
Data Driven Power Optimization of Sequential Circuits �

Qi Wang, Sarma B.K. Vrudhula

Center for Low Power Electronics

ECE Dept., University of Arizona

Tucson, AZ 85721

email: qi,sarma@ece.arizona.edu

Abstract

In this paper we present an e�cient technique to re-

duce the power dissipation in a technology mapped CMOS

sequential circuit based on logic and structural transfor-

mations. The power reduction is achieved by adding se-

quential redundancies from low switching activity gates

to high switching activity gates (targets) such that the

switching activities at the output of the targets are signif-

icantly reduced. We show that the power reducing trans-

formations result in a circuit that is a valid replacement

of the original. The notion of validity used here is that

of a delay safe replacement [11, 12]. The potential trans-

formations are found by direct logic implications applied

to the circuit netlist. Therefore the complexity of the pro-

posed transformation is polynomial in the size of the cir-

cuit, allowing the processing of large designs.

1 Introduction

Reduction of power consumption in digital circuits has

become an increasingly important design optimization

goal. At the stage of logic optimization, dynamic power

dissipation can be reduced by minimizing the switching

activities of the circuit.

Several di�erent approaches to reducing switching ac-

tivity in combinational logic circuits have been pro-

posed ([2, 4, 7, 9, 10, 13, 14]). The more recent of

these methods [2, 9, 10, 14] are based on applying struc-

tural and logical transformations directly to the circuit

netlist. These are generally faster than their algebraic

counterparts, and can be applied to much larger cir-

cuits. Obviously, one way to modify the structure of

a circuit without modifying its function is to add or re-

move (or both) redundant connections and gates. Sys-

tematic techniques to do this to improve some cost func-

tion (e.g., area, delay or power) are called rewiring, and

�Copyright 1998 EDAA. Published in the Proceedings of

DATE'98, February 23-25, 1997 in Paris, France. Personal

use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional pur-

poses or for creating new collective works for resale or redistribution

to servers or lists, or to reuse any copyrighted component of this

5work in other works, must be obtained from EDAA.

these are based on ATPG (automatic test pattern gener-

ation) techniques [10], or implication analysis [2, 9, 14].

Rewiring of combinational circuits is based on identify-

ing untestable logic faults, since they are guaranteed to

be redundant.

Power reduction in sequential logic circuits has also

received some attention recently, albeit to a much lesser

extent. In [7], the reduction is attempted by re-timing

the latches, without modifying the combinational logic

that is bounded by the latches. The objective was to

reduce the amount of glitching in the circuit - a quan-

tity that can sometimes account for as much as 30% to

70% of the dynamic power dissipation. This approach

does not exploit the sequential dependencies in the sig-

nals, which can potentially result in signi�cant reductions

in switching activity. Furthermore, restricting the power

reducing transformations to only the combinational logic

between latches may not be very e�ective for high per-

formance systems that are typically highly pipelined, and

have latch-intensive circuits, with only small subcircuits

of combinational logic between latches.

In this paper we present a new technique for reducing

the power dissipation in synchronous sequential logic cir-

cuits that are implemented in static CMOS technology.

In our model of sequential circuits, no global reset line

is assumed. The method to be described is based on ex-

tending the implication based rewiring techniques of [14]

to be applicable to sequential circuits. We will refer to

this as Sequential Rewiring (SR).

It is important to note that SR is considerably more

di�cult than its combinational counterpart since in a

sequential circuit, an untestable fault is not necessarily

redundant [1, 6]. Consequently, redundancy identi�ca-

tion in sequential circuits is a much more di�cult prob-

lem than for combinational circuits, especially when some

latches do not have global reset lines. When a sequen-

tial circuit C is rewired, the new circuit C 0 must be a

valid replacement of C. The notion of validity used here

is that of a safe replacement [11]. Simply stated, a re-

placement of a circuit is said to be safe, if the external

environment cannot distinguish between the original and

the replacement by only observing the input and out-

put behavior [11]. This property is clearly important to

satisfy especially when there are no global reset lines.

Furthermore, it is general enough without the stringent

requirement of having each state in C be equivalent to

some state in C 0.

The work of [3] was perhaps the �rst attempt to ap-

ply SR techniques for reducing the area of sequential cir-

cuits. However it was shown [6] that their transforma-

tions would not result in a safe replacement of the original

circuit.

The important contribution of the SR method pre-

sented here is that it will result in a circuit that is a delay

safe replacement [11] of the original, and which has less

dynamic power consumption. Our method is di�erent

from the work of [7] since it involves logic transformations

that cross the latch boundaries. The proposed method is

based on implication analysis carried out on the circuit

netlist, and is di�erent from some previously published

work on sequential optimization for area, e.g. [8], which

are based on the manipulation of state transition graphs

(STG) using BDDs. Note that the size of the STG is

exponential to the number of latches in the circuit. If

only direct implications are used, the time complexity

and space requirement of the proposed method is poly-

nomial in the size of the circuit. Therefore, the proposed

approach can be very e�cient and suitable for very large

designs.

The rest of this paper is organized as the follows. Sec-

tion 2 provides a brief background to the notion of safe

replacement and combinational rewiring techniques. In

Section 3, the proposed Sequential Rewiring method is

described. Experimental results are presented in Sec-

tion 4.

2 Preliminaries
In this section we present a very brief introduction

to the notion of safe replacement of sequential circuits

and related concepts. Details are available in [11, 12].

Following this, the power and delay models used in the

calculations are described. Finally, a summary of combi-

national rewiring methods for reducing power are given.

2.1 Design Replacement
De�nition 1 A deterministic Finite State Ma-

chine (DFSM) M is a 5-tuple, (Q,I,O,�,�), where Q
is the set of states, I is the set of input values, O is the
set of output values. The output function � : (Q � I)
! O and the next state function � : (Q � I) ! Q are
completely-speci�ed functions.

De�nition 2 [11] A design D1 is a safe replacement
of a design D0 (denoted by D1 � D0) if given any state
s1 2 D1 and any �nite input sequence � 2 I�, there
exists some state s0 2 D0 such that the output behavior
�D1

(s1; �) = �D0
(s0; �).

The notion of safe replacement is the least stringent

and su�ciently general in the sense that that no prior

knowledge or assumptions are made regarding the de-

sign's environment [11]. This is important for design op-

timization since we almost always prefer to obtain an

optimized design which can replace the old design with-

out any constraints or restrictions. In practice, a design

will be used only after some number of clock cycles have

elapsed after power-up to ensure that all the voltages

and currents have settled before any useful computation

can proceed. Further optimization is possible by taking

advantage of this delay.

De�nition 3 [12] Given a design D, the n-cycle de-

layed design (denoted by Dn) is the restriction of D
to the set of states fsj 9� 2 In, s0 2 D : �D(s

0; �)=sg,
i.e. a state s belongs to Dn if and only if there exists a
power-up state s0 in D and an input sequence of length n
which drives s0 to s. A new design C is an n-delay safe
replacement for D if Cn � D.

The following two lemmas show some of the important

and useful properties of the of n-delay replacement.

Lemma 1 [12] If Cn � D, and m � n, then
Cm � D.

Lemma 2 [12] If Cn � D and Bm � C, then
Bm+n � D.

The property of n-delay safe replacement is compo-

sitional [12]. This is important because a sequence of

transformations will be an n-delay safe replacement if

each of the individual transformations is a n-delay safe

replacement. The total delay will be the sum of the in-

dividual delays.

2.2 Power and Delay Model

The total switching power is computed using Equa-

tion 1.

P =
1

2
�

Vdd
2

Tcycle
�
X

8gates i

Cload(i)�E(i): (1)

Cload(i) and E(i) denote the load capacitance and ex-

pected number of logic transitions on the output of gate

i. Tcycle denote the clock cycle time. With Vdd and

Tcycle being �xed, the power consumption of a CMOS

circuit can be estimated by summing the average switch-

ing activity of each node weighted by its load capacitance.

For brevity, we will refer the term Cload(i)�E(i) as the

switching capacitance of gate i.

It is assumed that technology mapping has already

been done, and the load capacitance of each gate is com-

puted from the technology library. An event driven sim-

ulator is used to obtain the average switching activity

at the output of each gate given the input binary wave-

forms. The delay model used in the simulator is a simple

linear model, given by Equation 2. Again, all the param-

eters in the equation can be obtained from the technology

library.

gate delay = transport delay+unit fanout delay � CL:

(2)

2.3 Related Work: Combinational Rewiring
for Low Power

The proposed method is an extension of the implica-

tion based transformations for low power that were de-

veloped for combinational circuits [14]. As these trans-

formations form the basis of the present work, we present

a brief summary of the methods. Details can be found

in [14].

In [14], a power reducing transformation is found by

logic implications. The gist of the method is to add

redundant connections from low activity gates (called

sources) to high activity gates (called targets) so as to

reduce the switching activity of the latter. The key step

is to identify such source and target gates so that con-

nections between them will be redundant. The identi�ca-

tion is done by logic implication. The methods presented

in [14] guarantee reduction of the total switching capac-

itance.

The implication starts by setting the output of a

source (low activity) gate to a logic value v. The value of

v is determined by the 0-1 or 1-0 signal transition proba-

bilities. Using logic simulation, v is propagated forward

and justi�ed backward. At the end of this implication

step, a subset of gates will have logic values assigned to

them. The next step is called u� propagation, which is

is conducted as follows. An input of a gate is marked

by u if (1) another input of the gate has been assigned

the controlling value of the gate; or (2) the output of the

gate is marked by u. A fanout stem is marked by u if and

only if all the fanout branches are marked by u. Finally,

a gate is marked by u if its fanout stem is marked by u.

While the logic value v can be propagated backward and

forward, the marking of u can only be propagated back-

ward. It was shown in [14] that if a gate (called target)

is only marked by u (as opposed to being marked by u

and v or v) at the end of implication procedure, and the

target is not in the fanin cone of the source, then con-

nection from the source to the target is redundant, and

the total switching capacitance will be reduced.

3 Sequential Rewiring for Low Power
We now describe the method for rewiring a sequen-

tial circuit with the objective of reducing its power con-

sumption. The key problem here is to guarantee that

connections that are added or removed are sequentially

redundant and the transformed circuit will be a safe re-

placement of the original. Without loss of generality, we

assume the only memory elements in a sequential circuit

are DFFs. During the implication process, the linear it-

erative array model of a sequential circuit is used.

3.1 Sequential Implication

The implication analysis on a sequential circuit re-

quires two propagation rules (similar to those in [5]) in

addition to those given in Section 2.3. If a DFF's out-

put is marked by u, then its input is also marked by

u. Whenever a logic value or a u mark is propagated

through a DFF, the adjacent time frame is entered. Let

R (L) to denote the rightmost (leftmost) time frame of

the implication, where R 2 Z+ and L 2 Z�. Since it

is possible that the implication may never stop, we as-

sign a maximum number of time frames (backward and

forward) that the implication may proceed. These are

denoted by Rmax and Lmax respectively.

3.2 Sequential Redundancy Addition

We now describe, by the way of an example, the

method used to �nd a sequential redundancy, which will

be added to circuit so that the switching capacitance of

the circuit is reduced.

Consider a design D0 shown in Figure 1(a). Switching

activities of some of the gates are shown diagramaticaly.

The notation 0�1 indicates a logic 0 in time frame -1.

It can be seen from the �gure that the outputs of the

NAND gate e and the DFF D2 have very low switching

activity, and the output of the AND gate d has very high

switching activity. Gate d also fans out to two other

gates. Furthermore, the waveforms of e and D2 show

that the two signals have long runs of 0s. Now if a logic

0 is implied at the output of D2 then Q2 = 00, e = 0�1,

b = 1�1, c = 1�1, and Q1 = 10. After logic implication,

u-propagation is done. This results in connections fd!
g, d ! fg being marked u0, and therefore d is marked

u0. Now if we add the connection from Q2 to d we obtain

a new design.

The switching activity at the output of d will be re-

duced due to the fact that the signal added as input to d

has, on the average, long runs of 00s, and 0 is the control-

ling value of an AND gate. Furthermore, this reduction

may have equally positive impact on the nodes in the

fanout cone of d. Now, to see if the new design D1 is

a delay safe replacement of the original design D0, con-

sider the STG's of these two designs, which are shown in

Figure 2. It can be seen from the two STGs that D1 is

not a safe replacement of D0. For example if the input is

(abc)=(101) and the two designs both start from state 00,

the output of D0 is (10) while the output of D1 is (00).

However D1 is a 1-delay safe replacement of D0. This is

because if D1 is clocked once before applying any useful

inputs, then the only reachable states by D1 are 11, 01

and 10. For each of the three reachable states there is a

state in D0 that under any input sequence, the outputs

of the two designs are the same. The observations can

be generalized as follows.

Theorem 1 Given a node s in a circuit C, let t be an
AND gate marked only by u in the time frame T � 0 after
performing a sequential implication starting from s = 0
in time frame 0. Let Cr be another circuit obtained by
adding the connection from s to t with T DFFs inserted
from s to t. Then Cn

r � C if:

1. The connection from s to t is valid (see Section 3.3)

2. t =2 TFI(s), where TFI(s) is the combinational
transitive fanin cone of s,

where n = jLj + T and L is the leftmost time frame at
which the sequential implication process terminated.

In the previous example, T = 0 and L = �1. This

means that no DFFs were added and the circuit in Fig-

ure 1(a) is a 1-delay replacement of the circuit in Fig-

ure 1(b). Similar theorems can be derived for other im-

plication cases. In general if s = v and v is the control-

ling value of t, a connection can be added from s to t;

otherwise an inverted connection is needed. According

to Lemma 2, a sequence of transformations T1; T2; � � �
which are n1 ; n2; � � � safe delay replacements respectively,
and which reduce the switching capacitance in the man-

ner described above, will also result in a n-delay safe

replacement, where n = n1 + n2 + � � �.

3.3 Validity of Sequential Implication

In the rewiring procedure described above, the logic

implication is performed on the original circuit. It is pos-

sible that performing the same implication on the trans-

formed circuit we may produce di�erent results. In par-

ticular, if a target gate is marked by u in the original

circuit but cannot be marked u in the transformed cir-

cuit, then the connection for the source to the target

cannot be added.

Consider the example shown in Figure 3. We represent

the sequential circuit as an iterative array which expands

two time frames. The signals x1 and x2 are the present

state lines and y1 and y2 are the next state lines. Suppose

the implication starts at the output of c with logic value

0. Then this results in f = 10, e = 10, and x2 = 01, a =

11, b = 11, c = 01, f = 11, e = 11. After u propagation,

the stem at the output of b is marked by u. Now consider

the circuit after the connection from c to b is added. This

is shown in Figure 4. If the same implication is performed

on the transformed circuit, b = 01, instead of 11 as in

Figure 3. Performing u propagation on the transformed

circuits results in b not being marked by u. In this case

the connection from c to b is invalid. An examination

of the STGs of the two circuits will reveal that they are

not equivalent, i.e., adding the connection will modify

the function of the circuit.

To determine whether a connection to be added is

valid or not, another complete implication step, followed

by u propagation, may be necessary. This can become

very time consuming if the number of source and target

pairs is large. However, the following lemma gives a su�-

cient condition for a candidate connection to be valid. It

is a conservative claim, i.e., a candidate connection may

be valid even though the condition in Lemma 3 is not sat-

is�ed. However, the use of this lemma will signi�cantly

reduce the computation time since it obviates additional

implication analysis for each candidate connection.

Lemma 3 Let s be a source gate of the implication anal-
ysis and let t be a target gate that is marked with a u in
some time frame T � 0. If, in addition, t is never marked
with a logic value in any time frame during the implica-
tion process, then adding the connection from s to t is
valid.

3.4 Implementation

The sequential rewiring method was implemented in

a package called iLOOPS (implication based LOgic Op-

timization for Power on Sequential circuits). A outline

of the algorithm is shown in Figure 5.

Inputs to iLOOPS is a circuit C, the power-up de-

lay value N , and a delay constraint d (maximum allowed

percentage increase in the clock period). We assume that

the switching information at the output of each gate in C

is computed either via simulation or by signal and transi-

tion probability propagation. The sequential implication

at line 6 will return D and L, where L is the leftmost

time frame reached by the implication step, and D is a

dictionary whose elements are of the form (Ti; gi), where

Ti is a time frame of a target gate gi that is marked by

u. Note that according to Theorem 1, Ti DFFs must be

added if the connection is valid. To avoid the potentially

severe area penalty, at present only those connections

with Ti = 0 are considered. If a connection is valid (see

Lemma 3), it is added and the associated delay cycle

value is accumulated. If the accumulated delay cycle is

greater than N , the procedure terminates and returns

the transformed circuit and the total delay value. Other-

wise the algorithm continues until no more source nodes

can be found.

4 Experimental Results
The sequential rewiring algorithm was implemented in

a program called iLOOPS. Using the gate delay model

given in Equation 2, each technology mapped circuit was

simulated using binary waveforms. The switching activ-

ity and the average lengths of '1' and '0' runs at each

node were computed. This information is used to select

the source nodes and the logic value to start the impli-

cation process. The power for each circuit is estimated

by using the Equation 1. Post transformation static tim-

ing analysis was also done to measure the impact of the

transformations on the performance. The maximum al-

lowed increase in delay was set to 3%.

The MCNC91 benchmark circuits were used as test

cases. Since the fundamental di�erence between se-

quential rewiring (which includes combinational rewiring

techniques) and combinational rewiring is that the for-

mer optimizes across latch boundaries, the benchmark

circuits were converted to highly pipelined circuits by

inserting latches. The combinational logic between

the latches was synthesized using SIS-1.2 with the

script.rugged �le and technology mapped using lib2.genlib

library and mapping command map -s -n 1 -AFG -p.

The results on these circuits are shown in Table 1.

The third column shows the number of DFFs in the

circuit. The fourth, �fth and sixth columns show the

percentage power reduction, delay increase and area in-

crease as a result of sequential rewiring. The column

labeled PR(CR) is the power reduction due to pure com-

binational rewiring. Since the portion of the power con-

sumption due to the clock signal cannot be reduced using

the transformations, a column labeled PREC is included,

which indicates the power reduction excluding the clock

signal. The column labeled by Delay indicates the value

of n, where the transformed circuit is an n-delay replace-

ment of the original.

4.1 Summary of Results

Overall, the average power reduction due to sequential

rewiring was 9.23% while the corresponding number for

combinational rewiring was only 2.5%. Note that these

numbers include the clock power. Not surprisingly, the

power reduction is doubled when the power consumed

by the clock signals is not considered. Therefore, in gen-

eral the proposed sequential rewiring technique is very

e�ective.

The number of delay cycles n (of the n delay replace-

ment) for all the circuits is not very high. This is be-

cause in the sequential implications, most of the logic

values can only propagate forward within a small local

sub-network. For the delay penalty (column labeled DI),

the simple heuristic of updating the timing locally af-

ter adding a connection works well (most transforma-

tions satis�ed the delay constraint) for all cases except

for term1 and t481. Based on our experience with com-

binational rewiring [14], we believe that this high delay

increase can be eliminated by simply removing a small

portion of the added connections. However, our cur-

rent implementation does not yet include such a step

and other features such as post transformation delay op-

timization [14]. Note that some circuits have a large

number of DFFs, and the proposed sequential rewiring

approach can easily result in signi�cant power optimiza-

tion with very little computational e�ort.

5 Acknowledgement
This work was carried out at the Center for Low Power

Electronics which is supported by the National Science
Foundation, the Department of Commerce of the State

of Arizona, and various companies in the microelectron-
ics industry, including, Analog Devices, Analogy, Burr
Brown, Hughes Aircraft, Intel, Microchip, Motorola, Na-
tional Semiconductor, Rockwell, Sicom, SMI, and West-
ern Design.

References
[1] M. Abramovici and M. A. Breuer. On redundancy and

fault detection in sequential circuits. IEEE Transactions
on Computers, C-28(11):864{865, Nov. 1979.

[2] R. I. Bahar, M. Burns, G. D. Hachtel, H. Shin E. Macii,
and F. Somenzi. Symbolic Computation of Logic Im-
plications for Technology Dependent Low Power Resyn-
thesis. In Proceedings of the International Symposium on
Low Power Electronics and Design, pages 163{168, 1996.

[3] L. Entrena and K.-T. Cheng. Sequential logic optimiza-
tion by redundancy addition and removal. In Proceedings
of the International Conference on Computer-Aided De-
sign, pages 310{315, 1993.

[4] S. Iman and M. Pedram. Multi-Level Network Optimiza-
tion for Low Power. In Proceedings of the International
Conference on Computer-Aided Design, pages 372{377,
1994.

[5] M. A. Iyer, D. E. Long, and M. Abramovici. Identifying
sequntial redundancies without search. In Proceedings of
the Design Automation Conference, 1996.

[6] M. A. Iyer, D. E. Long, and M. Abramovici. Surprises
in sequential redundancy identi�cation. In Proceedings
of the European Design and Test Conference, 1996.

[7] J. Monteiro, S. Devadas, and A. Ghosh. Retiming Se-
quential Circuits for Low Power. In Proceedings of
the International Conference on Computer-Aided De-
sign, pages 398{402, 1993.

[8] C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton. Multi-
level synthesis for safe replaceability. In Proceedings
of the International Conference on Computer-Aided De-
sign, pages 442{449, 1994.

[9] D. K. Pradhan, M. Chatterjee, M. V. Swarna, and
W. Kunz. Gate-Level Synthesis for Low-Power Using
New Transformations. In Proceedings of the Interna-
tional Symposium on Low Power Electronics and Design,
pages 297{300, 1996.

[10] B. Roh
eisch, A. Kolbl, and B. Wurth. Reducing
Power Dissipation after Technology Mapping by Struc-
tural Transformations. In Proceedings of the Design Au-
tomation Conference, pages 789{794, 1996.

[11] V. Singhal and C. Pixley. The veri�cation problem for
safe replaceability. In D. L. Dill, editor, Proceedings of
the Conference on Computer-Aided Veri�cation, pages
311{323. Springer-Verlag, June 1994. 1994.

[12] V. Singhal, C. Pixley, A. Aziz, and R. K. Brayton. Ex-
ploiting power-up delay for sequential optimization. In
Proceedings of the European Design Automation Confer-
ence, pages 54{59, 1995.

[13] S. B. K. Vrudhula and H. Y. Xie. Techniques for CMOS
Power Estimation and Logic Synthesis. In Proceedings of
the International Symposium on Low Power Electronics
and Design, pages 21{26, 1994.

[14] Q. Wang and S. B. K. Vrudhula. Multi-level Logic Opti-
mization for Low Power using Local Logic Transforma-
tions. In Proceedings of the International Conference on
Computer-Aided Design, pages 270{277, 1996.

PR = Power Reduction, DI = Delay Increase, AI = Area Increase
PR(CR) = Power Reduction by Combinational Rewiring,PREC = Power Reduction Excluding Clock Power
Ckt Gates DFFs PR DI AI PR(CR) PREC Delay CPU

cu 80 15 17.09% 1.75% 6.97% 2.71% 41.21% 9 0.6
cordic 86 17 9.17% 0.00% 10.22% 8.10% 19.88% 8 0.6
lal 123 23 3.79% 0.00% 8.91% 1.52% 9.00% 6 0.5
pcler8 130 21 8.28% 0.52% 10.00% 0.30% 12.06% 8 0.6
count 182 21 12.98% 2.73% 10.40% 0.00% 19.47% 4 0.7
term1 212 42 6.59% 10.83% 5.94% 3.09% 13.06% 10 0.6
t481 719 31 5.40% 10.88% 2.09% 1.76% 9.18% 5 9.5
dalu 1003 64 6.34% 2.19% 2.15% 1.80% 11.18% 24 8.2
k2 1170 86 13.46% 0.31% 3.58% 2.76% 26.90% 20 30

Average 412 36 9.23% 3.25% 6.70% 2.45% 17.99% 10 5.7

Table 1: Experimental results on sequential rewiring for low power.

(a) Design D0 (b) Design D1

a

b
c

d

e

f

g

D1 Q1

D2 Q2
0
-1

0
0

1
-1

1
0 1

0

u
0

u
0

u
0

u
0

u0

a

b
c

d

e

f

g

D1 Q1

D2 Q2

1
-1

Figure 1: A example of sequential rewiring for power

reduction (a) the original design, (b) the new design after

the transformation.

-10/10

-10/00

011/00

011/10 111/11

100/10 101/11
00-/10

100/00
101/11

00-/00

-10/00

011/00

-11/10

111/11 -0-/10

-10/10

00

1011

01
 111/00

00-/00 -00/00 101/00

-10/00

011/00

011/10 111/11

100/10 101/11
00-/10

100/00
101/11

00-/00

-10/00

011/00

-11/10

111/11 -0-/10

-10/10

00

1011

01
00-/00 -00/00 101/10

 111/10

-10/10

(a) (b)

Figure 2: (a) STG of the original design, (b) STG of the

design after adding the connection in Figure 1.

0

1

1

1

1

0 0

u

uu u

u

u

u

u

1

u

u

a

b

c

d

e

a

b

c

d

e

y1

y2

x1

x2

y1

y2

x1

x2

Time Frame 0 Time Frame 1

(a) Original Design

u
u

u f f

1

Z

1

Figure 3: Validity of sequential implications

0

1

1

1

1

0 0

uu

u

1

u

a

b

c

d

e

a

b

c

d

e

y1

y2

x1

x2

y1

y2

x1

x2

Time Frame 0 Time Frame 1

(b) A new design by adding the connection from c to b

0 Z
0

Figure 4: Validity of sequential implications (cont.)

procedure iLOOPS (C,N,d) f
0. int cycle =0; boolean stop = false;

1. while(!stop)f
2. select a source s gate with low activity;

3. if no s can be found f stop = true;g
4. elsef
5. select logic value v to imply at s;

6. (D;L) = sequential implication(s,v);

7. for each time frame T in D f
8. take a gate t from D;

9. if add connection from s to t is valid f
10. if add connection will not violate the delay constraint f
11. add connection from s to t;

12. cycle = cycle + jLj+jTj;
13. if (cycle � N) stop = true;

14. g g g g g
15. return (C,cycle); g

Figure 5: iLOOPS algorithms.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

