
On the Reuse of Symbolic Simulation Results for Incremental

Equivalence Veri�cation of Switch-Level Circuits

Ll. Ribas-Xirgo J. Carrabina-Bordoll

Microelectronics Group, Computer Science Dept.

Universitat Aut�onoma de Barcelona, UAB

08193 Bellaterra, Catalunya, Spain

Abstract

Incremental methods are successfully applied to deal

with successive veri�cations of slightly modi�ed switch-

level networks. That is, only those parts a�ected by the

changes are symbolically traversed for veri�cation. In

this paper, we present an incremental technique for

symbolic simulators which is inspired in both exist-

ing incremental techniques for non-symbolic simula-

tors and a token-passing mechanisms in Petri nets.

1 Introduction

Circuit designs su�er a lot of modi�cations before
they meet their speci�cations. Usually, those changes
consist of simple insertions or deletions of a reduced
set of nodes and devices. Their e�ect on the cir-
cuit behavior is usually checked by simulation, and
their results may drive the designer to introduce fur-
ther changes in the circuit, thus, repeating the whole
process again. The cost of the simulation can be re-
duced by only considering the changes introduced in
the original circuit. That is, only those parts which are
a�ected by a circuit change are fully simulated obtain-
ing data from the previously existing parts whenever
necessary.

In fact, incremental techniques used on conven-
tional simulators are based on the assumption that
circuits undergo a lot of small changes during their
design, hence requiring a proportional e�ort for their
simulation. Obviously, the type of changes, the size of
the a�ected subnetwork, and the e�ciency of the stor-
age methods must be correctly weighted before run-
ning a full simulation or doing it in an incremental
form [1].

At the switch-level, schematics are often modi�ed
with meeting performance requirements in mind, but
functionality must be preserved along any series of
changes. Therefore, a number of simulations are run
not only to determine the electrical characteristics of
the circuit but to check its function. Unfortunately,
circuit simulators are not readily prepared for those

kind of checks. Consequently, the veri�cation of cir-
cuit functions should be left to specialized tools.

In this paper, we present one such tools that is able
to derive the Boolean function of a switch-level net-
work through an event-driven symbolic simulator. In
our approach, the incremental method is rather sim-
ilar to that of conventional simulators. However, we
have had to introduce a \back-evaluation" technique
to solve the problem of event ordering posed by dele-
tions of devices involved in self-loops. Note that each
transistor requires two of them for representing source
and drain behavior. The back-evaluation forces the
activation of the remaining devices involved in the af-
fected self-loops to avoid additional, costly procedures
for monitoring the event queue and nodes to ensure
their coherence. We shall show that our solution has a
small impact on the complexity of the �nal algorithm.

A straightforward application in formal veri�cation
of switch-level designs would compare the results ob-
tained in one run to the ones from the previous one, or
to the functional speci�cations of the circuit to check
their equivalence [2, 3, 4]. Results would also be reused
in subsequent design changes. Other applications such
as model generation [5], circuit simpli�cation by clock
abstraction [6], and even test generation [7, 8, 9] may
also take advantage of faster repeated simulations of
incrementally modi�ed circuit versions.

In the following, we �rst introduce some de�nitions
and notations used further in the paper. Then, we
shall depict a general scheme of incremental simulation
tools. Finally, we describe our approach for symbolic
simulators and conclude with some execution results.

2 De�nitions and Notation

We assume the reader is familiar with Boolean func-
tions and Boolean networks (BNs), so we focus on the
de�nitions and notation which are new or particularly
used in this text.

2.1 Circuit Representation

Extended Boolean networks are graphs EBN(V;E)
that represent logic circuits where each vertex vi 2 V
corresponds to a logic gate implementing function fi
and each edge, to a physical connection. The primary

inputs (PI) and the primary outputs (PO) are distinct
subsets of V .

Because EBNs cannot e�ciently handle multi-
outputs devices such transistors, we use more generic
circuit graphs (CGs). A CG is a directed bipartite
graph CG(V;E) where V can be decomposed into two
disjoint subsets, N andD, and E � (N�D)[(D�N).

N is the set of (electrical or logical) nodes that can
hold a value. Values of nodes ni 2 N are represented
by Boolean variables yi.

D is the set of devices di 2 D that are associated

Boolean functions �i(z) : Bjadj�(di)j 7! Bjadj+(di)j,
where B is the carrier of a Boolean algebra, z is a vec-
tor of variables from sup(�i) = fyj j nj 2 adj�(di)g,
and jadj�(di)j and jadj

+(di)j denote the number of
ingoing and outgoing edges of di, respectively.

As implicitely de�ned before, the set of adjacent
input vertices of v 2 V , adj�(v), contains every vertex
for which vertex v is the last endpoint in an edge.
Conversely, the set of adjacent output vertices of v is
adj+(v) = fw 2 V j 9(v; w) 2 Eg. Note that the
adjacency sets of a vertex belonging to subset N are
subsets of D, and vice versa.

Figure 1 shows a NMOS transistor as seen in a CG
with nodes as black dots in contrast to its representa-
tion in an EBN, with self-loops made evident.

A path in a CG is a sequence of edges with common
endpoints except the �rst and the last ones. We de�ne
paths in terms of only nodes or devices. For instance,
a node path R = (ni0 ; : : : ; niL�1) is a sequence of nodes
nik connected through devices.

Although fanin(v) and fanout(v) would correspond
to adj�(v) and adj+(v) regarding the relation between
EBNs and CGs, we shall rede�ne fanin and fanout
concepts for CGs as follows.

The fanin of a node ni 2 N , denoted by fanin(ni),
is de�ned as the set of nodes from which there is a
node path of length unity to ni. And the fanout of a
node ni 2 N , fanout(ni), is similarly de�ned.

Furthermore, the fanin and fanout cones of a vertex
v 2 V (node or device) refer to the set of vertices
reachable from it. Again, we can exclude from this set
vertices of one class or another by specifying the type
of its elements. The concept of reachability means
that there exist a path between v and every element
in the set. Note that, more formally, these sets are
also called transitive fanin and transitive fanout.

s =
s + g d×

d =
d + g s×

s

g

d

ds

g

Figure 1: N-type transistor representations.

2.2 Nodal Functions

In symbolic circuit analysis, nodes act as function
placeholders. That is, they contain a Boolean function
representation that encodes their value for any possi-
ble combination of input (PI) and present state (PS)
variables of the circuit.

Binary values (0 and 1) are not enough to correctly
model some of the common e�ects occuring at the
switch level, thus we extend the number of discrete
values to four: low (L), unknown (X), high (H) volt-
age level, and high impedance state (Z). This exten-
sion still has problems with charge sharing because it
might need more intermediate logic levels.

In this work, nodal functions, fi, are Boolean
functions of a four-valued Boolean algebra (B4 =
fZ;L;H;Xg;+; �; Z;X) that are uniquely character-
ized by two binary Boolean functions [10], i.e. any fi
is represented by a pair of functions (f1i ; f

0
i).

The on-set function (f1i) indicates the cases for
which node ni is driven to high voltage level, and
the o�-set function (f0i) determines the conditions, or
variable combinations, for which the node is electri-
cally connected to ground.

The former functions are derived from an event-
driven simulation algorithm [11] in which starting
events are determined by the PI/PS nodes. The rest of
events is caused by device activity, according to their
models, which are described below.

2.3 Device Models

In switch-level circuits, transistors process symbolic
information as it
ows through the network. Their be-
havior is reduced to a simple switch, i.e. it can be o�
completely isolating both end nodes or on, letting data

ow in both directions. Hence, transistors are consid-
ered bi-directional devices that modify both drain and
source nodal functions. The complete set of equations

� = (�d; �s) for a PMOS switch is as follows.

�d(fd; fg ; fs) = fd(x) + f0g (x)� fs(x)
�s(fd; fg; fs) = fs(x) + f0g (x)� fd(x)

(1)

where products f0g �fs and f
0
g �fd are scalar products

of functions by a vector of functions. Note that only
two device functions are required because gate nodal
function is not modi�ed by the transistor activity.

A similar system describes the behavior of a NMOS
switch, with the o�-set function of the gate substituted
in (1) by the on-set function.

Independent voltage sources also play an important
role because they are assumed to be attached to PIs
and PSs, hence identifying them. They supply a con-
stant value from B4 or a variable to the network. As
they not require any input, their model can be simply
described as

�v(I(x)) = xv = (x1v ; x
0
v) (2)

where I(x) is the identity function, x is a vector of
Boolean variables that identify PI and PS nodes, and
nv is the non-ground end of the device.

Derived models, �b, from transistor subcircuits
have equations of the following form:

�b(hfyog [adj
�(db)i) = fo(x) + �b

0(hadj�(db)i) (3)

where a single output no is assumed, and input vec-
tor is an ordered set (denoted by angle brackets) of
adj�(db). Note that nodal functions are never set back
to their initial value (f = Z), but eventually added
new functions (�b

0).

3 Incremental Simulation Overview
The incremental simulation is a technique based on

the assumption that most of the data from previous
simulations can be reused. The main problems are
to detect what design changes have been done in a
circuit, and to determine which part of the circuit is
a�ected by those changes.

In previous works [1, 12, 13, 14], the incremental
update is done by performing a full simulation in the
previously obtained fanout cone of a (modi�ed) net.

The incremental simulation procedure for an origi-
nal circuit CG(V;A) is sketched below.
{ 1. Initialize event queue Q with input nodes.
{ 2. Simulate CG with Q.
{ 3. Modify circuit, i.e. generate a new one, CG0

{ 4. Calculate CG0 nCG.
{ 5. Insert new events from nodes in CG0 nCG.
{ 6. Simulate CG0 with Q.
{ 7. Go to step 3 while check of CG0 fails.

The calculation of CG0 nCG can be done by record-
ing designer's operations (in step number 3) or by spe-
ci�c algorithms. In the �rst case, a lot of insert/delete
operations with no e�ect on the resulting circuit need
be accounted for. Therefore, they should be collapsed
before generating CG0 n CG to save storage space in
the meanwhile. The need for a special process for this
data gives validity to the second option: after the de-
signer has saved his/her design, a program calculates
the graph di�erence between the previous circuit and
the current one.

The simulation of CG0 is done by inserting the new
contents of vertices in CG0 nCG into the event queue
and starting the whole process with it. Data required
by elements not present in CG0 n CG has been previ-
ously stored during the simulation of CG and is re-
trieved upon request.

In [1], a token-passing algorithm is used to traverse
the circuit graph and determine de fan-out cone of the
vertices that have been changed in any way (inserted,
deleted, or with its contents modi�ed). Once it is
done, simulation is performed only in the marked ver-
tices, and selective data retrieval is carried on. That
is, data from previous simulation can be partially re-
covered to avoid excessive memory occupancy. Partial
data retrieval is done by slicing CG0 nCG by levels or
by clusters of strongly dependent gates.

4 Symbolic Incremental Simulation
Much of the material presented here refer to gate

level simulations for the sake of simplicity, assum-
ing that gate models are directly created from their
transistor network descriptions. Aspects that concern
switch level descriptions will be conveniently outlined.

Let us go over each step in the previous incremental
simulation scheme, assuming simulation of the original
circuit is already done.

4.1 Circuit Updates

Any circuit modi�cation may be viewed as an ele-
ment insertion or deletion to/from V which produces
V 0. Each of these actions is re
ected as a series of
extra commands in the original circuit netlist descrip-
tion: an insertion is performed by adding a new ele-
ment, while a deletion is an extension to the (usual)
capabilities o�ered by the base language.

In this work, SPICE [15] is used, and device elimi-
nation is performed by an extra *-" command card,
where a list of devices is speci�ed. Nodes are auto-
matically deleted when they are totally disconnected
from the rest of the circuit.

For every new device dj 2 V 0, each new adjacent
nodal function is set to constant function Z, and an
arbitrary input node is enqueued to cause its model

equation execution. Nothing else is required because
any further change it provokes in its fanout cone will
cause subsequent events, and so forth.

Deleting an existent device dj 2 V or changing its
function for another requires resetting its output nodes
and insert the new nodal functions (constant function
Z) into the event queue to account for the changes.

However, resetting the contents of dj 's outputs may
not be enough to clear o� its e�ect on the rest of
the circuit because existent nodal functions are added
other functions but never reset or set to di�erent func-
tions. Figure 2 illustrates such a situation on a EBN
(each vertex is a device and its only output). In that
network, deleted vertex c a�ects vertices d and e which
will take into account a reset on c due to its deletion.
Unfortunately, the functions stored in d and e will not
be reset but added the result of �d and �e with input
fc = Z. That is, they will possibly contain erroneous
results.

To prevent this from happening, when a node is re-
set to Z, a reset token must be propagated to other
nodes in its fanout. That is, the output of deleted ver-
tices v are marked for resetting vertices in fanout(v).
That is, reset(v) TRUE, where reset(v) is a
ag
that indicates whether a reset of fv is required before
evaluating �v .

This mechanism avoids traversal of the graph to
calculate the fan-out cone of a node that has been
reset.

In case a deleted vertex v has an output vertex u

that is an input too, i.e. fanout(v)\ fanin(u) 6= ;, the
former reset-propagation mechanism would reset the
contents of u, but does not ensure this operation be
done before other w 2 fanout(v) because of the queu-
ing policy used in our symbolic simulation approach.
Therefore, to prevent other vertices from using non-
previously reset values of u, it must be immediately
recalculated from vertices in fanin(u). We call this
operation back-evaluation of u because it is evaluated
right before its use in valuing any other vertex con-
tents in the simulation loop.

In Fig. 3 there is an example of an EBN that
contains a node requiring back-evaluation. Vertex a

must have a correct value (without the in
uence of
the deleted vertex c) calculated from its fanin vertices
b1; : : : ; bN . By doing so, any node in the fanout cone of
c will be correctly set by the normal reset-propagation
procedure, regardless of the order of valuation.

Although the back-evaluation may not be required
in a gate-level circuit, it is often used in switch-level
circuits because of the structure of the transistor mod-
els (see Fig. 1). For instance, taking the PMOS tran-

a

b

c

d

e

f

fan-out cone

f =Zc

Figure 2: Vertex deletion.

a

c

bN

b1

fan-out
cone

Figure 3: Back-evaluation of a is required to eliminate
previous in
uence from c.

sistor out of the EBN in Fig. 4 implies back-evaluating
vertex d. Note that vertices g and d are not deleted
but arcs (g; sp) and (d; sp). Vertex sp is marked for
reset-propagation and its contents set to Z, but never
withdrawn from the corresponding CG.

4.2 Simulation with Reset Propagation

A slight modi�cation in the usual event-driven
scheme is necessary to cope with reset propagation,
while back-evaluation is only considered when delet-
ing a device (see Fig. 5).

As previously outlined, incremental symbolic event-
driven simulation has only been added a check for reset
propagation (see Fig. 6). The advantages of this al-
gorithm come from the fact that avoids extra graph
traversals, apart from the one done while simulating
it.

5 Results and Conclusion

In this paper we have adapted the incremental tech-
nique used in numerical simulators (as opposed to
symbolic ones) to diminish the complexity of repeated

nd nsp
nsn

ng

NMOS PMOS
in

out

VddGnd

Figure 4: Circuit graph of a CMOS inverter.

CG = deleteDevice(CG, d)
for each nj 2 adj+(d) do

fj Z

reset(nj) TRUE
adj�(nj) adj�(nj) n fdg
if nj 2 adj

�(d) then
/* Back-evaluate nj */
for each di 2 adj

�(nj) do
apply device model �i(z)

enddo
endif
Q Q [ffjg

enddo
for each nj 2 adj�(d) do

adj+(nj) adj+(nj) n fdg
enddo
CG CG n fdg

end // deleteDevice

Figure 5: Algorithm for device deletion.

symbolic simulations of a series of circuit versions.

The incremental method here presented does not
require any previous analysis of the circuit but dynam-
ically decides which elements must be resimulated and
inserts them into the event queue. The simulation al-
gorithm is only slightly changed to introduce a test for
reset tokens that are caused by deleted components.
A special step (back-evaluation) must be added to re-
move the e�ects of deleted components in case they
would not be reset by the previous reset-propagation
technique.

The size of the circuits to be analyzed is limited by
both the size of the BDDs that represent their func-
tions and the disk space required to store the circuit
information between two simulations. As for the last
one, note that it is possible to reduce the quantity of
nodes by making an extensive use of the hierarchy ex-

incrSimulate(CG, CG nCG0)
init. event queue, Q ;
for each node ni 2 CG nCG0 do

fi Z

Q Q [ffig
enddo
while Q 6= ; do

dequeue next event, Q Q n ffkg
if reset(nk) = TRUE then

reset(nk) FALSE
for each nj 2 fanout(nk) do

fj Z

reset(nj) TRUE
enddo

endif
for all devices di j di 2 adj

+(nk) do
apply device functions �i(z)
Q Q [ffj j fj 2 adj+(di)g

enddo
enddo

end // incrSimulate

Figure 6: Incremental symbolic simulation.

cept for the critical parts of the design that must be
completely checked. However, in this work we were
more interested in validating the reset-propagation al-
gorithm before trying to �nd a good technique to save
data storage space.

The results of the incremental symbolic simulation
technique here presented for several circuits are shown
in Table 1. All circuits are described in a hierarchical
form in which the gate-level view is made of subcir-
cuits described at the switch level. Combinational cir-
cuits (\c<number>") have a lot of reconvergent paths
[16] except those whose names end with \nr" (they
have redundancies removed [17]). Sequential circuits
[18] (\s<number>") have been added as much state
variables as
ip-
op outputs they contain, so to ac-
count for allowed internal state nodes.

Column \]C" indicates the number of changes that
have been done on the corresponding circuit. Circuit
updates are randomly chosen and consist of function
(i.e. exchanging an AND gate for a NOR gate) and/or
structural (i.e. swapping lines or deleting gates) mod-
i�cations.

The number of events (column \]Evt") and the pro-
cessing time (column \tCPU") are, as expected, much
smaller after a design change than for the original cir-
cuit. However, the reduction of time may di�er from

Table 1: Incremental simulation results (Sun-Ultra 1)

Circuit Original + Design changes

tCPU]Evt]C tCPU (�)]Evt (�)

c432nr 0.3s 265 140 0.05s (0.15) 21 (30)

c432 0.4s 275 140 0.05s (0.18) 21 (31)

c499nr 8.5s 258 45 4.59s (9.22) 24 (25)

c499 9.2s 266 22 2.56s (4.47) 23 (24)

c880 67.8s 619 15 15.94s (27.36) 23 (23)

c1355 9.8s 754 15 2.14s (5.05) 37 (67)

c1908 14.4s 1306 816 0.20s (0.97) 11 (14)

s510 1.3s 441 46 0.03s (0.13) 12 (2)

s1196 0.3s 880 57 0.02s (0.04) 17 (21)

change to change. To emphasize this aspect, we in-
clude enclosed by parentheses the standard deviation
of these numbers along simulations. The apparently
strange behavior of c880 (ALU + Control) is due to
the complex BDD required to represent functions in-
volved in the ALU operations. It is also important to
note that the cost of each change would be approxi-
mately the same than the cost for the original circuit
if not using any incremental method.

In a nutshell, results show that a signi�cant reduc-
tion in time is achieved in all checked circuits. Of
course, results are strongly dependent on the circuit
behavior and on the fault or design change being con-
sidered, as indicated by the standard deviation �gures
shown. However, on average, the number of events is
reduced at a small 5% of the �rst run, and successive
simulations take �ve times less CPU time.

References

[1] S. Hwang, T. Blank, and K. Choi, \Fast func-
tional simulation: An incremental approach,"
IEEE Trans. on CAD/IC, vol. 7, July 1988.

[2] S. Malik, A. Wang, R.K. Brayton, and
A. Sangiovanni-Vincentelli, \Logic veri�cation
using binary decision diagrams in a logic synthe-
sis environment," in ICCAD, pp. 6{9, 1988.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, and
D. L. Dill, \Sequential circuit veri�cation using
symbolic model checking," in 27th ACM/IEEE

Design Automation Conference, pp. 46{51, 1990.

[4] Y. Kukimoto, M. Fujita, and H. Tanaka, \Sym-
bolic veri�cation of CMOS synchronous circuits
using characteristic functions," in CICC, p. 11.5,
1991.

[5] R. E. Bryant, \Extraction of gate level models
from transistor circuits by four-valued symbolic
analysis," in ICCAD, pp. 350{353, 1991.

[6] S. Jain, R. E. Bryant, and A. Jain, \Automatic
clock abstraction from sequential circuits," in
32nd ACM/IEEE DAC, pp. 707{711, 1995.

[7] K. Cho and R. Bryant, \Test pattern generation
for sequential MOS circuits by symbolic fault sim-
ulation," in 26th DAC, pp. 418{423, 1989.

[8] S. Srinivasan, G. Swaminathan, J. Aylor, and
M. Mercer, \Algebraic ATPG of combinational
circuits using binary decision diagrams," in Eu-

ropean Test Conference, pp. 240{248, 1993.

[9] C. Bolchini, F. Fummi, R. Gemelli, and F. Salice,
\A BDD based algorithm for detecting di�cult
faults," in ISCAS'95, pp. 2015{2018, 1995.

[10] L. Ribas, R. Peset, and J. Carrabina, \Two-rail
switch-level symbolic analysis," in 3rd Int'l Work-

shop on Symbolic Methods and Applications to

Circuit Design (SMACD), pp. 307{314, 1994.

[11] L. Ribas and J. Carrabina, \Analysis of switch-
level faults by symbolic simulation," in 32nd

ACM/IEEE DAC, pp. 352{357, 1995.

[12] K. Choi, S. Hwang, and T. Blank, \Incremental-
in-time algorithm for digital simulation," in 25th

ACM/IEEE DAC, pp. 501{505, 1988.

[13] W. Cheng and M. Yu, \Di�erential fault simula-
tion - a fast method using minimal memory," in
26th ACM/IEEE DAC, pp. 424{428, 1989.

[14] J. Lee and D. Tang, \An algorithm for incremen-
tal timing analysis," in 32nd ACM/IEEE DAC,
pp. 696{701, 1995.

[15] E. Cohen, A. Vladimirescu, and D. Pederson,
User's Guide for SPICE. Univ. of California,
March 1979.

[16] F. Brglez and L. Fujiwara, \A neutral netlist of
10 combinational benchmark circuits and a target
translator in FORTRAN," in ISCAS, pp. 662{
698, 1985.

[17] G. Tromp and A. van de Goor, \Logic synthesis
of 100-percent testable logic networks," in ICCD,
1991.

[18] F. Brglez, D. Bryan, and K. Kozminski, \Com-
binational pro�les of sequential benchmark cir-
cuits," in ISCAS, pp. 1929{1934, 1989.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

