be lost if relative accuracy is still satisfactory. Second,
if absolute accuracy is required, characterization can be
used in conjunction with our approach to capture parasitic
phenomena.

Our modeling approach is not in contrast with charac-
terization methodologies. On the contrary, it leads to a
useful partitioning of the modeling task. We construct a
model for the pattern dependency of zero-delay dynamic
power, which is the structural power of our golden model.
Dynamic power (that usually represents the largest contri-
bution) is responsible for most of the pattern dependence
of the overall power consumption. Parasitic phenomena
have a similar (and usually smoother) dependence on in-
put statistics. Once a robust RTL model has been analyt-
ically constructed for the structural power, characterizing
parasitic phenomena is much simpler than characterizing
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Figure 2: a) Gate-level netlist of a simple combinationunitU.

b) Look-up-table of discrete function C(xi;xf ) that represents
the switching capacitance of U. The last column reports the
values of C (in fF ) evaluated by assuming C1 = 40fF , C2 =
50fF and C3 = 10fF .

the entire power consumption as a whole.

2.1 Analytical model construction

The structural power consumption of a zero-delay gate-
level netlist can be expressed as

e(xi;xf ) = V
2
ddC(x

i
;x

f ) (1)

where C(xi;xf ) represents the total switching capacitance
(i.e., the total capacitance associated with signals that
have a raising transition2 in the time interval [ti; tf ]) and
Vdd is the supply voltage. Since we assume Vdd to be con-
stant, our modeling task consists of �nding a RTL model
for C(xi;xf ). Fig. 1 shows a generic internal gate gj and
its load capacitance Cj. If we denote by SR the set of gates
having an output raising transition between ti and tf , the
total switching capacitance is

C(xi;xf ) =
X

gj2SR

Cj (2)

Pattern dependence is implicit in the de�nition of SR:

SR = fgj ; j � N j gj(x
i) = 0 AND gj(x

f ) = 1g (3)

where gj(x) is the output function of gate gj and N is the
total number of gates in the circuit. Since gj belongs to
SR if and only if g0j(x

i)gj(x
f ) = 1, we can re-write C as:

C(xi;xf ) =

NX

j=1

g
0
j(x

i)gj(x
f )Cj (4)

Example 1 Consider the simple netlist of Fig. 2.a. Its
node functions are: g1(x) = x01, g2(x) = x02 and g3(x) =
x2 + x1. Assume that C1 = 40fF , C2 = 50fF and C3 =
10fF . The total switching capacitance corresponding to an
input transition from xi = 11 to xf = 00 is given by:

C(11; 00) = g
0
1(11)g1(00) � 40fF + g

0
2(11)g2(00) � 50fF

+g03(11)g3(00) � 10fF

= 1 � 1 � 40fF + 1 � 1 � 50fF + 0 � 0 � 10fF

= 90fF

2If the output load of a gate is represented by a constant
capacitor to ground, the dynamic supply current drawn by the
gate is always associated with a raising output transition.
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Figure 3: a) BDDs of the node functions of unit U of Fig.
2.a. b) ADD representing the switching of the same unit as a

function of its primary inputs at time ti and tf . The following
assumption are used to simplify the pictorial representation of
decision diagrams. Input variables are ordered and reported on
the left. All nodes labeled by the same variable are represented
at the same level. The left and right edges from each node are
associated with the 0 and 1 assignments of its variable, respec-
tively.

In principle, Eq. (4) is the RTL model of C we are
looking for: as long as the logic functions realized at each
internal node are known, it represents the switching capac-
itance as a function of xi and xf . In practice, however, Eq.
(4) is too complex to be used at the RT level. Its represen-
tation is much larger than the gate-level netlist we want
to abstract away (N arbitrary Boolean functions of n vari-
ables, instead of N elementary gates), and its evaluation is
more complex than a gate-level simulation (nN instead of
N). Moreover, Eq. (4) actually represents the implemen-
tation of the unit. If the unit is a third-party intellectual
property (IP), Eq. (4) cannot be used to backannotate the
functional description, or otherwise the IP would be vio-
lated. To obtain a RTL power model of practical interest
we need to precompute the weighted sum at the right-hand
side of Eq. (4), thus obtaining a direct representation of
C(xi;xf ).

Example 2 Consider again the gate-level netlist of Fig.
2. If we evaluate Eq. (4) for all possible pairs of input

patterns xi;xf and we store the results in a look-up-table
(LUT), we obtain a pattern-dependent model of the total
switching capacitance that does not require any longer the
explicit knowledge (and evaluation) of the internal func-
tions. The LUT for unitU of Fig. 2.a is partially reported
in Fig. 2.b. The switching capacitance corresponding to a
given input transition (e.g., from xi = 11 to xf = 00) can
be read directly from the corresponding row of the table
(C = C1 +C2 = 90fF ).

The explicit precomputation of C(xi;xf ) has the same
complexity of an exhaustive gate-level simulation, that
grows exponentially with the number of primary inputs.
The number of entries in the LUT of C is exponential as
well. For a circuit with 20 inputs, more than 1012 values of
C should be precomputed and stored. Precomputation is
feasible only if it can be done symbolically and the result
can be represented in a compact form.

C(xi;xf ) is a discrete function, i.e., a mapping from
a Boolean space to a �nite set of values, V (notice that
Boolean functions are nothing but discrete functions with
V = f0; 1g). Boolean functions can be represented as bi-
nary decision diagrams (BDDs) [10], generic discrete func-
tions can be represented as algebraic decision diagrams
(ADDs) [11]. Fig. 3 shows the BDDs of the node func-
tions of unit U of Fig. 2.a and the ADD of its switching



capacitance. The root of a decision diagram is the func-
tion it represents. Internal nodes are associated with input
variables, edges represent input assignments, leaves repre-
sent output values. Any con�guration of input variables
corresponds to a path from the root to a leaf. Bold lines
are used in Fig. 3.b to point out the path associated with
xi = 11, xf = 00. According to Ex. 1, the corresponding
leaf has value 90.

Decision diagrams are ordered (variables are always en-
countered in the same order along any path) and reduced
(isomorphic subtrees can be shared). Variable ordering
makes the representation canonical, reduction makes it
compact. Reduced, ordered decision diagrams provide
an e�cient way of representing and manipulating discrete
functions. Logic and arithmetic operators are de�ned on
BDDs and ADDs, respectively. From an algorithmic point
of view, they take advantage of the structured represen-
tation to perform logic and arithmetic operations without
actually enumerating all input con�gurations (i.e., sym-
bolically). The number of elementary operations involved
is linear or quadratic in the number of nodes in the dia-
gram, rather than exponential in the number of variables.
Though the worst-case complexity of the representation
of a discrete function is inherently exponential, reduced
ADDs usually provide much more e�cient representations.

We don't describe ADDs and BDDs in further details
(the reader can refer to [11, 10]), but we rely on their prop-
erties for the symbolic manipulation and representation
of discrete functions. Symbolic manipulation enables the
straight-forward implementation of Eq. (4): the ADD of
C(xi;xf ) can be directly obtained by applying Eq. (4) to
the BDDs of the unit's node functions. Once constructed,
the ADD can be evaluated in linear time for given input
assignments.

To summarize, ADD-based symbolic modeling provides
e�ective solutions to three of our modeling issues: i) it
hides the dependence of C on the internal functions, ii) it
avoids exhaustive precomputation and iii) it enables run-
time model evaluation in a negligible time (linear in the
number of input variables).

A last issue needs to be addressed: the model com-
plexity. Unfortunately, this is not a marginal problem.
Decision diagrams may blow up exponentially when the
number of input variables increases and there are no gen-
eral solutions to keep their size small, nor to foresee their
explosive growth. After reduction (and variable reorder-
ing [10]) the only way of further simplifying ADDs is by
approximating the discrete functions they represent. One
of the main strengths of our approach is that it enables
e�ective approximations to achieve a good trade-o� be-
tween accuracy and complexity. This is shown in the next
section.

3 Approximation criteria and algo-
rithms

The e�ectiveness of any approximation criterion de-
pends on the representation of the function to be approx-
imated. Consider the expressions at the two sides of Eq.
(4) as equivalent models for the switching capacitance. At
the right-hand side C is expressed in terms of N Boolean
functions (gj) and the model consists of N BDDs. To cope
with complexity, some BDDs may need to be simpli�ed by
approximating the corresponding functions. However, due

f (C) i fx, xx, x )i(C
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Figure 4: a) ADD of the switching capacitance of unit U of
Fig. 2. For some of the ADD nodes the average value and vari-
ance of the discrete functions they represent are also reported.
b) Simpler ADD obtained from the previous one by collapsing
the sub-ADD rooted in n in a single leaf node that represents
its average value.

to the involved dependence of C on those functions, the
error induced on C by the approximation is almost unpre-
dictable.

On the contrary, at the left-hand side of Eq. (4) the
switching capacitance is directly represented as a discrete
function and the model consists of a single ADD. To re-
duce the model complexity, approximation criteria can be
directly applied to the target function, thus keeping the
induced error under control. This is exactly what we do,
working directly on the representation of C(xi;xf ).

The simplest way of simplifying an ADD is by means
of node collapsing, that consists of reducing a sub-ADD to
a single leaf node. Fig. 4.a shows the complete ADD of
the switching capacitance of our example unit. Fig. 4.b
shows a smaller ADD obtained by replacing the sub-tree
rooted in node n with leaf node 7.5. Since three nodes
have been replaced by one, the overall size of the ADD
has been reduced by 2 at the cost of loosing some pattern
dependence.

Example 3 Consider the ADD of Fig. 4.a. The sub-
ADD rooted in node n represents the dependence of C on
the second input vector (xf ) when the �rst one is xi = 00.
In particular, the switching capacitance is 0 if xf = 00,
while it is equal to 10fF in all other cases. This pattern
dependence is lost in the ADD of Fig. 4.b: when xi = 00
the approximated value of C is 7.5 regardless of xf .

Without going through the algorithmic details of node
collapsing, we remark that several sub-trees can be inde-
pendently collapsed during a traversal of the original ADD.
The overall cost of the process is linear in the number of
nodes. Any trade-o� between accuracy and complexity can
be explored just by changing the degree of compression,
i.e., the percentage of nodes to be collapsed. If no node
is removed, the ADD represents the switching capacitance
without approximations (the model has the accuracy of a
gate-level simulation). If the entire ADD is collapsed in a
single leaf, the model degenerates in a constant estimator.

More sophisticated algorithms can be conceived for
ADD simpli�cation. In this paper we only focus on node
collapsing because of two main reasons: i) it is performed
in linear time and ii) it is 
exible enough to implement
di�erent approximation strategies.

In Ex. 3 we didn't mention why node n was chosen for
collapsing and why the resulting leaf node was 7.5. We
call approximation strategy a criterion to select the sub-
ADDs to be collapsed and the values to be associated with



the resulting leaf-nodes. For a given degree of compression,
both the scope and the accuracy of the �nal approximation
depend on the strategy adopted to steer the simpli�cation
procedure.

Since node collapsing always replaces a sub-function
with a constant value, a general criterion to reduce the
approximation error (and the loss of pattern dependence)
consists of selecting for replacement sub-ADDs with mini-
mum variance. The variance of an ADD is the variance of
the function it represents. For a generic function f(x) of
n Boolean variables

var(f(x)) =
1

2n

X

x

(f(x)� favg)
2 (5)

where favg is the average value of f :

avg(f(x)) =
1

2n

X

x

f(x) (6)

To chose the target nodes for collapsing we need to com-
pute the variance of all discrete functions associated with
internal nodes. This can be done in linear time during
a traversal of the ADD, using a recursive formula. Since
leaves represent constant functions, for a generic leaf node
k we have var(k) = 0 and avg(k) = value(k). For a generic
internal node n, both var(n) and avg(n) can be computed
from those of its left and right children (denoted by nleft
and nright, respectively):

avg(n) =
1

2
(avg(nleft) + avg(nright)) (7)

var(n) =
1

2
(var(nleft) + (avg(nleft)� avg(n))2 +

var(nright) + (avg(nright)� avg(n))2)

Once var(n) has been computed for all nodes in the ADD,
sub-ADDs rooted at nodes with minimum variance are
chosen for collapsing. Node collapsing proceeds (possibly
involving nodes with larger variance) until the global ADD
is reduced under a target size. The overall process has the
complexity of two ADD traversals.

Constant values used for replacement depend on the
scope of the model. If we are targeting high accuracy on
average power estimates, the average values computed for
each original node (avg(n)) can directly be used to replace
the corresponding sub-trees. In this case, var(n) repre-
sents the mean square error (mse) of the approximated
sub-function.

Example 4 Consider the ADD of Fig. 4.a and assume
that we need to reduce its size with a minimum impact on
its average accuracy. During a �rst traversal of the ADD,
the average value and the variance are computed for each
internal node. Consider, for instance, node n. According
to Eq. (8), avg(n) and var(n) are given by:

avg(n) =
1

2
(10 + 5) = 7:5

var(n) =
1

2
(25 + (5� 7:5)2 + 0 + (10 � 7:5)2) = 18:75

In Fig. 4.a, avg and var are reported for some of the in-
ternal nodes. Node nis the one with the smallest variance.
Hence, it is the replaced by a constant leaf node having
value avg(n). The resulting ADD is shown in Fig. 4.b.

f C (x, xi f)x, x )i(C
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Figure 5: a) Same ADD of Fig. 4.a. For some of the ADD
nodes two values are reported: the maximum value of the cor-
responding sub-function and the mse made by using the max-
imum to approximate the sub-function. b) Simpler ADD ob-
tained from the previous one by collapsing the sub-ADD rooted
in n in a single leaf node that represents its maximum value.

C(xi;xf ) = 0;

for (i=1; i <= N; i++) f

deltaC(xi;xf ) = bdd and(bdd not(gi(x
i)),gi(x

f ));
deltaC(xi;xf ) = add times(deltaC(xi; xf ), Ci);

if (add size(deltaC(xi;xf )) > MAX)

add approx(deltaC(xi;xf ), MAX);

C(xi;xf ) = add sum(C(xi;xf ), deltaC(xi;xf ));
if (add size(C(xi;xf )) > MAX)

add approx(C(xi;xf ), MAX);

g

Figure 6: Pseudo-code for the iterative construction of the
ADD of the switching capacitance. The following operators are
assumed to be available for the symbolic manipulation of DDs:
bdd not, that returns the logic NOT of a given BDD, bdd and,
that returns the logic AND of two given BDDs, add times, that
multiplies a given DD by a given constant value, add sum, that
returns the arithmetic sum of two ADDs, and add approx, that
simpli�es a given ADD (according to prede�ned approximation
criteria) in order to reduce its size within a given limit.

The strategy adopted to obtain pattern-dependent up-
per bounds is slightly di�erent. First, maximum val-
ues have to be used to replace sub-ADDs. Second, the
variance does not represent any longer the mse caused
by the approximation. Maximum values can be easily
computed during the ADD traversal. For any leaf node
k, max(k) = value(k), while for any internal node n,
max(n) = maximumfmax(nleft);max(nright)g. As for
the mse, the following relation holds for each node:

mse(n) = var(n) + (max(n)� avg(n))2 (8)

Example 5 Our example ADD is reported again in Fig.
5.a. Suppose that we need to reduce the size of the ADD
making only conservative approximations. avg, var, max
and mse are initially computed for each internal node.
For node n, max(n) = maximumf10; 10g = 10, while

mse(n) = 18:75 + (10 � 7:5)2 = 25. Maximum value
and mse are reported in Fig. 5.a for some internal nodes.
Nodes with minimum mse are then selected for collapsing
and their sub-ADDs replaced by maximum-value leaves. In
our example, node n is the best choice. The ADD after col-
lapsing is shown in Fig. 5.b.
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Figure 7: a) Relative error of RTL power estimators Con, Lin
and ADD for di�erent input statistics. Data refer to benchmark
circuit cm85. b) Trade-o�s between accuracy and size of the
RTL power model of circuit cm85.

3.1 Process 
ow

Approximations can be performed at any time dur-
ing the construction of the ADD of the switching capaci-
tance. This is due to the iterative implementation of Eq.
(4). The pseudo-code of the main loop is reported in Fig.
6. At each step, the contribution of a new gate is com-
puted and added to the overall function (C). Both C
and its partial contributions (denoted by deltaC in Fig.
6) are represented by ADDs. Whenever the size of an
ADD exceeds the maximum allowed value (MAX) the ap-
proximation routine is called to bring its size back un-
der the limit. Since the function to be approximated is
always a switching capacitance, the error induced to the
model can be always controlled. Moreover, since the only
operator possibly applied to ADDs after node collapsing
is the arithmetic addition (add sum), the same strategy
may be used for local and global approximations. The
respect of the global strategy is guaranteed by the fol-
lowing properties: avg(a) + avg(b) = avg(a + b) and
max(a) + max(b) � max(a + b), that hold for any pair
of discrete functions a and b.

4 Experimental results
The algorithms described in this paper were imple-

mented in C using the CUDD package for symbolic ma-
nipulation of Boolean and discrete functions [11]. Exper-
iments were run on benchmark circuits from the MCNC
suite [12]. Gate-level netlists were obtained by mapping
the circuits on a test gate library. Input capacitances of
fan-out gates were used as load capacitances for the driving
ones.

We report the results of three sets of experiments. The
�rst one is a case study (based on benchmark circuit cm85)
aimed at exploring the modeling trade-o� enabled by our
approach. The second and third ones are extensive tests
performed on several benchmarks to evaluate the accuracy
achieved on average power estimates and the e�ectiveness
of pattern-dependent upper bounds, respectively.

Two characterization-based power models are used for
comparison: a constant average estimator (denoted by
Con) and a linear model (denoted by Lin). Lin expresses
power consumption as a linear function of input transi-
tions: P = c0 + c1a1 + ::: + cnan, where aj = xij � x

f

j

and cj are �tting coe�cients. For each benchmark, both
models were characterized to �t the results of a zero-delay
gate-level simulation performed with a random input se-
quence with 0.5 average signal and transition probabilities.

We use the average signal probability (sp) and the aver-
age transition probability (st) to represent input statistics.
For each model, the relative error on average power es-
timates is a function RE(sp; st). To evaluate RE(sp; st)
we repeatedly ran concurrent RTL and gate-level simula-
tions with random sequences of 10000 input vectors with
di�erent values of sp and st.

For benchmark circuit cm85, RE is plotted in Fig. 7.a
as a function of st (for sp = 0:5). The strong depen-
dence on input statistics is evident for both Lin and Con:
while their in-sample error is below 10% (for st around
0.5), the out-of-sample error is much higher and it be-
comes larger than 100% when st < 0:2. In contrast, the
accuracy achieved by our model is almost independent of
st, as shown in Fig. 7.a by the solid-line curve labeled ADD.
Incidentally, we remark that an upper bound of 500 ADD
nodes was used during the construction of the model. The
unbounded model would have more than 10000 nodes and
it would �t exactly the results of gate-level simulations
regardless of input statistics (i.e., ER(sp; st) = 0 8 sp; st).

We call average relative error (ARE) the average value
of RE(sp; st) over all simulation runs and we use it to
represent the quality of RTL power models in terms of
accuracy and robustness. For benchmark circuit cm85, we
obtained ARE = 518:7% for Con, ARE = 195:2% for Lin
and ARE = 5:7% for ADD.

The approximations described in Section 3 provide a
wide range of trade-o� between the quality and the size of
the RTL power models. Fig. 7.b shows the ARE of ADD-
based power models of di�erent sizes for cm85. Though the
exact representation of C(xi;xf ) would require an ADD
with more than 10000 nodes, it is worth noting that ADDs
with 10 or 5 nodes are su�cient to achieve power esti-
mates with ARE below 20% (i.e., one order of magnitude
smaller than the ARE of a linear model with 12 �tting
coe�cients).

Experimental results on benchmark circuits are re-
ported in Table 1. The name of the circuit, the number
of inputs (n) and the number of gates (N) are reported
in the �rst three columns. Columns four to eight refer to
average power estimates. The AREs provided by constant
(Con) and linear (Lin) estimators are reported in columns
four and �ve for comparison. The ARE of our analytical
model (ADD) is reported in column six. It is around 10
times smaller than that of linear estimators and 50 times
smaller than that of constant ones. The constraint on the
maximum number of ADD nodes (MAX) used during the
construction of the model is shown in column seven. The
general criterion used for choosing the value of MAX was
that of making the size of the power model for a unit com-
parable with that of its functional description. The CPU
time (in seconds) spent for building the model on a SUN
UltraSparc 2 is reported in column eight.

The last four columns of Table 1 refer to conservative
upper bounds of power consumption. Results are reported
in terms of average relative error on maximum power esti-
mates. For each simulation run, the maximum value pro-
vided by the upper bound was compared with the maxi-
mum value provided by gate-level simulation and the rel-
ative error (RE) was computed. As for the average power
estimates, the ARE was evaluated as the average of RE
over several simulation runs with di�erent input statistics.
Columns nine and ten report the average error made by a



Benchmark Average estimators Upper bounds
circuit ARE (%) Model ARE (%) Model

name n N Con Lin ADD MAX CPU Con ADD MAX CPU
alu2 10 252 464.8 135.7 4.8 1000 496 154.0 21.0 5000 2766
alu4 14 460 465.1 242.5 7.8 2000 5087 201.0 59.2 15000 6470
cmb 16 34 585.7 88.9 10.7 200 12 237.1 47.0 1000 9
cm150 21 46 647.3 270.4 12.2 1000 664 193.0 47.6 2000 30
cm85 11 31 518.7 195.2 5.7 500 9 167.8 30.9 500 5.6
comp 32 93 460.9 193.8 15.0 5000 1614 211.6 54.9 10000 596
decod 5 23 812.6 80.2 3.2 200 5 156.1 4.6 200 2
k2 45 1206 622.5 78.5 14.3 10000 7511 188.6 2.1 10000 4375
mux 21 61 596.8 161.1 18.7 1000 571 167.9 43.9 5000 92
parity 16 36 316.5 219.0 6.8 3000 98.4 177.3 37.9 500 7
pcle 19 45 591.0 248.6 8.0 5000 281 186.1 40.9 10000 70
x1 49 228 682.8 200.7 12.3 1000 9505 318.9 56.7 50000 10143
x2 10 40 738.4 204.9 8.9 200 15 138.7 10.3 2500 22

Table 1: Experimental results.

constant maximum estimator (Con) and by our pattern-
dependent upper bound (ADD), respectively. As a con-
stant estimator we used the maximum value of the pattern-
dependent upper bound. No linear models were used for
comparison since they do not provide conservative bounds.
The ARE of the constant estimator is always much larger
than 100%, while the error made by ADD is always smaller
than 60%. Moreover, pattern-dependent upper bounds of
several units can be e�ectively composed to provide signif-
icant upper bounds for complex systems described at the
RT level. The maximum allowed ADD size and the CPU
time are reported in the last two columns.

For some circuits (e.g., C6288) ADDs with more than
100000 nodes were required to bring the ARE below 30%.
This is an inherent limitation of the ADD-based represen-
tation, whose complexity strongly depends on the func-
tional and structural properties of the circuit. Though our
approximation strategy can in principle be used to keep
ADDs as small as desired, when the approximation be-
comes too aggressive it may lead to large errors, compara-
ble to those of traditional RTL models. Overcoming this
limitation is the target of our on-going work.

5 Conclusions
RTL power models based on characterization have two

main drawbacks: i) their accuracy strongly depends on
the input statistics, and ii) they do not provide worst-case
information.

To overcome these limitations we have presented an an-
alytical approach that does not require characterization.
The power consumption of a combinational macro is ex-
pressed in terms of its internal switching capacitance. A
pattern-dependent RTL model for the switching capaci-
tance of the macro is automatically constructed during
a traversal of its gate-level netlist. Since only structural
information is exploited, the accuracy of the model does
not depend on input statistics. Several approximation cri-
teria can be applied during model construction in order
to trade o� accuracy for complexity. In particular, con-
servative approximations can be used to provide reliable
pattern-dependent upper bounds.

We have presented the key ideas, outlined the main al-
gorithms and discussed the experimental results obtained
on benchmark circuits. In average, analytical models pro-
vide power estimates with relative errors more than 10
times smaller than those provided by pre-characterized

constant and linear estimators.
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