
On Removing Multiple Redundancies in Combinational Circuits

Shih-Chieh Chang David Ihsin Cheng Ching-Wei Yeh

National Chung Cheng Univ. Exemplar Logic Inc. National Chung Cheng Univ.

Chia-Yi, Taiwan, R.O.C. San Jose, CA 95131 Chia-Yi, Taiwan, R.O.C.

n1

n2

n4 n5
n6

n7

n3

w1

w2
w3

Figure 1: 3 redundant wires

Abstract
1

Redundancy removal is an important step in combina-
tional logic optimization. After a redundant wire is re-
moved, other originally redundant wires may become irre-
dundant, and some originally irredundant wires may be-
come redundant. When multiple redundancies exist in a
circuit, this creates a problem where we need to decide
which redundancy to remove �rst. In this paper, we present
an analysis and a very e�cient heuristic to deal with mul-
tiple redundancies. We associate with each redundant wire
a Boolean function that describes how the wire can remain
redundant after removing other wires. When multiple re-
dundancies exist, this set of Boolean functions character-
izes the global relationship among redundancies.

1 Introduction
A redundant wire in a circuit is a wire whose removal

does not change the circuit's functionality. Although not
a�ecting the behavior of a circuit's primary outputs, re-
moving a redundancy does change the functionalities of
internal nodes. As a result, after removing a redundancy,
other originally redundant wires may become irredundant,
and some originally irredundant wires may become redun-
dant. When multiple redundancies exist in a circuit, this
creates a problem where we need to decide which redun-
dancy to remove �rst. For example, consider the circuit in
Fig. 1, where wires w1, w2, and w3 are redundant. If w3

is removed �rst, w1 and w2 are no longer redundant and
hence cannot be further removed. On the other hand, if
w1 is removed �rst, w2 is still redundant in the new cir-
cuit and hence can be further removed. In this example,
removing w1 and w2 would give us a smaller circuit than
if we remove w3 alone.

Multiple redundancies exist not only unintentionally
but also intentionally. Many logic optimization algorithms
(e.g.: [3][4][5]) use the philosophy of �rst adding some

1Supported in part by a grant from the National Science
Council of R.O.C. under contract no. NSC-87-2215-E-194-008.

redundancies and then removing other redundancies else-
where, with the goal that the removed ones give us more
\gains" than the added ones. In this type of intentionally
introduced redundancies, removing multiple redundancies
in a good order is very important to the �nal quality of
the circuits.

In this paper, we present both a theoretical analysis and
a very e�cient heuristic to deal with multiple redundan-
cies. In this paper we tackle the redundancy removal prob-
lem when multiple redundancies are present. We associate
a Boolean function, termed redundancy assurance func-
tion, with each redundant wire. The redundancy assurance
function of a redundant wire describes how the redundant
wire can remain its redundancy when some other wires are
removed. For example, consider again the redundant wires
w1, w2, and w3 in Fig. 1. We say that the redundancy
assurance function of wire w3 is Rw3

=pw1
pw2

, where vari-
able pwi (pwi) represents the presence (absence) of wire wi.
The meaning of this redundancy assurance function Rw3

is that, if w1 and w2 are both present in the circuit, w3

remains redundant. In contrast, the redundancy assurance
functions of w1 and w2 are Rw1

=Rw2
=pw3

, meaning that
w1 and w2 are both redundant as long as w3 is kept in the
circuit. We can see that after each redundant wire's redun-
dancy assurance function is calculated, we have a global
view of the correlation among all the redundant wires.

2 Background review
For simplicity, throughout this paper we only consider

circuits with AND, OR, and INV gates. There are two
kinds of redundancies, the stuck-at-1 redundancy and the
stuck-at-0 redundancy. We say that a wire w is stuck-
at-1(0) redundant, or simply redundant when the context
is clear, if w's stuck-at-1(0) fault is untestable[1]. Let w
be a wire in a given circuit. When wire w is stuck-at-
1(0) redundant, we say we can remove w because we can
replace w with a constant 1(0), in which case we also say
w is absent or not present.

2.1 A precise algorithm

Given a circuit, let X = fx1; x2; � � � ; xpg be the set of
primary inputs and F = ff1; f2; � � � ; fqg be the set of pri-
mary outputs. We denote ni(X) as the function of an
internal node ni in terms of primary inputs, and denote
fi(X;wj) as the function of primary output fi in terms
of the primary inputs and wire wj. Also let Bvi

f be the
Boolean di�erence operator of function f with respect to
variable vi. In other words, Bvi

f = fvi=1 � fvi=0, where
fvi=1 and fvi=0 are the cofactor operator of function f

with respect to vi=1 and vi=0, respectively.



Assuming n is the driving node for a wire wj, it is well
known that wire wj is stuck-at-0 redundant if and only if

n(X) � [

qX
i=1

Bwj
fi(X;wj)] = 0: (1)

And similarly, wj is stuck-at-1 redundant if and only if

n(X) � [

qX
i=1

Bwj
fi(X;wj)] = 0: (2)

In equation 1, the �rst term n(X) characterizes the pri-
mary input combinations for activating the stuck-at-0
fault, and the second term

P
q

i=1
Bwj

fi(X;wj) character-
izes the primary input combinations for observing the fault
at any primary output. The AND of these two terms char-
acterizes all the test vectors at the primary inputs that
can detect this fault. For stuck-at-1 fault, we just need to
complement the �rst term, as in Equation 2, since only the
activating condition needs to be inverted as compared to
a stuck-at-0 fault.

The above equations form an algorithm for determining
if a given wire is redundant. In terms of a whole circuit,
if we construct and check these equations for every wire,
we are guaranteed to �nd all redundancies. Note that the
above equations are a necessary and su�cient condition
for a wire to be redundant. We therefore say this algo-
rithm is precise, i.e., any wire identi�ed by the algorithm
as redundant is indeed redundant and any redundant wire
is guaranteed to be found by the algorithm. In practice,
however, we rarely use such an algorithm because we usu-
ally cannot a�ord constructing such equations due to the
space/time explosion problem of Boolean functions.

2.2 Heuristic

We review a well-known heuristic [1] for identifying re-
dundancy and also de�ne some terminology for later dis-
cussion. The dominators of a wire w is a set of nodes D
such that all the paths from w to any primary output have
to pass through all the nodes in D. Given a dominator n
of a wire w, the side inputs of dominator n are n's imme-
diate inputs not in the transitive fanout of wire w. The
value v of an input to a node is said to be controlling if
v determines the value of the node's output regardless of
the values of the other inputs. The controlling value is 1
for an OR gate and 0 for an AND gate. The inverse of
the controlling value is called noncontrolling or sensitizing
value.

To generate a test vector for a stuck-at-0 (stuck-at-1)
fault at a wire w, we must assign a value 1 (0) at the driv-
ing node of w to activate the fault. Furthermore, for the
fault to be observable at any primary output, we also must
assign the sensitizing values to all the side inputs of all the
dominators of wire w. To check for the redundancy of wire
w, we then check if these assignments are consistent, the
process of which is called implication.

3 Conceptual model
LetW = fw1; w2; � � � ; wng be the set of redundant wires

in a given circuit C. Without loss of generality, we only de-
�ne the redundancy assurance function for redundant wire
w1. The redundancy assurance function of w1, denoted by
Rw1

, is a Boolean function de�ned in terms of variables

X X

wi
p

1

0

C C’

wiwi
nj nj

n ’j

Figure 2: Local transformation

pw2
; � � � ; pwn , where pwi (pwi ) represents the presence (ab-

sence) of wire wi in circuit C. A minterm pw2
� � � pwn is in

the on-set of Rw1
if w1 is still redundant after removing all

wi's in fwi j pwi=0g and keeping all wi's in fwi j pwi=1g.

For example, in Fig. 1, the set of redundant wires are
W = fw1; w2; w3g. One can �nd that Rw3

(pw1
; pw2

) =
pw1

pw2
= f11g, which means that w3 is redundant if

w1 and w2 are both not removed. As another example,
Rw1

(pw2
; pw3

) = pw3
= f01; 11g, which means that w1 is

redundant if w3 is not removed. In this case, whether w2 is
present or not does not a�ect the redundancy of w1. Sim-
ilarly, one can �nd Rw2

(pw1
; pw3

) = pw3
= f01; 11g. We

can see that these redundancy assurance functions estab-
lish the relationship among redundancies.

3.1 A precise algorithm

Given a circuit C, let X = fx1; x2; � � � ; xpg be the set
of primary inputs and F = ff1; f2; � � � ; fqg be the set of
primary outputs. Also let W = fw1; w2; � � � ; wng be the
set of redundant wires in circuit C. We transform the
given circuit C to a new circuit C 0 by adding n primary
inputs P = fpw1

; pw2
; � � � ; pwng. For each redundant wire

wi, we locally perform the transformation shown inside
the dotted oval line in Fig. 2. The left side of Fig. 2
shows the original circuit C with redundant wire wi under
transformation and the right side shows the circuit C 0 after
the transformation. We �rst duplicate node nj , which is
driven by wire wi, to a new node n0

j . Then we remove
redundant wire wi only on node n0

j and keep nj intact.
Finally we add a 2-to-1 multiplexer to select between nj
and n0

j . The select line of the multiplexer is a new primary
input pwi , with pwi=1 selecting nj and pwi=0 selecting n

0

j.

We can easily see that each combination on the new pri-
mary inputs P = fpw1

; pw2
; � � � ; pwng in the transformed

circuit C 0 corresponds to a con�guration on the original
circuit C where all wires in fwi j pwi=0g are removed and
all wires in fwi j pwi=1g are kept intact. In our formula-
tion, some of these combinations on P may actually result
in a di�erent functionality on circuit C 0 compared with the
original circuit C. When all the newly added primary in-
put pwi 's are set to 1, the functionality of C 0 is guaranteed
to be identical to that of the original circuit C because all
the multiplexers are selecting the same connection as in
the original circuit C. To make sure our formulation does
not change circuit C's behavior, we express the function
of the primary outputs Fi's of C

0 in terms of the original
primary inputs X and the newly added primary inputs P ,
and we must have

qY
i=1

(Fi(X;P ) � fi(X)) = 1; (3)



where Fi's and fi's are the primary outputs in circuit C 0

and C, respectively, and � is the equivalence (or exclusive
NOR) operator. Since for all the combinations of the orig-
inal primary inputs X Equation 3 must hold, we apply the
concensus operator to Equation 3, and we have

L(P ) = 8X

qY
i=1

[Fi(X;P ) � fi(X)]; (4)

where 8 is the concensus operator, i.e., 8xi = fxi=0 �fxi=1.
L(P ) is a function in terms of only the newly added pri-
mary inputs P . Any minterm in L(P ) represents a con-
�guration that makes circuit C equivalent to circuit C 0

under any combination of the original primary input X.
Since pwi =0 means redundant wire wi can be removed,
the redundancy assurance function of a redundant wire wi

is then simply the cofactor with respect to pwi=0 of Equa-
tion 4. In other words,

Rwi
= Lpw

i
=0(P ) (5)

4 Heuristic
Like the case reviewed in Section 2.1, given a set of re-

dundant wires in a circuit, it is impractical to precisely cal-
culate the redundancy assurance functions. In this section
we present a very e�cient algorithm to approximate the
problem. We say that our algorithm is an approximation
in the sense that we will only �nd a subset of the on-set
minterms in the redundancy assurance function. For each
redundant wire w, this means that when the redundancy
assurance function Rw found by our approximation is 1,
w is indeed redundant, while when Rw is 0, we do not
know if w is redundant and would simply claim it as not
redundant. This is similar to the situation on redundancy
identi�cation of the heuristic reviewed in Section 2.2 versus
the precise algorithm reviewed in Section 2.1.

We �rst need to identify as many redundancies as possi-
ble before we tackle the problem of multiple redundancies.
We assume that some identi�cation process is done a priori.
For simplicity, we will present our multiple-redundancy
algorithm by assuming that this identi�cation process is
exactly the heuristic reviewed in Section 2.2. Although
presented with this particular redundancy identi�cation
technique in mind, the philosophy of our algorithm can be
easily generalized to many other redundancy identi�cation
and/or implication techniques.

We �rst discuss in more detail the heuristic we use for
identifying redundant wire. Let wire wi be the wire that
we want to perform stuck-at-v redundancy check. We �rst
assign the fault activating value v to the node driving wi

and assign the sensitizing values on the side inputs of the
dominators of wi. These assignments are the starting point
of the implication phase. Then we repeatly perform direct
implication on nodes having some values assigned. Direct
implication have four rules for AND gates, four rules for
OR gates, and two rules for INV gates. In Table 1, the �rst
column shows the rule names and the second column shows
the rules. Take Rule A1 in Table 1 as an example. Node
nm has two fanins, node nk through wire wi and node nl
through wire wj. If node nk is somehow assigned value 0,
then we imply that node nm must also be assigned value
0, as indicated by the arrow in the �gure inside the second

implication rule back propagation rule

A1 nk

nmnl

0
wi

wj 0

C(nm=0) = C(nk=0)pwi

A2

nk

nmnl

1
wi

wj 1
1

C(nm=1) = C(nk=1)C(nl=1)pwipwj
+ C(nk=1) pwipwj+ C(nl=1) pwipwj

A3

nk

nmnl

1
wi

wj 1 C(nk=1) = C(nm=1)pwi

A4

nk

nmnl

0

wi

wj 0

1

C(nk=0) = C(nm=0)C(nl=1)pwipwj
+ C(nm=0)pwipwj

O1

nk

nmnl

1
wi

wj 1 C(nm=1) = C(nk=1)pwi

O2

nk

nmnl

0
wi

wj 0
0

C(nm=0) = C(nk=0)C(nl=0)pwipwj
+ C(nk=0)pwipwj + C(nl=0)pwipwj

O3

nk

nmnl

0
wi

wj 0 C(nk=0) = C(nm=0)pwi

O4

nk

nmnl

1

wi

wj 1

0

C(nk=1) = C(nm=1)C(nl=0)pwipwj
+ C(nm=1)pwipwj

Table 1: Implication rules and back propagation rules

column. Similarly we can easily derive all the other rules in
the table. Due to space limit, we omit the simple case for
INV gates. The implication process is �nished either when
we �nd a conict on the assignments, or when all the gates
with some assignments are all checked and exhausted. In
the former case, we conclude that the wire wi is redundant.
In the latter case, all the value assignments are consistent
and we do not know if wi is redundant, in which case we
simply claim that it is not redundant.

After the redundancy identi�cation process, we are
given a set of redundant wires among which we want to
determine which redundancies to remove �rst. Our goal
is to calculate the redundancy assurance function for each
redundant wire wi. Recall that the redundancy assurance
function Rwi

is expressed in terms of newly introduced
Boolean variables pwj 's representing the presence or ab-
sence of other redundant wires wj's. For ease of discussion,
in the following we will say that every wire wj, redundant
or not, has an associated Boolean variable pwj represent-
ing wj's presence. Since irredundant wires can never be
removed, this little generalization is only for the conve-
nience of notation and we have the understanding that
pwj always equals to 1 if wj is not redundant.

For each redundant wire w, we have a trace of implica-
tion steps that eventually leads to a conict on some node.
The philosophy of our algorithm is to �nd Rw, w's redun-
dancy assurance function, by tracing back these implica-



tion steps. We recursively de�ne the constraint function
for each node nj involved in the trace of the implication
steps. Let node n be assigned value v somewhere in the im-
plication steps. Intuitively, the constraint functionC(n=v)
of the condition n=v is a Boolean function, in terms of all
the new variables pwi 's, to represent the con�guration in
which condition n=v can be guaranteed. Since the start-
ing point of the implication steps is the assignments either
on the node driving wire w or on the side inputs of the
dominators of wire w, we de�ne the recursion basis as

C(n=v) =

8>>>>><
>>>>>:

1
if n is the node driving wire w
and is assigned value v

pwi

if n is a side input connect-
ing through wire wi to a dom-
inator node of w and n is as-
signed value v

(6)

The de�nition of C(n=v) on all other nodes n's with value
v assigned depends on where value v is implied from and is
recursively de�ned. The recursive de�nitions are shown in
the third column of Table 1. For convenience, we also call
these recursive de�nitions as the back propagation rules.
Take Rule A1 in Table 1 as an example. First we note that
the implication rule in the second column is a situation for
an AND gate where node nm is assigned 0 because node nk
was assigned 0. Since we are formulating a problem where
wires may be removed, the implication nm=0 holds as long
as the nk is 0 and the wire wi is present. We therefore in
the third column have the back propagation rule as C(nm=
0) = C(nk=0)pwi . A more complicated example is Rule
A2. The implication rule in the second column shows that
node nm is assigned 1 because both inputs, nk and nl, were
assigned 1. To guarantee implication nm=1 holds under
potential removals on wires, we can either have

1. C(nk=1)C(nl=1)pwipwj , which means both wi and
wj are present and both nk and nl are 1,

2. C(nk=1)pwipwj , which means wj is removed, wi is
present and nk=1, or

3. C(nl=1)pwipwj , which means wi is removed, wj is
present and nl=1.

ORing these three functions is what we have in the third
column of Rule A2.

The rules in the third column of Table 1, together with
the recursion basis in Equation 6, completes our de�nition
of the constraint function C(n=v) for a given assignment
n=v. Note that in our formulation we say values can be
assigned on nodes but not on wires. We always say that
wires are to be present or absent, and never to assume
a value. Also note that in our de�nition, the constraint
function is associated with an implication rule. In other
words, the constraint functions are de�ned only when an
implication occurs, and are unde�ned for other cases, such
as a node without a value assigned.

Once we understand the de�nition of the constraint
functions, we are ready to present our algorithm. Our
algorithm starts at the node that has conicting assign-
ments. Let n be the node where the conict occurs, our
algorithm back traces the constraint functions C(n=1) and

w1

x1

x2

x3

x4

n1

n2 n3

n4

n5

n6
n7

n8
w2

w3

w8

w7

w6w4

w5

w9

Figure 3: A circuit with 5 redundant wires

C(n=0) separately. This can be best explained with an ex-
ample. Fig. 3 shows a circuit with 5 redundant wires, w1,
w2, w3, w4, and w5. Let us focus on wire w3. The trace of
implication steps for �nding w3 stuck-at-1 redundant are

n6 = 1 (side input to n7)
n1 = 0 (activating fault) =) x1 = 0
x1 = 0 =) n3 = 0
n3 = 0 or n3 = 0 =) n5 = 0
n6 = 1 and n5 = 0 =) n4 = 1
n1 = 0 =) n4 = 0 (conict!)

Now we apply the back propagation rules of constraint
functions shown in the third column of Table 1. Since n4
is the node where the conict occurs, we separately back
trace C(n4=0) and C(n4=1). On the C(n4=0) trace, by
Rule A1, we have

C(n4=0) = C(n1=0)pw1
:

Since n1=0 is the activating value assignment for w3 stuck-
at-1 fault, we reach our recursion basis in Equation 6 and
have C(n1=0) = 1. Hence,

C(n4=0) = pw1
(7)

On the C(n4=1) trace, by Rule O4, we have
C(n4=1) = C(n6=1)C(n5=0)pw6

pw7
+C(n6=1)pw6

pw7

(8)Since w6 and w7 are not redundant wires, we have pw6
= 1

and pw7
= 1. Furthermore, since n6=1 is the assignment

on the side input of w3's dominator, we reach our recursion
basis in Equation 6 and have C(n6=1) = pw8

. Since w8 is
again not a redundant wire, we have C(n6=1) = pw8

= 1.
Simplifying Equation 8, we have

C(n4=1) = C(n5=0):

Applying Rule O2, C(n5=0), we have
C(n4=1)

= C(n3=0)C(n3=0)pw4
pw5

+C(n3=0)pw4
pw5

+C(n3=0)pw4
pw5

= C(n3=0)(pw4
+ pw5

)

Applying Rule A1, we have C(n3= 0) = C(x1=0)pw2
.

Hence,
C(n4=1) = C(x1=0)pw2

(pw4
+ pw5

)

Applying Rule O3, we have C(x1 =0) = C(n1=0)pw9
.

Hence,
C(n4=1) = C(n1=0)pw9

pw2
(pw4

+ pw5
)

Since w9 is not a redundant wire, we have pw9
=1. Since

n1=0 is the fault activating value, we reach the recursion
basis and have C(n1=0) = 1. We therefore have



C(n4=1) = pw2
(pw4

+ pw5
) (9)

The above example illustrates the �rst step of our
algorithm|to �nd the two constraint functions at the con-
icting node. In the above example, we conclude with the
two constraint functions in Equations 7 and 9 for the con-
icting node n4. The meaning of Equation 7 is that n4
will have an implication value 0 if we keep wire w1 present.
Similarly, the meaning of Equation 9 is that n4 will have
an implication value 1 if we keep wire w2 and one of wires
fw4; w5g present. Understanding this point, the second
step of our algorithm is straightforward. Recall that w3

is the wire we want to calculate the redundancy assurance
function for. To make sure w3 is redundant, all we have
to do is to AND the two constraint functions found at
the conicting node n4. ANDing the two constraint func-
tions guarantees that there is still a conict at node n4
and therefore w3 is still redundant. In the above example,
we AND Equations 7 and 9, and we have the redundancy
assurance function

Rw3
(pw1

; pw2
; pw4

; pw5
)

= C(n4=0) � C(n4=1)

= pw1
pw2

(pw4
+ pw5

)

Once we have all the redundancy assurance functions,
which characterize the global relationship among redun-
dancies, we can then easily build a redundancy removal
algorithm that exploits this global relationship. Due to
space limitation, we refer the details to our technical re-
port in [2].

5 Experimental results
We test our algorithm on a set of MCNC benchmarks

and compare the result to that obtained with the redun-
dancy removal algorithm in SIS [6]. Table 2 shows the
experimental results. In our experiment, an input cir-
cuit is �rst pre-processed by script.boolean [6] and then
decomposed into AND and OR gates. The second col-
umn of Table 2 shows the initial literal count after this
pre-processing. Some redundant wires are then added to
each circuit in a similar way to the method in [3] [4] [5].
The resulting circuits serve as our initial circuits for com-
parison. The third and fourth columns show the results
obtained with SIS and our algorithm, respectively. The
last two columns show the CPU time spent on SIS and
our algorithm.

At the last row of Table 2, we compare the percent-
age of improvements. We normalize all the results so that
the result produced by our algorithm is 1. As shown in
the table, our result is on average 8% better than the re-
sults obtained with SIS. One surprise shown in Table 2 is
that in a few cases our algorithm not only produces better
result but also runs faster than SIS's algorithm. This sur-
prise may be due to two reasons. First, without a global
consideration of multiple redundancies, SIS algorithm has
to restart a whole new round of redundancy identi�cation
process after removing the �rst encountered redundancy
in a given circuit. As a result, there may be many rounds
of such identi�cation process. In contrast, our algorithm
tries to remove as many identi�ed redundancies as possi-
ble at one shot, and therefore the number of new rounds

result CPU
circuit initial SIS ours SIS ours

9symml 360 354 338 2.1 2.6
alu2 639 547 505 12.2 13.44
apex 1126 1113 1063 19.5 54.0
b9 164 160 148 0.8 0.6
cm82a 40 38 32 0.1 0.28
cm85a 82 76 58 0.4 0.47

cmb 62 60 54 0.1 0.19
cordic 108 108 89 0.2 0.25
comp 218 199 152 0.9 1.13
count 233 225 208 1.9 1.3
f51m 212 192 179 1.4 1.28
my adder 336 284 270 4.2 1.73
pm1 65 63 57 0.2 0.28
t481 1105 943 812 29.1 71.10
term1 352 228 216 3.9 4.38

too large 613 595 547 11.6 24.60
ttt2 305 281 263 2.0 1.3
z4ml 60 54 48 0.3 0.35
C432 316 252 224 3.0 2.52
C6288 4296 4242 3817 870.3 313.3
C7552 3617 3218 3071 316.3 92.0
C880 639 621 699 4.9 2.18

Total 13822 12740 11787 1265.9 535.28

% 1.17 1.08 1.00

Table 2: Experimental results

is much smaller than that of SIS. Second, after �ltering
out some easy-to-detect irredundant wires by random fault
simulation, the algorithm in SIS tries very extensively to
determine if a wire is redundant. Since the check has to
be done for all the remaining wires, this slows down the
process.

6 Conclusion
In this paper, we �rst formulate a conceptual model and

discuss the precise solution for the multiple-redundancy
problem. For each redundant wire, we de�ne the redun-
dancy assurance function to model the global relationship
between the redundant wire with other redundancies. We
then present a very e�cient heuristic to solve the multiple-
redundancy problem for practical circuits. The experimen-
tal results are very encouraging.

References
[1] M. Abramovici,M.A. Breuer, A.D. Friedman, \Digital Sys-

tems Testing and Testable Design," IEEE Press, 1994.

[2] S.C. Chang, D.I. Cheng, C.W. Yeh, \On Removing Mul-
tiple Redundancies in Combinational Circuits," Tech. Re-
port 97-004 C.S. Dept., National Chung Cheng University.

[3] S.C. Chang, L. VanGinneken, and M. Marek-Sadowska,
\Fast Boolean Optimization by Rewiring," Proc.
ACM/IEEE ICCAD-96, pp. 262-269, Nov. 1996.

[4] L. Entrena and K.T. Cheng, \Sequential Logic Opti-
mization by Redundancy Addition and Removal," Proc.
ACM/IEEE ICCAD-93, Nov. 1993.

[5] W. Kunz and D.K. Pradhan, \Multi-Level Logic Optimiza-
tion by Implication Analysis," Proc. ACM/IEEE ICCAD-
94, pp. 6-13, Nov. 1994.

[6] E.Sentovich etc., \SIS: A System for Sequential Circuit
Synthesis" Memorandum No. UCB/ERL M92/41, Uni-
versity of California, Berkeley.


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


