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Abstract
In this paper an accurate, analytical model for the

evaluation of the CMOS inverter delay in the sub-micron
regime, is presented. A detailed analysis of the inverter
operation is provided which results to accurate
expressions describing the output waveform. These
analytical expressions are valid for all the inverter
operation regions and input waveform slopes. They take
into account the influences of the short-circuit current
during switching, and the gate-to-drain coupling
capacitance. The presented model shows clearly the
influence of the inverter design characteristics, the load
capacitance, and the slope of the input waveform driving
the inverter on the propagation delay. The results are in
excellent agreement with SPICE simulations.

1. Introduction

Much effort has to be devoted for the extraction of
accurate, analytical expressions for timing models of basic
circuits, which can be incorporated in switch and logic
simulators optimizing the design verification procedure.
Using transistor level simulators with continuous-time
modeling of the devices, like SPICE, is very expensive in
terms of CPU time. Hence, much of past research has
addressed the development of delay models for CMOS
circuits. The emphasis of this paper is on the analytical
evaluation of the propagation delay in a CMOS inverter.
Analytical expressions of the output waveform are derived
from the differential equation describing the temporal
evolution of the inverter output. It is important to model
accurately the CMOS inverter operation, since several fast
methods for reducing a CMOS gate to an equivalent
inverter have been proposed [1],[2].

The first closed-form delay expression based on the
output response which was obtained directly from the
differential equation describing the CMOS inverter
operation, was derived in [3] for a step input. Analytical
expressions for the output waveform and the propagation

delay including the effect of the input waveform slope,
was presented in [4] and [5]. In these the influence of the
short-circuit current was neglected. These works are based
on the Shichman-Hodges square-law MOS model [6] that
ignores the carriers velocity saturation effect which
becomes prominent in short-channel devices. In [7], the
differential equation describing the discharge of the load
capacitor was solved for a rising input ramp considering
the current through both transistors and the gate-to-drain
coupling capacitance. However, numerical and fitting
methods are used, resulting in a semi-analytical model
which is still based on the square-law MOS model.
Nabavi-Lishi and Rumin [8] presented a method for the
calculation of the CMOS inverter delay. They use a linear
approximation of the output waveform based on empirical
factors produced from SPICE simulations. Moreover, the
method is based on an approximated version of the SPICE
level-3 MOS model where the velocity saturation effect is
neglected.

Sakurai and Newton [9],[10] presented closed-form
delay expressions for the CMOS inverter, based on the ¥-
power (n-power in [10]) law MOS model which includes
the carriers velocity saturation effect. However, these
models requires the extraction of the empirical velocity
saturation index (¥� or n) from the static device
characteristics for each transistor width. For the derivation
of the output expression in [9] the short-circuit current is
neglected and the delay expression is valid only for fast
input ramps. In order to approximate the CMOS inverter
by a NMOS circuit in [10], a fictitious input ramp is used
which is clamped to ground for ramp voltages less than
the switching voltage. An extension in the delay
expression of [9] for the case of very lightly loaded
inverter and/or slow input signals is presented in [11]. A
table of coefficients produced from SPICE simulations is
used, but still for negligible short-circuit current. The
delay model presented in [12] uses the ¥-power MOS
model taking into account the short-circuit current of the
CMOS inverter, but the output voltage and the currents
through the transistors are assumed to be piecewise linear.



In this paper, analytical expressions for the CMOS
inverter output response to an input voltage ramp which
overcome the weaknesses of previous works are derived.
Based on these expressions, accurate, analytical formulae
for the evaluation of the propagation delay for all the
cases of input ramps are produced. The derived timing
model takes into account the influences of the current
through both transistors and the gate-to-drain coupling
capacitance. It avoids numerical methods and empirical
approaches based on pre-simulation data. A simple MOS
model [13] which considers the carriers velocity
saturation effects of short-channel devices has been
chosen.

2. Inverter switching response analysis

The derivations presented in the following are for a
rising input ramp: V V tin DD= ⋅ ( )τ  for 0 ≤ t ≤ ¸,
Vin = 0  for t ≤ 0 and V Vin DD=  for t ≥ ¸, where ̧ �is the
input rise time. The analysis for a falling input is
symmetric, and similar results are obtained by appropriate
substitutions in the derived equations. The differential
equation, which describes the discharge of the load
capacitance CL for the CMOS inverter (Fig.1) taking into
account the gate-drain capacitive coupling (CM), is
derived from the application of the Kirchoff’s current law
to the output node
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The output load consists of the inverter drain junction
capacitances, the gate capacitances of fanout gates, and
the interconnect capacitance. The equivalent gate-to-drain
capacitance CM is the sum of the gate-to-drain overlap
capacitance and a part of the gate-to-channel capacitance
of the transistors [14]. The overlap capacitance is voltage
independent, and is given by

C W Cgd overlap gdo− = ,

where W is the effective width of the transistor. Cgdo is
the  gate-to-drain overlap capacitance per micron which is
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determined by the process technology. In the cutoff region
of the transistor there is no conducting channel, and in the
saturation region the channel does not extend to the drain.
Therefore, the gate-to-drain capacitance due to the
channel charge is equal to zero. In the linear region the
distributed gate-to-channel capacitance may be viewed as
being  shared  equally between the source and the drain.

Thus in this case C C W Lgd channel ox− = 1

2
,

where Cox is the gate-oxide capacitance per unit area, and
L is the effective length of the transistor.

Depending on the region of operation the drain current
of the devices is given by the following equations of the
used MOS model [13]

I 0D = � V VTGS H< � Cutoff, (3)
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V VDSATDS ≤ , Linear,

where β is the device gain factor, and VTH is the device
threshold voltage. VO is the voltage which specifies the
effects of carriers velocity saturation and is extracted from
the device static characteristics. VDSAT is the device
saturation voltage and is given by

( )V V 1 2 V V V VDSAT O O T
1= + − −−

GS H O.

In the following, normalized voltages with respect to VDD,
i.e.  uin  =  Vin  / VDD,  uout = Vout / VDD,  n = VTHN / VDD,
p =_VTHP_/ VDD,  von = VON / VDD, vop = VOP / VDD, and
the variable x = t /Í are used.

Since the input ramp will reach its final value with
the NMOS device either in saturation or in the linear
region, two main cases of input ramps must be considered,
in order to give a complete analysis of the output
waveform. For  fast input ramps, the NMOS device is still
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saturated while for slow input ramps the NMOS is in its
linear region, when the input voltage ramp reaches its
final value.

Case A - Fast input ramps:
In the following, we analyze each region of the inverter
operation for the case of fast input ramps (Fig.2).

Region 1,  0 ≤ x ≤ n:
The NMOS transistor is off, and the PMOS transistor is in
the linear region. The first term of the right part in
equation (2) (for 0 < t ≤ Í� corresponds to the charging
current through the gate-to-drain coupling capacitance
(CM). This causes the major influence on the output
voltage waveform in this region. Part of the charge from
the input which injected through this capacitance causes
an overshoot at the early part of the output voltage
waveform (Fig.2). During the overshoot the PMOS device
operates in a reversed linear mode, because the output
voltage is greater than the supply voltage. Thus, the
PMOS device initially helps to discharging the load
capacitance towards the supply voltage. The differential
equation (2) using the current equations (3), (5) becomes a
non-linear Riccati equation [15] which cannot be solved
analytically, if a particular solution is not known.
However, the quadratic term of the PMOS current can be
neglected because the charge contributed by this term is
negligible due to the small values of the drain-source
voltage of the PMOS device in this region [7]. Also, in
order to give a solution of the differential equation, an
average value of uout  i.e. u1 = 1 + (cm n / 2) is used at the
denominator of the PMOS current expression. After that,
the solution of equation (2) is
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and erf [y1], erf [y0] are the error functions of y1, y0

respectively. Standard ways of evaluating the error
function can be found in any mathematical handbook.

Region 2,  n ≤ x ≤ xsatp:
The NMOS device is saturated and the PMOS device is in
the linear region. During the output voltage overshoot the
PMOS device still operates in a reversed linear mode.
Note, that the right limit of this region (Fig.2) is the
normalized time value xsatp where the PMOS device
enters saturation, i.e. VDD - Vout  = VDSATP. It is determined
by the PMOS saturation condition

( )u 1 v 1 2 v 1 x p 1satp op op
1

satp= − + − − −





− ,

where usatp is the normalized output voltage value when
PMOS device saturates. As in region 1 we neglect the
quadratic current term of the PMOS device. Also, instead
of uout at the denominator of the PMOS current expression
we use an average value of the normalized output voltage

(u2)  i.e. ( )u u un satp2 2= + ′[ ] . ′usatp  is  the value  of  the

normalized output voltage at the end of region 2, if
negligible PMOS current is assumed and is calculated
below by equation (10). u[n] is the value of the normalized
output voltage at the beginning of region 2 and is
calculated from equation (6) for x = n. After the above
approximations, the solution of the equation (2) is
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The above equations (6), (7) give waveforms very close to
those derived from SPICE simulations (as shown in the
section 4), which indicates the validity of the above
approximations. In order to continue the analysis for the
next region the calculation of the values xsatp, usatp, is
required. As mentioned above, these values satisfy the
PMOS saturation condition

( )u 1 v 1 2 v 1 x p 1out op op
1= − + − − −





− . (8)
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They can be found by solving the system of equations (7)
and (8). Due to the error functions of equation (7), the
system cannot be solved analytically. Hence, in the
following an efficient method for the calculation of xsatp,
usatp, is used (Fig.3).

The analytical solution of the differential equation
(2), if negligible PMOS current is assumed in region 2, is

( )u u c x
A v

2
x nout 12 m

n on 2= + − − , (9)

where  u12  =  u[n] − cm n  is the integration constant, which
is inserted to ensure continuity with respect to region 1.
By equating (8) and (9) the normalized time value x′satp
in which the inverter leaves region 2, with the assumption
of negligible PMOS current, is derived. After the
substitution of x′satp in equation (9), the value of the
normalized voltage u′satp , is derived,

( )′ = + ′ − ′ −u u c x
A v

2
x nsatp 12 m satp

n on
satp

2
. (10)

The next step of our method is to determine the tangent of
the output waveform expressed by (7), at the point which
corresponds to x′satp (Fig.3). This tangent is expressed by
the equation

′ = +u a x bout , (11)

where a
du

dx
out

x xsatp
= = ′  and  b u a xout x xsatp satp= − ′= ′ .

By equating (8) and (11), xsatp becomes the root of a
simple quadratic equation. Then by substituting xsatp in
(7) the normalized output voltage usatp is evaluated. The
error which is introduced in the calculation of xsatp due to
the above method is up to 0.5%.

In the special case of very fast input ramps (Fig.2),
the PMOS device is turned off after its linear region,
without enters saturation. This occurs because the output
voltage overshoot finishes when the PMOS is already off.
Hence, the inverter does not enter in region 3, and the
calculation of xsatp and usatp is not required.

Region 3,  xsatp ≤ x ≤ 1-p:
Both transistors are saturated. The analytical solution of
equation (2) in this region is

( )u u c x
A v

2
x nout 23 m

n on 2= + − −

( )− − −
A v

2
1 x p
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where the integration constant which is inserted to ensure
continuity with respect to region 2, is given by
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Region 4,  1-p ≤ x ≤ 1:
The NMOS transistor is saturated and the PMOS
transistor is off. The analytical solution of the differential
equation (2) is

( )u u c x
A

x nout 23 m
n= + − −

von

2
2 . (13)

As mentioned above for very fast input ramps the inverter
does not pass from the region 3, because the PMOS
device is not saturated. In this case the integration
constant u23 is substituted by the following constant u24

( ) ( )u u c p
A v

p np m
n on

24 1
21

2
1= − − + − −−[ ] ,

where u[1-p] is the value of the normalized output voltage
in which the PMOS device is turned off. It is calculated
from equation (7) for x = 1−p.

Region 5A,  1 ≤ x ≤ xsatn:
The input ramp has reached its final value with the NMOS
device still in saturation and the PMOS device off. xsatn  is
the normalized time value where the Vout = VDSATN. In this
region, the analytical solution of the differential equation
(2) (for t > Í� becomes

( )u u c
A v

nout m
n on= + − −23

2

2
1

( )( )− − −A v n xn on 1 1 , (14)

where the constant u23 is substituted by u24 for very fast
input ramps.

Region 6,  x ≥ xsatn:
The NMOS device enters in its linear region and the
PMOS is off. The solution of the equation (2) is
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where ( )u v v nmaxn on on= + − −





−1 2 1 11 . xsatn is calculated

from equation (14) for uout = umaxn .

Case B - Slow input ramps:
In the second case, slow input ramps are studied. The
NMOS device leaves saturation while the input voltage is
still a ramp. This occurs if the value of the normalized
output voltage when the input ramp reaches its final value
is lower than umaxn (Fig.2). The output expressions for the
regions 1, 2, 3 and 4 are the same with those of the
previous case. The normalized time xsatn is calculated
from equation (13) for

( )u v v x nout on on= + − −





−1 2 11 ,

which corresponds to the NMOS saturation line (Fig.2). In
the case of slower input ramps the inverter doesn’t enter in
region 4. This occurs in the case where the PMOS
transistor is turned off when the NMOS transistor is
already in the linear region. In this case xsatn is calculated
from equation (12).

Region 5B,  xsatn ≤  x ≤ 1:
The NMOS transistor is in the linear region and the
PMOS transistor is either off, or so poorly conducting that
its influence can be neglected. Neglecting the charging
current through the gate-to-drain coupling capacitance and
using at the denominator of the NMOS current an average
value for the output voltage (usatn / 2), an approximated
solution of (2) is

uout =
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Region 6,  x ≥ 1:
The input ramp has reached its final value, the NMOS
device is still in the linear region, and the PMOS device is
off. The output waveform is expressed as
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where u[1] is the value of the normalized output voltage
when the input ramp has its final value. It is calculated if
we set x = 1 in equation (16).

3. Propagation delay analysis

The fall propagation delay at the 50% voltage level
may be written as

TD = − = −t
2

x
20.5 0.5

τ τ τ
, (18)

where x0.5 is the normalized time value when uout = 0.5.
Thus, for the evaluation of the propagation delay, the
normalized time value x0.5 must be determined for both
cases of input ramps. A critical parameter in order to find
in which region occurs the 50% level of the output voltage
(uout = 0.5), is the maximum drain saturation voltage of
the NMOS device (umaxn - see Fig.2). Hence, it is
necessary to consider two possibilities in the delay
calculation: umaxn ≤ 0.5 and umaxn ≥ 0.5 where

( )u v v nmaxn on on= + − −





−1 2 1 11 .

umaxn ≤ 0.5:
In the case of fast input ramps the output voltage reaches
the 50% level, when the inverter operates in region 5A if
u[1] ≥ 0.5 and in region 4 if u[1] ≤ 0.5. u[1] is the value of
the normalized output voltage when the input ramp
reaches its final value, and is calculated from equation
(13) for x = 1. When uout = 0.5 occurs in region 5A, x0.5 is
calculated from equation (14)

( )x
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n on
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−
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In the case where uout = 0.5 occurs in region 4, x0.5 is
calculated from equation (13)
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For slow input ramps the condition uout = 0.5 occurs in
region 4 if u[1-p] ≥ 0.5 and in region 3 if u[1-p] ≤ 0.5. u[1-p] is
the value of the normalized output voltage when the
PMOS device enters the cutoff region. In the first case the
normalized time value x0.5 is given by equation (20), and
in the second one is calculated from equation (12)

x
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D D EK0 5
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umaxn ≥ 0.5:
For fast input ramps uout = 0.5 occurs in region 6, and x0.5

is calculated from (15)
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In the case of slow input ramps the output voltage reaches
the 50% level, when the inverter operates in region 6 if
u[1] ≥ 0.5. If u[1] ≤ 0.5 there are two possibilities for the
region in which uout = 0.5. Either usatn ≥ 0.5 the output
voltage reaches the 50% level in region 5B, or usatn ≤ 0.5
in region 3. In region 6 x0.5 is calculated from (17)
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and in region 3 x0.5 is given by equation (21). Since, the
expression of the output waveform in region 5B cannot be
solved analytically, uout can be approximated by a ramp in
the vicinity of the 50% level, in this region. Then

x x
u

dsatn
satn

0 5
05

.
.

= +
−

, (24)

whered x xsatn
= =

du

dx
out is the output waveform slope in

region 5B and is calculated using equation (16).
In real CMOS datapaths, the input signal of a gate is

not a ramp, but the output waveform of the preceding
gate. In order the derived ramp delay model to be
applicable to inverter chains, the real input waveform
must be approximated by a ramp waveform to obtain an
effective transition time. Some efficient approximations
for the evaluation of the effective output transition time of
the inverter can be found in [4], [9].

4. Results and discussion

In Fig.4 some typical output waveforms, produced
from the above expressions, are shown. A sub-micron
CMOS process technology of 0.5Åm, has been used to
validate  the  accuracy  of   the  presented  inverter  output
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Parameter NMOS PMOS
L (Åm) 0.5 0.5
W (Åm) 3 6.45

VO (Volts) 0.5 1
VTH (Volts) 0.657 0.921

Cox (fF/Åm2) 3.56 3.56

Cgdo (fF/Åm) 0.305 0.240

7DEOH����0RGHO�SDUDPHWHUV�XVHG�LQ�FDOFXODWLRQV

waveform expressions. The model parameters and the
dimensions of both transistors, are listed in Table 1. The
transistor widths have been selected in order to achieve
equal drain currents at VGS = VDS = VDD. The output
waveforms produced by SPICE simulations are added for
comparison. A supply voltage of 5Volts, and an output
load of 0.2pF, were used. It can be observed, that the
analytical waveforms are very close to those produced by
SPICE simulations. In order to give output waveforms for
several input rise times in the same diagram, the
normalized output voltage is plotted as a function of the
normalized time (x = t / Í). The output waveforms for
input times 0.2ns and 0.5ns correspond to case A, while
those for input times 0.8ns and 1.5ns to case B. As we can
see, the slope of the output waveforms in case A is smaller
than the input slope, while in case B is greater than the
input slope.

In Fig.5 the inverter propagation delay for a rising
input ramp, is plotted as a function of Ano= (»n VDD Í)/CL.
6LQFH��Ano is a single lumped parameter which takes into
account the input waveform slope, the drivability of the
switching transistor and the load capacitance, determines
the relation between the input and the output waveform.
The results for Ano < 15 correspond to fast inputs (case A)
compared to the output waveforms, and those for Ano > 15
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correspond to slow inputs (case B). Results using the
approaches for the evaluation of the propagation delay
presented in [4],[8],[9] and [12], are also given. It can be
observed, that the presented model gives results closer to
those derived from SPICE simulations than the other
methods. The error is less than 3.5%. This occurs because
our model includes the influences of the short-circuit
current, and the gate-to-drain coupling capacitance on the
expressions of the inverter output waveform. Another
advantage of the previous analysis is the use of a simple
MOS model which takes into account the velocity
saturation effects of short-channel devices, without need
of parameters extraction when the transistor width is
changed.

The presented timing model can be used for more
complex CMOS gates, since several fast methods [1],[2]
have been proposed for reducing a CMOS gate to an
equivalent inverter. The most critical issue in gate
modeling is the reduction of serial connected MOSFETs,
in order to reduce the drivability of the serial array to the
drivability of an equivalent MOSFET. Using reduction
techniques the propagation delay of a gate can be
computed quickly and accurately using the timing model
of the CMOS inverter and without the complications
associated with trying to generalize the inverter model to
complex gates.

5. Conclusion

In this paper an accurate, analytical method for the
evaluation of the CMOS inverter propagation delay for

sub-micron devices, has been presented. In order to
achieve that, analytical expressions of the inverter output
ramp response, for all the cases of input ramps, have been
derived. These expressions take into account the
influences of the short-circuit current and the gate-to-drain
coupling capacitance, in all operation regions, without
using empirical approaches based on pre-simulation
results.
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