
-- --

Procedures for Static Compaction of Test Sequences
for Synchronous Sequential Circuits Based on Vector Restoration

Ruifeng Guo, Irith Pomeranz and Sudhakar M. Reddy+

Electrical and Computer Engineering Department
University of Iowa

Iowa City, IA 52242

Abstract
We propose several compaction procedures for syn-
chronous sequential circuits based on test vector restora-
tion. Under a vector restoration procedure, all or most of
the test vectors are first omitted from the test sequence.
Test vectors are then restored one at a time or in subse-
quences only as necessary to restore the fault coverage of
the original sequence. Techniques to speed-up the restora-
tion process are investigated. These include limiting the
test vectors initially omitted from the test sequence, con-
sideration of several faults in parallel during restoration,
and the use of a parallel fault simulator.

1. Introduction
It was shown in [1] that the length of a test sequence gen-
erated for a synchronous sequential circuit can be reduced
in a postprocessing step that follows test generation, with-
out losing fault coverage. One of the techniques proposed
in [1] was based on test vector omission. During the vec-
tor omission procedure, test vectors are omitted from the
test sequence one at a time or in subsequences. It was
shown that the level of compaction achieved by this tech-
nique is significant for test sequences generated by various
deterministic test generation procedures such as [2] and
[3]. However, since the omission of each vector or subse-
quence requires resimulation of the test sequence to
ensure that the fault coverage does not go down, the run
time of the omission procedure from [1] is relatively high.
Vector restoration was proposed in [4] as a more computa-
tionally efficient alternative to vector omission. Vector
restoration based test compaction proceeds as follows.
First, all or most of the test vectors are omitted from the
test sequence. Test vectors are then restored one at a time
or in subsequences only as necessary to restore the fault
coverage of the original sequence. The reasons for prefer-
ring restoration over omission are the following.
(1) For many test sequences considered in [1] and [4], the
test length after compaction is less than half of the original
test length. This suggests that it may be faster to decide
which test vectors must berestoredinto the test sequence
in order to maintain the fault coverage, instead of deciding

+ Research supported in part by NSF Grant No. MIP-9220549, and
NSF Grant No. MIP-9357581.

on the test vectors that may beomitted.
(2) The effort required to decide whether a test vector
needs to be restored is lower than the effort required to
decide that a test vector can be omitted. To omit a vector,
one must ensure that no detected fault becomes undetected
after the omission. For this purpose,all the faults affected
by the omission are simulated. To restore a test vector, it
is sufficient to concentrate onone undetected fault, and
restore test vectors until it is detected again.

The restoration based procedure of [4] showed sig-
nificant run time advantages over the omission based pro-
cedure of [1]. However, the run times reported in [4] are
still high. In this work, we investigate additional tech-
niques to speed up the restoration based procedure, includ-
ing the following.
(1) In [4], all the test vectors are initially omitted from the
test sequence. Alternatively, the prefix of the test sequence
that synchronizes the fault free circuit is retained, and the
rest of the sequence is omitted. In this work, we use a
heuristic to reduce the number of vectors that are initially
omitted. This reduces the number of vectors that need to
be considered for restoration, thus reducing the run time
of the procedure.
(2) During the restoration process in [4], a single fault is
considered at a time. In this work, we consider several
faults in parallel during the restoration process. Faults are
grouped together according to their detection time by the
original test sequence. Thus, all the faults detected by the
original test sequence at time unitui are considered
together for restoration of test vectors. Several heuristics
are used to determine the order in which detection times
will be considered. In addition, consideration of several
detection times simultaneously reduces the computational
effort significantly.
(3) An important characteristic of the proposed method is
that existing parallel fault simulators can be used with a
small amount of additional programming to implement the
compaction procedure.

Other static compaction procedures for synchronous
sequential circuits were recently described in [5] the [6].
The procedure of [5] uses repeated states, or states that
appear twice or more along the test sequence, to find sub-
sequences that can be omitted without reducing the fault
coverage. Efficiency is often achieved in [5] at a signifi-

-- --

cant loss in the ability to compact test sequences. The
procedure of [6] is applicable to test sets comprised of
multiple test subsequences. The procedure reorders the
subsequences so as to shorten and/or eliminate some of
them. A genetic optimization based procedure is used to
determine an order that leads to an overall test length
which is as small as possible.

The paper is organized as follows. In Section 2 we
describe the necessary background. In Section 3 we pre-
sent the new restoration based compaction procedures.
Experimental results are given in Section 4. Section 5
concludes the paper.

2. Preliminaries
In this section, we provide the necessary background for
the proposed procedures. We use the following notation.

The test sequence to be compacted is denoted byT.
The length ofT is denoted byL. The test vector at time
unit ui of T is denoted byti , 0 ≤ i < L.

The set of faults detected byT is denoted byFdet.
Fault simulation to determineFdet is done using the con-
ventional fault dropping approach. The set of faults
detected byT at time unitui is denoted byFdet(i). We
denote byudet(f) the first detection time of a faultf under
the original test sequenceT. Thus, if udet(f) = ui , then
f ∈ Fdet(i).

The variableomitted indicates which test vectors
are omitted fromT. We haveomitted[i] = 1 if ti is omit-
ted from T; otherwise,omitted[i] = 0. For example, the
test sequenceT = (00, 01, 10, 11) from whicht1 was omit-
ted is described byomitted= (0,1,0,0). To simulate a test
sequence with omitted vectors, we use the following rules.
At time unit ui , if omitted[i] = 0, conventional simulation
is carried out; ifomitted[i] = 1, simulation underti is not
required and the present state at time unitui+1 is equal to
the present state at time unitui .

Next, we demonstrate the basic vector restoration
procedure by considering ISCAS-89 benchmark circuit
s27 under the test sequence shown in Table 1. Informa-
tion about the faults detected by the sequence and their
detection times are given in Table 2. For example, nine
faults are detected at time unit 1 after the subsequence
(t0, t1) is applied.

The first two input vectors of the sequence take the
fault free circuit from the all-unspecified initial state at
time unitu0 to state 0x0 at time unit 1, and to state 010 at
time unit 2. Thus, the fault free circuit is synchronized at
time unit 2. Since the synchronizing sequence of the fault
free circuit is useful for the detection of all the faults, we
retain it by settingomitted[0] = 0 andomitted[1] = 0. We
omit the remaining vectors by settingomitted[i] = 1 for
2 ≤ i ≤ 10. The resulting sequence detects nine faults that
are detected at time unit 1 by the original sequence (cf.
Table 2). We consider the remaining faults starting with
the ones detected by the original sequence at time unit 10.
For fault 10/0, we perform the following operations. We
check whether the fault is detected byT with the current

vector omitted. The fault is not detected. We restore the
vector at time unit 10 by settingomitted[10] = 0, and res-
imulate the fault 10/0. The fault is now detected.

Table 1: A test sequence fors27

i 0 1 2 3 4 5
ti 0111 1001 0100 1011 0100 1011

i 6 7 8 9 10
ti 1001 1001 0000 0000 1011

Table 2: Detection times for the sequence ofs27

i Fdet(i) i Fdet(i)

0 φ 5 φ
1 {3/0,4/0,8/0,9/0,11/0,15/1, 6 {5/0,25/0}

21/0,25/1,26/1} 7 φ
2 {14/0,16/0,17/0,22/0,24/0} 8 φ
3 {2/0,7/0,8/1,9/1,13/1,14/1, 9 {6/1,19/1,24/1}

15/0,18/1,20/0,21/1,26/0} 10 {10/0,12/0}
4 φ

Next, we consider the fault 12/0, and perform the
following operations. We check whether the fault is
detected byT with the currentomittedvector. The fault is
not detected. We restore the first omitted vector preceding
the detection time of the fault. The detection time is 10,
and we haveomitted[10] = 1. The closest omitted vector
is the one at time unit 9. We setomitted[9] = 0 and resim-
ulate the fault 12/0. The fault is still not detected. The
fault 12/0 is detected afteromitted[8], omitted[7], omit-
ted[6], omitted[5] andomitted[4] are all set to 0.

We continue to consider faults detected by the origi-
nal sequence at time unit 9. The fault 6/1 is such a fault.
Simulating it using the currentomittedvector, it turns out
that the fault is detected. The same applies to all the other
faults with detection times 9 and lower. The first pass
over all the faults terminates withomitted[2] = 1,
omitted[3] = 1 andomitted[i] = 0 for i ≠ 2, 3.

Once all the faults inFdet are considered and vec-
tors are restored to detect each one of them, the resulting
sequence is simulated again to ensure that no new faults
become undetected. If a fault becomes undetected after
considering other faults, additional vectors must be
restored to detect it. This process is repeated until all the
faults in Fdet are detected. We point out that this process
will always terminate. In the worst case, it will terminate
after restoring all the test vectors of the original sequence.
In our example, all the faults are detected by the sequence
with omitted[2] = 1, omitted[3] = 1 andomitted[i] = 0 for
i ≠ 2, 3. The resulting sequence is of length 9, shorter by
two vectors than the original sequence.

3. Vector restoration based procedures
In this section, we describe several restoration based com-
paction procedures. They differ from the procedure of [4]
in the test vectors that are kept in the initial test sequence,
and in the number of faults considered at every step.
Specifically, consideration of several faults is achieved by
grouping together faults that have the same detection time.

-- --

In addition, the parallel fault simulator HOPE [7], [8] is
used to perform all the fault simulations required during
the compaction process. These changes contribute to
speeding up the procedure significantly.

In all the procedures described in this section, the
fault free initializing prefix of the test sequence is main-
tained as part of the compacted test sequence.

To facilitate the description of the procedures, we
denote by F′det the set of faults detected by the test
sequence with a givenomittedvector. Restoration is per-
formed for faults in Fdet − F′det, i.e., faults which are
detected by the original test sequence but not detected
with the currentomitted vector. Once a vector or subse-
quence of vectors is restored, fault simulation may be car-
ried out to update the setF′det.

3.1 The first vector restoration based procedure
Procedure 1 given in Figure 1 has the following new fea-
tures.

We observe that when test vectors are restored to
ensure the detection of a faultf with udet(f) = ui , the first
test vector to be restored isti . Thus, a test vectorti with
udet(f) = ui for f ∈ Fdet − F′det is likely to be included in
the test sequence after restoration. Based on this observa-
tion, Procedure 1 leaves in the initial test sequence the fol-
lowing vectors. (1) The synchronizing prefix of the test
sequence. This is done in Step 2 of Procedure 1. (2)
Every test vectorti such thatudet(f) = ui for at least one
fault f . This is done in Step 3 of Procedure 1.

For example, considering the test sequence given in
Table 1 and the sets of detected faults given in Table 2, we
set omitted[0] = omitted[1] = 0 due to the synchronizing
prefix. In addition, we setomitted[2] = omitted[3] =
omitted[6] = omitted[9] = omitted[10] = 0 since at least
one fault is detected in these time units.

For the faults inFdet that remain undetected under
the currentomittedvector, we restore multiple test vectors
in parallel, as follows. In Step 5(a) of Procedure 1, we
identify the time unitsui1, ui2, . . . , uim

such that there
exists an undetected fault with detection timeui j

for
1 ≤ j ≤ m. For eachui j

, we identify the closest time unit
ukj

which is not included in the test sequence (ukj
≤ ui j

and omitted[k j] = 0). We restoretk j
for 1 ≤ j ≤ m. For

example, consider theomitted vector shown in Table 3.
Suppose that there is an undetected faultf1 with
udet(f1) = u4, an undetected faultf2 with udet(f2) = u8 and
an undetected faultf3 with udet(f3) = u9. In this case, we
haveui1 = u4, ui2 = u8 andui3 = u9. Forui1 = u4, the clos-
est omitted vector is the one at time unitu3. We thus have
uk1

= 3. Forui2 = u8 andui3 = u9, the closest omitted vec-
tor is the one at time unitu7. We thus haveuk2

= uk3
= u7.

In this case, we restoret3 andt7 simultaneously.
Table 3: An example of Procedure 1

i 0 1 2 3 4 5 6 7 8 9
omitted[i] 0 0 1 1 0 1 1 1 0 0

In Procedure 1, the set of detected faults and the
detection times of all the faults are found in Step 1. The
initial omittedvector is determined in Steps 2 and 3. The
setF′det of faults detected under the currentomittedvector
is computed in Step 4. Test vectors must be restored to
detect the remaining faults, included inFdet − F′det. This
is done in Step 5, where a single test vector preceding
every detection time of a faultf ∈ Fdet − F′det is restored
into the test sequence. Steps 4 and 5 are repeated as long
as theomitted vector does not allow all the originally
detected faults to be detected.

Procedure 1:Vector restoration based procedure 1
(1) Fault simulateT. Find the first detection timeudet(f) of

every fault f . Let Fdet be the set of detected faults (in our
implementation,Fdet is the set of faults detected after the
fault free synchronization prefix of the test sequence;
faults detected during the prefix are detected by the com-
pacted test sequence as well). LetNdet be the number of
faults inFdet. Let Sui

be the state of the fault free circuit at
time unitui .

(2) Let usync be the first time unit whereSusync
is fully speci-

fied. Set omitted[i] = 0 for 0 ≤ ui < usync and
omitted[i] = 1 for ui ≥ usync.

(3) For every faultf ∈ Fdet:
Let udet(f) = ui . Setomitted[i] = 0.

(4) Find the faults inFdet which are detected byT with the
current omitted vector. Let the set of detected faults be
F′det. Let the number of faults inF′det be N′det.

(5) If N′det < Ndet:
(a) For every time unitui , if there exists a fault

f ∈ Fdet − F′det with udet(f) = ui , let uk be the
highest time unit such thatuk ≤ ui and
omitted[k] = 1.

(b) Setomitted[k] = 0 for every time unituk identi-
fied in Step 5(a).

(c) Go to Step 4.
(6) Omit every test vectorti with omitted[i] = 1, and stop.

Figure 1: Procedure 1

Once a compacted test sequence is obtained, Proce-
dure 1 is applied again to omit additional test vectors. This
process terminates when the last application of Procedure
1 does not reduce the test length further. We refer to the
overall procedure asREST− OM0, whereRESTindicates
that it is a restoration based procedure, andOM0 indicates
that the initial test sequence is obtained by omitting time
units where no faults are detected.

3.2 The second procedure
Procedure 2 given in Figure 2 is different from Procedure
1 in the following ways.

Procedure 1 uses an initialomittedvector that keeps
every test vectorti with udet(f) = ui for some fault f .
Compared to initially omitting all the test vectors, the
advantage of Procedure 1 is that a smaller number of test
vectors need to be considered for restoration. The disad-

-- --

vantage is that a test vectorsti with udet(f) = ui may not
have to be maintained as part of a minimal length test
sequence. In this case, the final test length produced by
Procedure 1 may be higher than necessary. Procedure 2
alleviates this problem by including test vectors with
udet(f) = ui in the test sequence only whenf is one of the
next target faults for restoration. This is done in Steps 6 to
9, as follows. We denote byN′det(i) the number of faults
which are not detected by the test sequence with the cur-
rent omitted vector, and for whichudet(f) = ui . We ran-
domly select a time unitui1 with N′det(i1) ≠ 0. We repeat
the selection to obtainm time unitsui1, ui2, . . . , uim

with
m

j=1
Σ N′det(i j) as close as possible to a predetermined con-

stant, 64 in our implementation. Thus, we obtain approxi-
mately 64 target faults. Only for these target faults we then
restore test vectors in Step 10 of Procedure 2. This pro-
cess is repeated until all the faults are detected again.

Procedure 2:Vector restoration based procedure 2
(1) Fault simulateT. Find the first detection timeudet(f) of

every fault f . Let Fdet be the set of detected faults. Let
Sui

be the state of the fault free circuit at time unitui .
(2) Let usync be the first time unit whereSusync

is fully speci-
fied. Set omitted[i] = 0 for 0 ≤ ui < usync and
omitted[i] = 1 for ui ≥ usync.

(3) Unmark all the time units.
(4) Find the faults inFdet which are detected byT with the

current omitted vector. Let the set of detected faults be
F′det. Let the number of faults inF′det be N′det.

(5) If Ndet = N′det, omit every test vector ti with
omitted[i] = 1, and stop.

(6) For every time unitui , let N′det(i) be the number of faults
in Fdet − F′det with udet(f) = ui .

(7) If all the time units withN′det(i) ≠ 0 are marked, unmark
all the time units.

(8) Randomly select unmarked time unitsui1, ui2, . . . , uim

such thatN′det(i j) ≠ 0 for 1 ≤ j ≤ m, until
m

j=1
Σ N′det(i j) ex-

ceeds 64 for the first time or every time unituk with
N′det(k) ≠ 0 is selected. Mark all the selected time units.

(9) Let Ftarg be the set of faults inFdet − F′det which are de-
tected at one of the selected time units.

(10) WhileFtarg ≠ φ :
(a) For every selected time unitui j

, if there exists a
fault f ∈ Ftarg with udet(f) = ui j

, let ukj
be the

highest time unit such thatukj
≤ ui j

and
omitted[kj] = 1.

(b) Setomitted[kj] = 0 for every time unitukj
identi-

fied in Step 10(a).
(c) Remove fromFtarg the faults which are detected

by T with the currentomittedvector.
(11) Go to Step 4.

Figure 2: Procedure 2

Procedure 2 is called repeatedly with the new test
sequence as input to omit additional test vectors, until the
test length cannot be reduced any further. We refer to the
overall procedure asREST− RO64, whereREST indicates
that it is a restoration based procedure,RO indicates that
time units are considered in random order in Step 8, and
64 is the approximate number of faults targeted in every
iteration of the procedure.

We also implemented another procedure, called Pro-
cedure 3, which is similar to Procedure 2, except that
instead of randomly selecting the time units in Step 8, they
are selected in reverse order starting from the highest
detection time and proceeding towards the lower ones.
When Procedure 3 is repeated on compacted test
sequences until no further reduction in test length is possi-
ble, we call it ProcedureREST− SO64.

4. Experimental results
In this section, we report on several experiments using
Procedures 1, 2, 3 and their iterative versions
REST− OM0, REST− RO64 and REST− SO64, respectively.
The procedures were applied to test sequences generated
by the test generation procedure STRATEGATE of [9].
These test generation procedures achieve high fault cover-
age for the benchmark circuits considered here. The
STRATEGATE test sequences were provided to us by Dr.
Michael Hsiao of Rutgers University, who also provided
us the test lengths after the compaction procedure of [5]
was applied to these sequences.

Table 4: Procedures 1, 2 and 3
orig [5] Proc. 1 Proc. 2 Proc. 3

circuit t.len t.len t.len time t.len time t.len time
s298 194 179 124 0.4 124 0.4 119 0.3
s344 86 79 66 0.2 66 0.2 60 0.2
s382 1486 562 563 15.3 526 4.7 584 3.0
s400 2424 740 708 21.4 695 6.8 851 7.9
s444 1945 776 638 19.0 707 7.1 602 3.6
s526 2642 1665 1337 37.1 1429 33.3 1399 18.3
s641 166 132 119 0.3 118 0.3 109 0.2
s713 176 143 138 0.5 130 0.4 129 0.3
s820 590 396 558 2.3 515 4.4 500 2.4
s832 701 411 615 3.2 581 8.0 542 4.1
s1196 574 543 308 0.5 308 1.2 279 0.7
s1238 625 564 323 0.7 320 1.3 293 0.8
s1423 3943 2442 1338 307.0 1152 73.8 1116 40.0
s1488 593 409 560 6.9 522 12.7 472 4.8
s1494 540 415 502 8.8 508 14.2 469 6.2
s5378 11481 10436 911 192.5 959 174.6 668 57.5
s35932 257 217 182 204.3 178 310.1 144 193.8
am2910 2509 2180 466 41.8 472 15.6 449 10.0
div16 1098 937 564 69.8 540 13.7 485 4.1
mult16 1696 465 358 15.9 334 7.5 226 2.7
pcont2 195 106 108 14.3 106 8.9 92 5.1
piir8o 417 316 320 84.7 325 175.5 254 37.9
total 34338 24113 10806 10615 9842

In Table 4, we show the results obtained by Proce-
dures 1, 2 and 3. After circuit name we show the test
length of the original sequence. For comparison, we show

-- --

the test length obtained after the compaction procedure of
[5]. We then show the test length and run time of Proce-
dures 1, 2 and 3, in this order. Run time is measured in
seconds on an HP C180 workstation. It can be seen that
for the majority of the circuits considered, all the proposed
procedures achieve higher levels of compaction than the
procedure of [5]. In several cases, Procedures 1, 2 and 3
achieve significantly higher levels of compaction than the
procedure of [5], e.g., for circuitss1423, s5378 and
am2910. The total test lengths given in the last row of
each table are the sums of all the test lengths in the corre-
sponding columns.

In Table 5, we show the results of Procedures
REST− OM0, REST− RO64 and REST− SO64. The
columns headedSO64+ RO64 will be explained below.
Comparing with the results of Table 4, it can be seen that
iterating over the compaction procedures helps reduce the
test length, at the cost of increased run time. The invest-
ment of additional run time is justified in cases where a
reduction in test length is necessary to allow the test
sequence to fit in the tester memory.

Table 5: ProceduresREST− OM0, RO64,SO64

orig REST-OM0 REST-RO64 REST-SO64 SO64+RO64
circuit t.len t.len time t.len time t.len time t.len time
s298 194 106 2.2 108 1.6 104 0.8 97 1.3
s344 86 57 0.9 56 0.3 58 0.3 57 0.4
s382 1486 536 71.5 524 10.5 542 8.4 535 20.6
s400 2424 688 62.6 658 26.2 626 17.8 559 29.9
s444 1945 631 68.9 641 26.6 602 6.7 588 24.1
s526 2642 1325 299.2 1132 179.0 1097 61.6 1083 149.4
s641 166 113 1.0 105 1.0 101 0.5 97 0.9
s713 176 135 1.4 124 1.1 123 0.7 114 1.3
s820 590 539 7.4 413 27.6 458 9.3 400 24.6
s832 701 557 21.1 470 38.7 490 11.3 428 43.3
s1196 574 298 1.9 283 5.5 269 2.2 263 5.4
s1238 625 313 2.5 293 6.1 277 2.7 269 6.7
s1423 3943 932 1007.4 840 415.3 961 156.9 749 401.9
s1488 593 545 50.9 451 64.3 437 23.2 437 30.9
s1494 540 482 48.3 446 41.4 419 29.6 396 60.9
s5378 11481 665 491.4 597 919.7 560 126.2 558 253.3
s35932 257 168 836.1 173 1106.2 118 968.2 118 1121.0
am2910 2509 419 138.5 425 53.5 410 31.3 353 56.4
div16 1098 548 341.5 481 56.3 470 20.1 455 68.2
mult16 1696 239 44.1 232 27.1 171 6.7 154 14.9
pcont2 195 89 35.3 85 28.3 60 15.2 60 17.6
piir8o 417 265 342.5 242 1799.0 230 164.8 229 339.2
total 34338 9650 8779 8583 7999

Procedures REST− OM0, REST− RO64 and
REST− SO64 terminate when an additional iteration does
not reduce the test length any further. However, even
when the test length saturates for a given procedure, it
may be possible to further reduce the test length by using
a different compaction procedure. To investigate this pos-
sibility, we applied ProceduresREST− OM0, REST− RO64
and REST− SO64 in various orders. Overall, the shortest
test sequences were obtained when we applied
REST− RO64 to the test sequences produced by
REST− SO64. The results of this experiment are shown in

the columns with headingSO64+ RO64 of Table 5. It can
be seen that additional reductions in test length are possi-
ble by applying both procedures.

5. Concluding remarks
We proposed three compaction procedures for syn-
chronous sequential circuits based on test vector restora-
tion. New techniques were described to speed-up the
restoration process. The first technique initially retained
test vectors where faults are detected. The second tech-
nique consisted of consideration of several faults in paral-
lel during restoration. This was achieved by considering
all the faults with the same detection time together. A par-
allel fault simulator was used as part of the compaction
procedures. Several orders of processing detection times
were considered. The proposed procedures were combined
to maximize the level of compaction that can be achieved.

In this work, we compacted test sequences given as
single entities. By partitioning a test sequence into several
subsequences or requiring the test generator to produce
several subsequences, and compacting each subsequence
separately with respect to its set of target faults, the com-
paction time can be reduced [10].

References
[1] I. Pomeranz and S. M. Reddy, "On Static Compaction of Test

Sequences for Synchronous Sequential Circuits", 33rd Design
Autom. Conf., June 1996, pp. 215-220.

[2] T. P. Kelsey and K. K. Saluja, "Fast Test Generation for Sequen-
tial Circuits", Intl. Conf. Comp. Aided Design, Nov. 1989, pp.
354-357.

[3] T. Niermann and J. H. Patel, "HITEC: A Test Generation Pack-
age for Sequential Circuits", European Design Autom. Conf.,
1991, pp. 214-218.

[4] I. Pomeranz and S. M. Reddy, "Vector Restoration Based Static
Compaction of Test Sequences for Synchronous Sequential Cir-
cuits", Intl. Conf. on Computer Design, Oct. 1997, pp. 360-365.

[5] M. S. Hsiao, E. M. Rudnick and J. H. Patel, "Fast Algorithms for
Static Compaction of Sequential Circuit Test Vectors", VLSI Test
Symp., April 1997, pp. 188-195.

[6] F. Corno, P. Prinetto, M. Rebaudengo and M. Sonza Reorda,
"New Static Compaction Techniques of Test Sequences for
Sequential Circuits", 1997 Europ. Design & Test Conf., March
1997, pp. 37-43.

[7] H. K. Lee and D. S. Ha, "HOPE: An Efficient Parallel Fault Sim-
ulator for Synchronous Sequential Circuits", 1992 Design
Autom. Conf., June 1992, pp. 336-340.

[8] H. K. Lee and D. S. Ha, "New Techniques for Improving Parallel
Fault Simulation in Synchronous Sequential Circuits", 1993 Intl.
Conf. on Computer-Aided Design, Oct. 1993, pp. 10-17.

[9] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, "Sequential Circuit
Test Generation Using Dynamic State Traversal", 1996 Europ.
Design & Test Conf., March 1996, pp. 22-28.

[10] I. Pomeranz and S. M. Reddy, "Partitioning of Test Sequences for
Synchronous Sequential Circuits", Tech. Rep. 3-1-1997, ECE
Dept., Univ. of Iowa.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

