
Power Estimation of Behavioral Descriptions

Fabrizio Ferrandi � Franco Fummi � Enrico Macii z Massimo Poncino z Donatella Sciuto �

� Politecnico di Milano

Dip. di Elettronica e Informazione

Milano, ITALY 20133

z Politecnico di Torino

Dip. di Automatica e Informatica

Torino, ITALY 10129

Abstract

This paper presents a methodology for power estimation of de-

signs described at the behavioral-level as the interconnection of

functional modules. The input/output behavior of each module

is implicitly stored using BDDs, and the power consumed by

the network is estimated using a novel and accurate entropy-

based approach. As a demonstration example, we have used the

proposed power estimation technique to evaluate and compare

the e�ects of some architectural transformations applied to a

reference design speci�cation on the power dissipation of the

corresponding implementations.

1 Introduction

The increased degree of automation of industrial design frame-

works has produced a substantial change in the way digital ICs

are developed by the semiconductor companies. Today's sys-

tems are designed starting from speci�cations given at a very

high level of abstraction (architectural or behavioral). This is

because existing EDA tools are able to accept, as input, the

description of a design expressed through an high-level HDL

(e.g., VHDL, Verilog), and to automatically produce the cor-

responding low-level (gate or transistor) implementation, with

very limited need of human intervention.

Since it is widely recognized that power consumption has be-

come a critical issue in the development of digital systems |

consider, for example, its impact on circuit complexity, speed,

and manufacturing costs | designers from the semiconductor

industry are demanding to the EDA vendors the development

of computer programs and tools that allow to explicitly con-

trol the power budget during the various phases of the design

process. This is because the power savings obtainable through

automatic optimization have appeared to be less expensive than

the ones achievable by resorting to technological choices (e.g.,

process and supply-voltage scaling).

The high-level section of a typical power-oriented design ow is

depicted in Figure 1. Given an initial speci�cation of the system

behavior, several synthesis and optimization steps are required

to generate a power-e�cient netlist of logic gates. In order to

make the search of the optimal solution as e�ective as possible,

at each level of abstraction an \improvement loop" is used. In

such a loop, a power estimator ranks the various design options,

thus helping in selecting the one which is potentially more e�ec-

tive in terms of power. Obviously, collecting the feedback on the

impact of the di�erent choices on a level-by-level basis, instead

of just at the very end of the ow (i.e., at the gate-level) allows

a shorter development time. On the other hand, this paradigm

requires the availabilityof power estimation tools which can pro-

vide accurate and reliable power �gures at the various levels of

abstraction.

 Logic
 Synthesis
 and
Optimization

 Behavioral
 Synthesis
 and
Optimization

Behavioral
Description

 Power−Driven
 Behavioral
Transformations

Gate−Level
Description

 RT−Level
 Power Estim.

 Gate−Level
 Power Estim.

 Behavioral
 Level
 Power Estim.

Low−Power
Behavioral
Description

 RT−Level
Description

Figure 1: Low-Power Design Flow.

Most of the research on power estimation has initially focussed

on gate and transistor levels; here, due to the available infor-

mation on the structure and the macroscopic parameters of the

devices (e.g., area, delay, capacitance), absolute power estimates

can be determined; satisfactory methods, in terms of the accu-

racy in the estimation they can provide, have been obtained (see

[1] for a detailed review).

More recently, some techniques for behavioral and architectural

power estimation have been proposed (see [2] for a comprehen-

sive survey). These techniques are usually based on the con-

struction and the evaluation of abstract power models. This

information is supposed to guide the designer in exploring the

relative impact of his/her choices on the quality of the �nal

design rather than to provide absolute power data. This is be-

cause, at the high levels of abstraction, the limited knowledge

of the �nal structure of the design prevents the possibility of

extracting meaningful power values.

In this work, we propose a novel approach to the problem of

estimating the power dissipated by a digital design described at

the behavioral-level as a network of interconnected functional

modules. The I/O characteristics of the modules are implicitly

stored using BDDs, and used as the input for a new and very

e�cient entropy-based power estimator. Notice that the term

\behavioral" in this context has the meaning of \cycle accu-

rate", that is, it indicates that only the I/O characteristics of

the modules in the description are available.

We show how the proposedmethodologycan be used to estimate

the power consumption of datapath-intensive designs, where the

relative power �gures are used for selecting design alternatives

at the architectural-level, and we present some results to demon-

strate the applicability of our approach to meaningful examples.

2 Power Estimation

2.1 Background and Previous Work

High-level power estimation approaches essentially belong to

two categories: Analytical and empirical [2]. Analytical meth-

ods try to build a power model that can be expressed as a closed

formula, in terms of a (possibly limited) number of macroscopic

parameters. Parameters may include switching and statistical

information, as well as technological quantities.

Empirical methods are based on the so-called macro-modeling

approach. The power model still includes some parameters, gen-

erally of the same type as those used for the analytical models;

however, they are now \modulated" by a set of coe�cients. The

actualmodel is evaluatedby �rst selecting a proper model struc-

ture (e.g., linear), and eventually by measuring the actual power

(e.g., through accurate simulation) for di�erent assignments of

the parameters. These assignments yield a set of points in a

bi-dimensional space (actual power vs. power from the model)

that can be inter- or extra-polated to get the �nal equation of

the model.

Empirical models are usually preferable; in fact, thanks to their

derivation from the actual power measures, they are more accu-

rate. However, they tend to be complex in terms of the number

of required parameters; thus, they may take quite long char-

acterization times. Analytical models, on the other hand, are

normally less accurate. However, they are much simpler than

the empirical ones, and they can be used for black-box estima-

tion, that is, in the cases where little or no information about

the internal structure of the modules is available, or when (as

for libraries of soft-macros) synthesis can not be used before the

characterization.

The methodology we propose features a \mixed" solution: On

the one hand, it sticks to an entropy-based analytical model for

the switching activity component of the power; on the other

hand, it resorts to an empirical model, still entropy-based, for

capacitance estimation. The advantages of our approach are the

following:

� Low complexity: The proposed models always have at

most four parameters;

� Abstraction: The parameters only concern the I/O be-

havior of the modules, and they do not refer to the inter-

nal structure;

� Accuracy: Using empirical capacitance models sensibly

improves the quality of the estimates with respect to pre-

vious entropy-based approaches.

2.2 Entropy and Power Dissipation

2.2.1 Power Dissipation Model

At the gate-level, the average power consumption of a static

CMOS gate is given by:

P
g

avg =
1

2
�Cg �

V 2
dd

TC
� Eg =

1

2
�Cg � V

2
dd
�Dg; (1)

where Cg is the capacitance of the output load, Vdd is the supply

voltage, TC is the global clock period, and Eg is the average

number of gate output transitions per clock cycle. According to

the notation of [3], factors Eg and 1
T
C

can be lumped together

to get the transition density Dg. The total average power is

then obtained by summing the contributions of Equation 1 over

all the N gates in the circuit:

Pavg =
1

2
� V 2

dd
�

NX

i=1

Ci �Di: (2)

At the behavioral-level, some approximations must be intro-

duced to account for the limited knowledge of the circuit struc-

ture. At this level, the interest goes more into an average esti-

mate per module, rather than into a gate-by-gate information.

Therefore, Equation 1 can be rewritten as [3]:

Pavg / D �Ctot; (3)

where D = 1
N

P
N

i=1
Di and Ctot =

P
N

i=1
Ci represent the av-

erage transition density and the total capacitance of the module,

respectively.

The key point is to �nd some simpli�cations that allow to ex-

press D and Ctot as functions of only the I/O behavior of each

module, independently of the internal structure of the imple-

mentation.

2.2.2 Entropy of a Logic Function

Given a n-input, m-output Boolean function, F (f1; : : : ; fm),

where fk = fk(X) = fk(x1; : : : ; xn), k = 1; : : :m, the input

entropy of F , denoted as HI(F), is given by:

HI(F) =

2nX

i=1

pi log2
1

pi
; (4)

where pi indicates the probability of the input vector X to take

on the value Xi.

The output entropy of function F , denoted as HO(F), is given

by:

HO(F) =

2mX

i=1

qi log2
1

qi
; (5)

where qi indicates the probabilityof the output vector to assume

the value Oi. Obviously, qi = nO
i
=2n, where nO

i
denotes the

number of occurrences of the vector Oi in the truth table of F .

It can be noticed that HO(F) < HI(F); this is true in general,

that is, given any Boolean function, F , we have that HO(F) �
HI(F) [4].

2.2.3 Computing the Average Transition Density

In [3, 5], it has been shown that the average density D of a

module can be approximated as:

D = k � H (6)

where k represents a proportionality factor, and H represents

the average entropy for the module.

H can be computed by abstracting information obtained from

a gate-level implementation. By introducing di�erent approxi-

mations, the two methods result in di�erent values for H. The
simplest one, given in [3], determines H for a module with n

inputs and m outputs as follows:

H =
2

3(n+m)
(HI +HO) (7)

where HI and HO are the input and output entropies of the

module, and they are calculatedaccounting for the input/output

statistics.

Although the formula above allows to correlate the statistical

behavior of a module to the corresponding I/O behavior, com-

putingHO directly from the de�nition of Equation 5 is infeasible

for reasonably large circuits; similarly, the computation of HI

gets di�cult for a module whose input statistics depend on the

output statistics of some other modules.

In [3, 5], this problem has been solved by simply assuming the

statistical independence of the module outputs; the output en-

tropy of a multi-output module is thus computed as the sum of

the entropies associated to each output.

A symbolicmethod for computing the output entropy of a multi-

output circuit without resorting to the de�nition of Equation 5

has been proposed in [6]. The technique can determine exact

entropy values for functions of reasonable size; however, when

the computational e�ort gets too high, it is possible to trade

o� accuracy for time by selectively grouping outputs in clusters,

by computing and summing the entropy contributions of each

cluster, and thus obtaining an approximate entropy result [7].

2.2.4 Computing the Total Capacitance

Accurate capacitance values are obviously available only af-

ter mapping the circuit onto a speci�ed gate-library. At the

technology-independent level, under the simplifying assumption

that each transistor in the �nal implementation will contribute

the same load, a reasonable approximation can be obtained by

relating the capacitance of a module to the number of literals

in the gate-level realization.

To express this relation in the entropy domain, we can use an

empirical result reported in [8]. We have that, for a n-input

Boolean function (n � 10):

Ctot /
2n

n
�HO (8)

since the number of literals of the function is proportional to
2n

n
HO.

2.3 Power Estimation Methodology

The ENTEST program carries out the power estimation of an in-

terconnection of datapath modules described with the arc for-

mat. This format provides a very simple syntax for specifying

an arbitrary interconnection of both combinational and sequen-

tial modules. In our context, arc descriptions are automatically

generated starting from an algorithmic description of the design

given in VHDL [9].

Besides the speci�cation of the system topology, an arc descrip-

tion also contains, for each module, pointers to information of

two types:

� Structural, when available, provided through a structural

description language; currently, only the blif language

is supported;

� Functional, for behavioral descriptions, stored as BDDs.

More precisely, for each module, one BDD is stored for

each output.

ENTEST also accepts an input probability �le, to be used for

entropy computation. This �le contains the statistics of the ex-

ternal inputs of the overall system, given as probabilities for

the individual signals. If no �le is provided, the external in-

puts are assumed to be statistically independent (i.e., to have

a random distribution). Notice that, in a more general con-

text, these signal probabilities can be extracted from typical

input streams determined through system-level simulation or

provided together with the simulatable system description. Fi-

nally, ENTEST also reads a target gate library that contains the

informationgathered during the characterizationphase (see Sec-

tion 2.3.3), namely, the coe�cients of the power model for the

given library. Figure 2 shows a block diagram describing the

input/output interface of ENTEST.

 ENTEST

Probability
 File

 ARC
Description

 Power
Estimate

 Gate
Library

Figure 2: Behavioral Power Estimator.

Starting from the arc description and the probability �le, the

program proceeds as follows. First, the network of intercon-

nected modules is traversed breadth-�rst, starting from the ex-

ternal inputs. This is equivalent to levelizing the network. Then,

the implicit algorithm of [6] is applied, on a module-by-module

basis and following the breadth-�rst order, to compute exact

input and output entropies for each module. The choice of con-

sidering modules in breadth-�rst order is mandatory to guaran-

tee that the input statistics for each module are known before

computing the corresponding entropy value.

When the exact computation for some modules fails, due to size

reasons, approximate entropy values are determined for such

modules; this is done as in [7], that is, by partitioning the set of

outputs of each module in clusters of manageable size. The par-

titioning algorithm tries to group together outputs havingmaxi-

mal pairwise correlation, i.e., maximal similarity in the Boolean

space [10].

A further problem to be considered is that the input statistics

of modules inside the network can not be assumed to be known

a priori as in the case of external inputs. Therefore, since the

topology of the network of modules introduces correlation be-

tween signals, the input statistics of each module change, and

must be derived from the output statistics of the upstreammod-

ules. To do this, a specialized version of the procedure of [6]

must be used.

The above approach for average entropy computation sensibly

improves over previous methods [3, 5] in two main directions:

First, an exact entropy value (or a more accurate approxima-

tion) is calculated for each module; second, entropy values are

computed according to the actual input statistics of the mod-

ules, rather than considering each module in isolation, as in

previous contributions. The latter assumption is a signi�cant

source of errors, since the formula which gives the average en-

tropy H (Equation 7) also depends on the input entropy.

2.3.1 Switching Activity Estimation

Estimation of the switching activity simply consists of plugging

the exact entropies, or the entropy upper bounds, computed as

discussed in the previous section, into a model similar to that

of Equation 7.

From Equation 3, the estimate of the transition density is as-

sumed to be proportional to both capacitance value and average

entropy. However, since the average entropy H, as in Equa-

tion 7, is a number between 0 and 1, the impact of entropy (i.e.,

switching activity) on the product H�A can be thought of as a

factor that \modulates" the capacitance values. Since the latter

is a number (and not a probability), we have chosen a simple an-

alytical model as that of Equation 7 instead of developing a new

model for average entropy (or switching activity); conversely, we

have elaborated a more accurate model for capacitance estima-

tion, since this has proved to be the weakest point of existing

entropy-based power estimation approaches.

2.3.2 Capacitance Estimation

As already mentioned, the problem of estimating the capaci-

tance can be reduced to that of predicting the area of the im-

plementation by establishing a relation between the number of

literals and the input/output behavior, as shown in Equation 8.

In [3], it has been observed that this model is quite inadequate

for typical VLSI functions. For example, a 32-input module

should require approximately 227 literals to be implemented,

which is clearly an unrealistic estimate. Improved solutions to

overcome the limitations of this model [11] did not provide a

substantial breakthrough in the re�nement of the estimate.

Unlike similar methods, the ENTEST program implements an ef-

fective area estimation procedure that exploits the additional

information contained in the BDD representation. Although

it is common belief that there is no clear correlation between

the size of a gate-level implementation and the size (i.e., the

number of nodes) of the corresponding BDD representation, we

have used the latter information as a link between the size of

the implementation and its representation. The rationale be-

hind this idea comes from the following observation: Since we

consider multi-output circuits, there is a considerable amount

of sharing of the internal BDD nodes, which somehow resem-

bles the sharing of logic in the multi-level logic implementation.

Furthermore, since we can think of each BDD node as a 2-to-1

multiplexor, with the corresponding variable as control input,

we can roughly claim that each multiplexor corresponds to a

�xed number of gates in the library. Based on this intuition,

the model we propose for estimating the total capacitance is:

Ctot = a �Nnodes �
HO

m
+ b (9)

where the exponential factor in Equation 8 has been replaced

by the more realistic value of the numberNnodes of nodes of the

BDD of the multiple-output function of the module. Parameter

m is the number of module outputs, and it is used to normalize

the contribution of HO. The reason why Equation 8 overesti-

mates the size of the implementation can be found in the factor
2n

n
, exponential in the number of inputs, that represents the

worst-case size of the circuit, as well as the worst-case number

of BDD nodes.

The coe�cients of the linear model of Equation 9 have been

determinedempirically by resorting tomacro-modeling; we have

selected a large set of benchmark circuits, optimized them for

minimum-area, and mapped them onto a library of gates. Then,

we have plotted the number of gates of the mapped network and

the corresponding number of BDD nodes in a two-dimensional

space, and we have used least mean square (LMS) regression to

derive the values of the coe�cients a and b.

As shown in the diagram of Figure 3, there is a clear linear re-

lation (in logarithmic scale) between the two values. There are

a few points in the diagram for which the LMS line yields sig-

ni�cant errors. The analysis of these cases has shown that the

singularitiesare due to very particular functionswhich can be in-

deed classi�ed as exceptions. The points below the interpolation

line represent the single-output functions of the benchmark set;

for the reason described above, the limited sharing of nodes with

the BDDs of other outputs can not model properly the sharing

of logic as imposed by the optimization step. The points above

the line represent functions for which the BDD representation

is way smaller than the logic implementation. Since the circuits

we expect to deal with are datapath modules, we believe that

they will fall in the class of \regular" circuits; then, they will be

accurately modeled by the estimator.

10

100

1000

10000

1 10 100 1000 10000

A
ct

ua
l A

re
a

Estimated Area

""

Figure 3: Estimated vs. Actual Area.

One potential drawback of the model above is the sensitivity of

the BDD size to the input variable ordering. BDDs with dif-

ferent orderings, but representing the same function, may have

totally di�erent node counts. Then, since the modules we are

considering usually have more than one output, a good order-

ing for one BDD may be bad for another one, and vice versa.

But what a dynamic reordering procedure looks for is an order-

ing for which the size of the overall shared BDD is minimized;

thus, the impact of the variable ordering on the model is par-

tially smoothed out by the fact that the modules have multi-

ple outputs. Nevertheless, to avoid the occurrence of undesired

situations, the parameter Nnodes in Equation 9 is actually a

weighted average between the size of the BDD as given in the

original module description and the minimum size as obtained

after sifting-based reordering.

Finally, notice that the values on the y-axis in Figure 3 depend

on the choice of the library of gates used for the characteriza-

tion process, and such a choice may a�ect the quality of the

estimates. As a matter of fact, each available library has a dif-

ferent pair of the (a; b) coe�cients, which are determined as

described above, once and for all, when the selected library is

loaded for the �rst time. The plot in Figure 3 is referred to a

simple 2-input NAND-NOR library.

2.3.3 Power Estimation

Once both entropy and capacitance estimations are available,

their values are plugged into the model of Equation 3. In order

to correlate values of estimated power to actual power, a proper

proportionality factor must be computed. The purpose is to de-

rive an equation which works as an estimator, expressing power

consumed by a module as a function of the input and output

entropies, or indirectly, of the H � C product.

Similarly to the case of capacitance, a LMS regression is ap-

plied to the diagram of the estimated power versus the actual

power. Actual power here is referred to estimates determined

using Synopsys Design Power. Figure 4 shows the diagram ob-

tained using the same set of benchmarks as the one used for

capacitance estimation.

The LMS regression line (in log scale) can be directly used as

an estimator for the generic modules instantiated in a given

architecture.

As an example, for the reference 2-input NAND-NOR library

used in the experiments, the LMS in logarithmic scale yields

the following estimator equation: Pest = 217:7 �x0:737, where x

denotes the independent variable, that is, the H � C product.

1000

10000

100000

1000 10000 100000

A
ct

ua
l P

ow
er

Estimated Power

""

Figure 4: Estimated vs. Actual Power.

3 Experimental Results

In order to evaluate the e�ectiveness of the proposed power esti-

mation methodology, we have experimented with some designs

describedat the behavioral-level as networks of interactingmod-

ules. We report the results we have obtained on two of them.

The �rst one is the di�erential equation solver taken from the

HLSynth'92 benchmarks suite [12]; the second example is an

industrial microcontroller described as a re-con�gurable macro.

For each design, di�erent architectures have been considered

starting from the reference speci�cation, and the corresponding

power estimates have been used to rank the various solutions.

Concerning the di�erential equation solver, the �rst variant to

the reference architecture has been obtained by modifying the

expression of a signal in the description through rewriting. The

new datapath, denoted as diffeq-a, uses two less modules than

the reference speci�cation, and it is thus expected to consume

less power. The second alternative, indicated as diffeq-b, has

been created by replacing a multiplication with a shift-and-

add operation. This type of transformation usually helps in

reducing power consumption [13]. The last solution, indicated

as diffeq-c, is generated by increasing the amount of sharing

across the modules, which reduces the amount of hardware units

used. In particular, a sub-expression common to two signals has

been factored. Again, this modi�cation should result in a de-

crease in power, due to the use of fewer computational units.

Regarding the industrial microcontroller, two architectures have

been derived from the reference one by assigning di�erent values

to some of the con�guration parameters. In particular, the �rst

solution, denoted as micro-a, has been obtained by increasing

from 16 to 32 the bit width of the status register. The second ar-

chitecture, called micro-b, has been obtainedby decreasing from

8 to 4 the number of interrupt request lines that are managed

by the interrupt controller. Clearly, while the �rst architecture

is expected to be more power consuming than the reference one,

the second alternative should be more power e�cient.

The relative power results with respect to the reference solutions

are reported on the left-hand side of Table 1 (column ENTEST).

The data con�rm the expected trends of relative power.

In order to validate the power �gures determined at the high

level, each architecture has been synthesized onto a library of

gates, and the actual power dissipated by each gate-level im-

plementation has been estimated using Design Power. The so

obtained results, again expressed in relative terms with respect

to the reference circuit descriptions, are reported on the right-

hand side of Table 1 (column Design Power).

The data in the table show, with surprisingaccuracy, that all the

trends of relative power have been conservatively preserved, as

it can be observed by comparing the values in the two columns

for a given design.

Design Architecture Relative Power [%]
ENTEST Design Power

di�eq di�eq-ref 100.0 100.0

di�eq-a 81.0 75.8

di�eq-b 92.3 93.4

di�eq-c 93.1 95.4

micro micro-ref 100.0 100.0

micro-a 142.0 150.8

micro-b 78.1 76.4

Table 1: Relative Power Results.

4 Conclusions

We have presented a method for estimating the power dissi-

pated by a behavioral description given as the interconnection

of modules. The technique relies on an improved entropy-based

approach for switching activity and capacitance evaluation.

The proposed method is particularly suited for power estima-

tion of datapath-intensive systems, where the estimates are used

for selecting design alternatives at the behavioral-level. Exper-

iments carried out on some realistic designs have shown the ef-

fectiveness of the approach as a relative indicator; our estimates

ranked the descriptions resulting from the various architectural

transformations in the same order as those obtained with post-

synthesis estimates.

Acknowledgments

We wish to thank CSELT and SGS-Thomson for providing us

with the micro benchmark.

References
[1] F. N. Najm, \A Survey of Power Estimation Techniques in VLSI

Circuits," IEEE Trans. on VLSI Systems, Vol. 2, No. 4, pp. 446-455,

December 1994.

[2] P. Landman, \High-Level Power Estimation," ISLPED-96, pp. 29-

35, Aug. 1996.

[3] M. Nemani, F. Najm, \Towards a High-Level Power Estimation

Capability," IEEE Trans. on CAD, Vol. 15, No. 6, pp. 588-598,

Jun. 1996.

[4] T. M. Cover, J. A. Thomas, Elements of Information Science, New

York, NY, John Wiley and Sons, 1991.

[5] D. Marculescu, R. Marculescu, M. Pedram, \Information Theoretic

Measures For Power Analysis," IEEE Trans. on CAD, Vol. 15, No. 6,

pp. 599-609, Jun. 1996.

[6] E. Macii, M. Poncino, \Exact Computation of the Entropy of a Logic

Circuit," GLS-VLSI-96, pp. 123-128, Mar. 1996.

[7] A. Lioy, E. Macii, M. Poncino, M. Rossello, \Accurate Entropy Cal-

culation for Large Logic Circuits Based on Output Clustering," GLS-

VLSI-97, pp. 70-75, Mar. 1997.

[8] K. T. Cheng, V. D. Agrawal, \An Entropy Measure for the Com-

plexity of Multi-Output Boolean Functions," DAC-27, pp. 302-305,

Jun. 1990.

[9] G. Buonanno, F. Ferrandi, L. Ferrandi, F. Fummi, D. Sciuto, \How

an Evolving Fault Model Improves the Behavioral Test Generation,"

GLS-VLSI-97, pp. 124-129, Mar. 1997.

[10] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, F. Somenzi, \Au-

tomatic State Space Decomposition for Approximate FSM Traver-

sal Based on Circuit Structural Analysis," IEEE Trans. on CAD,

Vol. 15, No. 12, pp. 1451-1464, Dec. 1996.

[11] M. Nemani, F. Najm, \High-Level Power Estimation and the
Area Complexity of Boolean Functions," ISLPED-96, pp. 329-334,

Aug. 1996.

[12] High-Level Synthesis Benchmarks, CAD Benchmarking Laboratory

(CBL), North Carolina State University, 1992.

[13] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, R.

W. Brodersen, \Optimizing Power Using Transformations," IEEE

Trans. on CAD, Von. 14, No. 1, pp 12-31, Jan. 1995.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

