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Abstract a circuit with tolerance parameter fulfills a certain specifi-

cation for all parameter combinations, because the toler-

ance parameters are modelled with a probabilistic density

function, or the computed regions are non pessimistic

approximations like convex polyhedrons. In contrast to the

above, the proposed approach deals with intervals, ena-

bling an exact proof of the correctness of the design.

This contribution presents an approach to formal

verification of linear analog circuits with parameter

tolerances. The method proves that an actual circuit

fulfills a specification in a given frequency interval for all

parameter variations. It is based on a curvature driven

bound computation for value sets using interval

arithmetic. Some examples demonstrate the feasibility of

our approach.

The main idea of our procedure is to compare the

value sets of the complex transfer functions Hspec and Hact.

Related work in computing value sets can be found in [7,

8, 9,]. All these methods restrict the transfer functions to

special classes, for example linear or multilinear dependent

transfer functions [8], while our approach deals with a

much larger class of transfer functions. Additionally, most

of them deal only with outer bound computations of the

value sets.

I. Introduction

Formal verification, in particular equivalence

checking is an attractive alternative to simulation and very

popular in the digital world today. Its main concept - to

prove that two circuits have the same in-/output behavior -

can also be transferred to analog circuits. In this paper we

will present an approach to formal verification of linear

analog circuits. Basically, two circuit descriptions on dif-

ferent levels of abstraction with parameter tolerances are

compared. The approach verifies the following hypothesis:

II. Circuit Description

Linear analog circuits can be described by transfer

functions. Symbolic analysis methods [6] are able to

calculate transfer functions from netlists resulting in a

parameterized description of circuit behavior

H(s, ), [p ,p ,..., p ] ,
np p = 1 2

(1)
For all frequencies in a given frequency interval and for

all parameter variations within the given parameter

tolerances the first or actual (act.) circuit fulfills the

specification described by the second or specifying

(spec.) circuit having also parameters given in

tolerances.

where p is the parameter vector of n parameters. Here,

each parameter tolerance is given as an interval defining

the parameter interval vector

p = = =p
i

[p ..p ], i ..n
i

i 1{ }. (2)

Interval variables are printed in italics and interval

vectors are printed in bold italics. The parameters are

assumed to be independent and belong to a finite real

interval. p is an n-dimensional hypercube in the parameter

space.

Many other approaches have been proposed to

compute performance characteristics from an actual circuit

and to compare it with given specifications, like yield

estimation [1], worst-case analysis [2, 3, 4] or design cen-

tering [5]. Most of these approaches are based on proba-

bilistic methods giving good and reliable results for the

mentioned tasks. However, they are not able to prove, that

We compute a safe approximation of the value sets

A = = ∈H(s j , )ω0 p p pm r for each given transfer



function. A safe approximation for the actual transfer

function at a fixed frequency is an outer bound of the value

set

smallest overestimation. This technique automatically

divides only those parameter intervals that contribute to the

overestimation. If a parameter does not have any impact on

the overestimation, it will not be divided leading to much

less subdivided intervals and very small overestimation.
~

H (s j , )act,safe act act act act actA A⊇ = = ∈ω0 p p pm r . (3)
After subdivision, the resulting complex intervals are

geometrically combined into a single circumscribing

polygon (see Figure 2 for an example). This polygon

describes an outer boundary ∂
~
A for the bound

~
A of the

exact value set A. In most cases the proposed algorithms

deal with boundary description by polygons. However, for

the ease of understanding, the regions themselves are used

instead of their boundaries in the remainder of the paper.

A safe approximation at a fixed frequency s j= ω
0
for

the specifying transfer function is an inner bound of the

value set

~
H (s j , )spec,safe spec spec spec spec specA A⊆ = = ∈ω0 p p p{ } .(4)

In Figure 1 an example for the outer and inner bound
~
act,safe
A and

~
spec,safeA is shown.
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Figure 2: Computation of an outer bound of the function:
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Figure 1: Value sets Aspec, Aact and bounds
~
act,safe
A ,

~
spec,safeA for Hspec, Hact at a fixed frequency

If
~ ~
act,safe spec,safeA A⊂ holds, Hact fulfills Hspec at a

specific frequency ω0. The extension to a proof for a

frequency interval is described in Section V.

For transfer functions with many parameters the

problem of overestimation is still an substantial property of

the algorithm. However, if e.g. the transfer function is

given in linear dependent form (with the parameters as

independent coefficients of the nominator and denominator

polynoms, [7, 13]), a more efficient algorithm for

calculating the outer bounds can be selected, for example

the algorithm explained in Section IV.

III. Outer Bound

An outer bound of a transfer function value set can be

calculated by an interval extension using complex interval

arithmetic [10, 11]:
IV. Inner Bound

~
( ) ( ) H(s j , )A Ap p p⊃ = = ∈ω0 p pm r. (5)

From the viewpoint of interval analysis the calculation

of an inner bound is a much bigger problem, because the

inclusion property of the interval arithmetic [11] only

facilitates the safe computation of outer bounds. However,

if we restrict the class of functions to those having a simply

connected region for the complex value set, an inscribing

polygon can be constructed which is proven to belong to

the value set.

Dividing the interval vector pp into a union of

subinterval vectors pk according to p p=
=

k

k 1

m

U the unified

outer bound
~
( )

~
( )

'

k k

k 1

m

A p A p=
=
U for m → ∞ converges to

the tight or exact bound of the value set A( )p (see [12]).

Based on these results we compute an as tight as possible

outer bound for the actual transfer function Hact by

subdividing the intervals recursively. For each subdivision

the algorithm chooses a parameter that leads to the

A. Safe Path Between Two Points

The goal of this method is to find a region containing

the actual parameterized curve between two endpoints.



A

B

Z

r1

d
1

a) b)

d 0

r2

r
1

ρ
Inner Bound (F(p),p)

Divide parameter hypercube into a set of 2-dimensional

faces

Map the faces in the H(jw)-space

Compute the enveloping polygon E of the faces in the

H(jw)-space:

E e ,e ,..e1 2 k=
for each segment (e ,e )i i 1+ of the polygon E do

Compute curvature driven path ((ei, ei+1), F(p),
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+
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return inscribing polygon of
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Figure 3: a: Maximum curvature and intermediate point Z

on a curve ρ, b: safe path region approximated by a polygon

In Figure 3 a) an (unknown) curve ρ (plotted in bold)

with its endpoints A and B is shown. The curve ρ is given

by a complex function F(q) of one parameter q = [q ..q ],

while the endpoints can be calculated according to

A {Re(F(q )), Im(F(q ))},= B {Re(F(q)),Im(F(q))}.= The

radius of curvature of the parameterized curve ρ is defined

by

Figure 4: Algorithm for computing an inner bound
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Figure 5: a: Faces of the 4-dimensional hypercube in the

parameter space, b: faces and enveloping polygon mapped

to the H(jω)-space, c: resulting inscribing polygonUsing interval arithmetic a lower bound r for the

radius of curvature can be computed. If it is smaller than

half the distance between the two endpoints A and B

( 1
2
⋅ >d r

0 1
in Figure 3 a) ) the interval q is divided into

two intervals by inserting an additional point (Z) at half

the interval of q (Z = R
S
T

U
V
W

+ +
Re(F( )),Im(F( ))

q q q q

2 2
). The

generated intervals [
q q

], [
q q

.. ]q .. q
+ +

2 2
are then processed

in the same way as the original interval. If the radius of

curvature is larger than half the distance between the

endpoints (i.e. r d
1

1

2 1
> ⋅ ), the region of the actual

parameterized curve ρ can be bounded by two segments of

a circle which is pessimistically approximated by a polygon

consisting of 3 lines (see Figure 3 b).

In Figure 5 a simple example is presented in order to

explain the main steps of the algorithm.

Because the enveloping polygon E is determined in a

sequence with counterclockwise steps, the safe path can be

computed using only an inner polygon approximation of

the circle segment in order to get a pessimistic bound. The

result is a polygon which describes the safe inner bound
~
A

by its boundary.

One reason for computing the enveloping polygon

from the image of the parameter cube faces and not from

the corners using a simple convex hull approach is, that

along the edges of the faces only one parameter is varying

and all others are constant. This results in a much lower

overestimation for the interval computation of the radius of

curvature and, therefore, reduces computation time and

complexity.B. Inner Bound of a Value Set Using Curvature

Examination

V. Extension to Proof within Frequency

IntervalAssuming that the value set A of a complex function

H is a simply connected region, every closed path, which

lies safely within the value set, encloses a part of the value

set. By means of the algorithm in Section IV A, such a

path and the resulting inner bound of the value set can be

computed as follows:

With the previously defined algorithms for computing

inner and outer bounds, a proof that the actual circuit

fulfills a specifying circuit is possible at a single frequency

ω0 . In order to extend the proof to a given frequency



interval, this frequency interval is introduced as an

additional special interval parameter.

Formal Verification (Hspec, Hact,w = ω ω.. , pspec, pact)

Divide w in k parts [w1, w2,..., wk]

for each wi do

Compute
~
act,safeA = Outer Bound (Hact, wi, pact)

Compute
~
spec,safe, i
A ω = Inner Bound (Hspec,ω i

, pspec)

Compute
~
spec,safe, i
A ω = Inner Bound (Hspec, ωi , pspec)

for all edges pj of
~
spec,safe, i
A ω do

if n ⊂ R
+
or n ⊂ R

-
then

Compute
~
spec,safe,F p j

= Outer Bound using

curvatures (Hspec, wi, pj,spec, pspec) (Section IV)

else

Compute
~
spec,safe,F p j

= Outer Bound (Hspec, wi,

pj,spec, pspec) (Section III)

if not (
~
act,safeA ⊆

~
spec,safe, i
A ω ∧

∀ ∩ = ∅p A F pj act,safe spec,safe,:
~ ~

j
) then

if frequency interval is too small then

return false

else

Reduce frequency interval w i

return true

An approach handling the whole frequency interval in

one step is not feasible, because a 3-dimensional

calculation and a proof that the actual tube Vact lays inside

the specifying tube Vspec would necessarily be a computa-

tionally tough problem. Hence, the frequency interval is

divided into several small intervals and for each interval a

projection of the frequency interval onto the H(jω) plane at

one frequency is carried out resulting in a 2-dimensional

pessimistic but simple comparison for each small

frequency interval.
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Figure 6: a: 3-dimensional frequency interval,

b: 2-dimensional projection

Figure 7: Formal verification algorithm
In Figure 6 a) the 3-dimensional value set for a

frequency interval: w = [ .. ]w w is shown. Figure 6 b)

displays the corresponding 2-dimensional projection. The

dark shaded volume Vact is mapped to the dark shaded

region Aact. The face Aspec(ω ) is hatched in Figure 6 a)

and b). The other areas in Figure 6 are the faces of Hspec

which extend into the frequency interval. They are called

the frequency faces F ppspec, ii
( , , )w p and have only one

parameter pi and w in an interval. In addition to the proof

that Aact ( )w is inside Aspec(ω ), all frequency faces must

not touch Aact ( )w .

VI Experimental Results

The algorithm is implemented using the symbolic

math package Maple V [14]. The circuits are first

linearized at their operating point and afterwards analyzed

with a symbolic analyzer in order to get the transfer

function including the parameters in symbolic form. Due to

the prototype implementation and the use of Maple V the

CPU times of the algorithm are still high. A more efficient

implementation will reduce them drastically.
In Figure 7 the formal verification algorithm is

presented. Note, that it tries to calculate the outer bound

for the faces using curvature examination (algorithm of

Section IV B) because this method computes a tighter outer

bound much faster than the direct interval method

(algorithm of Section III). In order to use this algorithm for

determining outer bounds, it has to be proved that the

value set is bounded by its edges. This is checked for the

faces F ppspec, ii
( , , )w p having two interval parameters w,

pi by investigating the perpendicular area vector being

strictly positive or negative using interval arithmetic:

Two examples are presented in order to show the

feasibility of the approach. The first example deals with a

CMOS operational amplifier (actual circuit), which is

verified against a behavioral specification at a high level of

abstraction. The OP consists of 8 MOS transistors (see

Figure 8). The MOS transistors are modelled by a simple

nonlinear model including technology parameters. In this

example, the W/L ratios of all single or paired transistors

on the signal path constitute the tolerance (see Table 1).

The behavioral model of the specification (spec. circuit) is

given as a transfer function (see Figure 8). The parameters

and their tolerances are presented in Table 1.

n n

n
F F

p

F

p

Fp p p p

⊂ ⊂

= ⋅ − ⋅

+ −∨R R ,

Re( ) Im( ) Re( ) Im( )
.

spec, spec,

i

spec,

i

spec,i i i i
∂

∂
∂

∂
∂

∂
∂

∂w w

(7)
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over 100 frequency intervals. Two intervals at the

frequencies 1 .. 2.15 Hz and 100 .. 120 Hz are given in

Figure 9. Some areas and bounds are identified as follows.
~
act
A is the outer bound of the actual circuit,

~
spec,A ω , is the

inner bound of the specifying circuit at the lower frequency

of the frequency interval,
~
specF are the outer frequency

faces of certain parameters. In this case the algorithm

terminates successfully. A change in circuit parameters

will lead to a negative verification result. In this case the

designer gets hints from the relative positions of the areas.

A second example deals with a bandpass. A netlist is

verified versus a behavioral description of a bandpass. The

netlist and the transfer function of the behavioral

description are shown in Figure 10.
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Figure 8: a: Schematic of the OP versus b: behavioral

description

Parameter Nominal Interval Parameter Symbol Specific. Interval

W/L of

M1, M2

8.8 8.712 ..

8.888

Gain A0 > 93 dB 50,000 ..

500,000

W/L of

M3, M4

29.3 29.04 ..

29.62

Gain-

bandwidth

gbw > 1 MHz1 MHz ..

10 MHz

W/L of M5 13.33 13.17 ..

13.46

Phase

margin

phm < 60° 40° ..
60°

Phase

tolerance

∆ϕ < 5° -5° ..
+5°

Figure 10: a: Netlist and b: behavioral description of the

bandpass example

Table 1: Parameters and their tolerances of the actual

circuit and specifying behavioral model The netlist has 5 resistors which are assumed to vary

correlated with one relative parameter r
tol

and to have an

additional independent variance for each independent

resistor(R2
tol,,R3tol,,R4tol

). The two capacitors are

modelled in the same way. The tolerance parameters for

the two circuits are:

0

200000

300000

Im

-500000 -400000 -300000 -200000 -100000 0
Re

100000

1 .. 2.15Hz

100 .. 120Hz

A
~

act

spec,p1F
~

2spec,p
F
~

spec,ωA
~

A
~

act

spec,ω A
~

Parameter Interval Parameter Symbol Specification Interval

rtol 1 ± 1% Gain A0 1 ± 5 % 0.95 ..

1.05

R2tol 1 ± 0.1% Center

frequency
ω g 1 kHz ± 5% 950 Hz ..

1.05 kHz

R3tol 1 ± 0.1% Phase

tolerance

∆ϕ < 10° -10° ..
+10°

R4tol 1 ± 0.1%

ctol 1 ± 1%

Figure 9: Computed bounds for the MOS-OP at two

frequency intervals: 1 .. 2.15 Hz and 100 .. 120 Hz

C1tol 1 ± 0.1%

Table 2: Parameters and their tolerances of the bandpass

netlist and the specifying behavioral bandpass modelThe verification process starts with a desired

frequency interval from 1 Hz to 6 MHz resulting finally in



The algorithm starts with a frequency interval from

100 Hz to 10000 Hz. In Figure 11 the areas and bounds for

7 selected frequency intervals are shown. The entire

frequency interval is splitted by the algorithm into 210

intervals. Note, that in this example and in the previous

one the frequency faces
~
specF are computed mostly using

the curvature algorithm resulting in a much better

approximation of the areas.
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