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Abstract

In this paper, an optimization scheme is proposed for
interconnect design with wire width and series resistance
being design variables. Due to the distributed nature of
interconnects, poles of such systems are transcendental and
infinite in number. First, a two-pole approximation is used
to capture the system behavior. Lower-order moments are
employed to obtain two approximate dominant poles. Then,
the two parameters, damping ratio and natural undamped
frequency, are expressed as functions of the two dominant
poles. Since the output response is characterized by the
two parameters, the parameters are used to define the
objective function and constraints, which form a constrained
multivariable nonlinear optimization problem. After that,
the optimization problem is solved using gradient projection
method. One advantage of our approach is the ability to
explicitly control the maximum overshoot of the observation
points. Two numerical examples are given.

1. Introduction

As system operating frequencies increase, interconnect
becomes the dominant factor in determining system perfor-
mance. Signal delay is largely affected by interconnects than
by gates. It has been shown that interconnects of MCM
behave like RLC transmission lines [1].

Since inductance makes peaking and oscillations pos-
sible, unproperly designed interconnects can cause false
switching and affect system reliability. Intuition-based
approach, which uses time domain simulation while chang-
ing line parameters, can be very time-consuming and not
promising, unless some effective guidance is provided.

One approach for systematic interconnect design is
to approximate the system behavior by poles and zeros.
However, due to the distributed nature of interconnects,
poles of such systems are transcendental and infinite in

number. Previous works have shown the usefulness of two-
pole approximation for capturing the system behavior [2] [3]
[4] [5] [6] [7].

While previous works use lumped elements to ap-
proximate the interconnects and/or have no explicit control
of the overshoot of the response, we calculate the two
dominant poles using lower-order moments, which are
obtained exactly by utilizing the method proposed by Yu
and Kuh [8], and explicitly control the overshoot. The
output response is characterized by two parameters, and
the objective function and constraints, consisting of these
two parameters, form a constrained multivariable nonlinear
optimization problem.

Deep overdamping results in a slow response and deep
underdamping gives rise to a response with much overshoot
and a long settling time. Both cases should be avoided
in high performance system design. Slightly underdamped
design is good to system performance which results in
shorter signal delay with small amount of overshoot. For
this reason, we design the interconnects to be underdamped,
if possible.

In Section 2, the objective function and constraints
of the constrained multivariable optimization problem are
derived. In Section 3, two design examples are presented.
Conclusion is made in Section 4.

2. Formulation of the Optimization Problem

2.1. Two-Pole Approximation

Moments of a time-domain waveform,v(t), are defined
via the Laplace transformation of the waveform as follows:
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cients ofV (s), and thek-th moment is
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Since interconnects are modeled as transmission line in
high performance system, input signals undergo a pure delay
� =

Pn

i=1 di
p
LiCi to arrive at the output end, wheren is

the number of lines on the signal path,Li andCi are the
inductance and capacitance of theith line per unit length
respectively, anddi is the length of the corresponding line.

When rational function is used to approximate the
delay in frequency domain, 20 or more poles may be needed
[9]. In order to approximate the system behavior better, the
pure delay must be excluded from the moments. The new
moments have the following relation with original moments:
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When two-pole approximation is used to capture the
system behavior, the transfer function is written as:

H(s) =
k1

s� p1
+

k2

s� p2
(5)

where p1, p2 are the two approximate poles andk1,
k2 are the corresponding residues. When the system is
underdamped, the two poles and residues are conjugate
respectively.

Fig. 1 shows a series-terminated interconnection line,
driving a capacitive load. In the following discussion, we
assume that all the loads are capacitive.
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Fig. 1 A series-terminated interconnect line.

Sincehjt=0 = 0 and the loads are capacitive, thedc
gains are unity, we have:

k1 + k2 = 0 (6)

�k1
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� k2

p2
= 1 (7)

While it is possible to obtain the dominant poles by
Padé approximation, however, due to its instability, we use
a new approach [10]. Letp1 andp2 be the two approximate
poles that we want to find and assume that the two poles are
complex conjugate pair. Representing the poles using polar
coordinates, we havep1 = r ei� andp2 = r e�i�. As a
result, the ratios of successive moments becomes:
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Eliminatingp1 using mk
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Then, the magnituder can be obtained using (8). Thus, we
get bothp1 andp2. We takek = 4 in our computation.

When the line parameters, resistance and capacitance,
are dominant, the ratios of successive moments will con-
verge, the dominant poles are real and the above approach
will not work. For this case, we can use the method proposed
by Tutuianu instead [11]. The two approximate poles as
functions of the moments are:
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We usek = 4 in (10) andk = 3 in (11).
Using (6) and (7), we can also write H(s) as:

H(s) =
!2n

s2 + 2�!ns+ !2n
(12)

where!n is the natural undamped frequency and� is the
damping ratio [12]:
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The damping condition is controlled by�. 0 < � < 1,
� = 1, and� > 1 correspond to underdamped, critically
damped, and overdamped responses respectively. Next, we
discuss the three situations in detail.

i) 0 < � < 1:
The step response is obtained as:

v(t) = 1� e��!ntp
1� �2

sin(!n
p
1� �2t+ �) (14)

where� = cos�1�.



The first overshoot of the response occurs at:

tmax =
�

!n
p
1� �2

(15)

and the correspondingv(tmax) is

v(tmax) = 1 + e
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The percent overshoot is

PO = e
� ��p
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and we can see that the amount of overshoot is only affected
by �.

Considering the partial derivatives ofv(t) with respect
to !n and�, we have:
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tan(x) > x for 0 < x < �
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which is less than 0 for0 < t < tmax, where� =
!n
p
1� �2t. Hence, larger!n and smaller� result in faster

response, and consequently, shorter delay time.
Observingtmax, it has the same characteristics with

respect to!n and �. Since the output response increases
monotonically during0 < t < tmax, we can deduce that
smallertmax leads to shorter delay with� changing in small
range.

ii ) � = 1:
The step response is written as:

v(t) = 1� e�!nt(1� !nt) (20)

and its derivative with respect to!n is
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Therefore, larger!n leads to shorter delay time.
iii ) � > 1:
The step response is obtained as:
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Hence, larger!n and smaller� result in shorter delay time.

2.2. Objective Function and Constraints

Generally, the line parameters, resistance, inductance,
and capacitance are functions of the line width. For an
interconnect network, the design objective is to determine
the set of line widths and the series resistances with respect
to loading conditions so that the output response has short
delay.

Based on the discussion of last section, we formulate
our objective function for a single output as:

q =
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1
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p
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where�u is the upper bound of� and � is a cost factor
to enlarge the costs of critically damped and overdamped
cases.

If there areN observation points, we form a cost
vector:

Q = [q(1) q(2) q(3) � � � q(N)] (25)

and the cost function is defined as:

P = QTQ =

NX
i=1

(q(i))2 (26)

Then the optimization problem is formulated as:
Objective

MinimizeP

Subject to

wl � wi � wu; 1 � i � L

Rl � Rj � Ru; 1 � j �M

�l � �k � �u; 1 � k � N (27)

whereL is the number of lines,M is the number of series
resistances, andN is the number of observation points.
wl, Rl, and �l are the lower bounds of line width, series
resistance, and damping ratio respectively.wu, Ru, and�u
are the upper bounds of line width, series resistance, and
damping ratio respectively.



3. Numerical Example

In this section, we give two design examples.
Considering the circuit shown in Fig. 2, we first

calculate the momentsm0
3, � � �, m0

6 for the two observation
points. Then the pure delays are excluded and we getm3,
� � �, m6. Next, the two approximate poles are obtained and
the corresponding!n and� are calculated. The following
step is to optimize (27) using gradient projection method
[13]. Since there is no explicit expressions for objective
function and constraints as functions of design variables,
numerical gradient approximations are employed.

The functions for line parameters are taken from [14]
and are shown below:

R(
=cm) = 150=w

L(nH=cm) = 1=(0:012w+ 0:18)

C(pF=cm) = 0:047w + 0:68 (28)

wherew is the line width in microns.
If the maximum percent overshoot that we can tolerate

is5%, the corresponding� is about0:7, which is taken as the
lower bound of the damping ratio. Since deep overdamping
results in slow response, we set the upper bound�u to 1.5.
The other constraints are shown below:

wl = 10�m;wu = 60�m
Rl = 2
; Ru = 30


L is 2, M is 2, andN is 2.
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Fig. 2 Example Circuit 1.
C1 = 10pF;C2 = 5pF;d1 = 6cm;d2 = 5cm.

The calculated line widths and termination resistances
areR1 = 2:0
,R2 = 6:9
,w1 = 59�m, andw2 = 18�m.

Fig. 3 shows the simulated output responses atVout1
andVout2 using Spice3f5 with LTRA (lossy transmission
line) model.

Fig. 4 is another example circuit. The lower, upper
bounds and line parameter functions are the same as exam-
ple 1. The calculated line widths and termination resistances
areR1 = 2:0
, R2 = 2:0
, R3 = 2:0
, R4 = 2:0
,
R5 = 8:9
, w1 = 60�m, w2 = 56�m, w3 = 11�m,
w4 = 52�m, andw5 = 25�m.

Fig. 5 and Fig. 6 show the output responses. Table 1
gives the numerical results. We can see that the overshoot
match with the damping ratio quite well.
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Fig. 3 Output Responses.
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Fig. 4 Example Circuit 2.
C1 = 5pF;C2 = 6pF;C3 = 5pF;C4 = 8pF;C5 = 5pF;

d1 = 3cm;d2 = 6cm;d3 = 5cm;d4 = 5cm;d5 = 4cm.
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Fig. 5 Output Responses atVout1;Vout2.
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Fig. 6 Output Responses atVout3;Vout4;Vout5.

Table 1. Numerical Results for Example 2

Vout Delay Overshoot Damping Ratio
(ns) (%) (By Approximation)

1 0.28 0.0583 1.0159
2 0.96 0.0739 1.0275
3 1.62 0.1243 1.0197
4 0.94 0.0720 1.0023
5 1.32 0.0834 1.0002

4. Conclusion

Properly designed interconnects are important part of
the implementation of high performance system. We have
proposed an optimization scheme to design interconnect
using two-pole approximation. The circuit behavior is
captured by two parameters,!n and �, and the optimiza-
tion objective and constraints are defined using the two
parameters. For efficiency and accuracy, the lower-order
moments are utilized to calculate the two approximate poles.
For system performance, the damping ratio is employed
to obtain an appropriate damping condition. Design high
performance interconnect is a complicated task. There are
many factors that can affect the design. It is a issue relating
technology, circuit structure, loading conditions and line
parameters. In the future, we plan to include wire length
as a variable to increase the degree of freedom of design.

ACKNOWLEDGMENT

The authors would like to thank City University of Hong

Kong for the support to this research work.

References

[1] R. C. Frye and H. Z. Chen, “Optimal Self-Damped Lossy
Transmission Line Interconnections for Multichip Modules,”
IEEE trans. Circuits Systems, II, vol. 39, no. 11, pp. 765-771,
Nov., 1992.

[2] Y. Sugiuchi, B. Katz, and R. A. Rohrer, “Interconnect Op-
timization Using Asymptotic Waveform Evaluation (AWE),”
in Proc. MCMC 94, pp.120-125, 1991.

[3] D. Zhou, S. Su, F. Tsui, D. S. Gao, and J. S. Cong, “A
Simplified Synthesis of Transmission Lines with a Tree
Structure,” Int. J. Analog Integrated Circuits Signal Process.,
pp.19-30, Jan., 1994.

[4] J. Wang and W. Dai, “Optimal Design of Self-Damped Lossy
Transmission Lines for Multichip Modules,” in Proc. ICCD,
pp.594-598, Oct., 1994.

[5] A. B. Kahng and S. Muddu, “Optimal Equivalent Circuits for
Interconnect Delay Calculations Using Moments,” in Proc.
European DAC, pp. 164-169, 1994.

[6] A. B. Kahng and S. Muddu, “Two-Pole Analysis of Intercon-
nect Tree,” in Proc. MCMC 94, pp. 105-110, 1994.

[7] T. Xue, E. S. Kuh, and Q. J. Yu, “A Sensitivity-Based
Wiresizing Approach to Interconnect Optimization of Lossy
Transmission Line Topologies,” in Proc. MCMC 96, pp.117-
122, 1996.

[8] Q. J. Yu and E. S. Kuh, “Moment Models of General
Transmission Lines with Application to MCM Interconnect
Analysis,” in Proc. MCMC 95, pp.158-163, 1995.

[9] J. E. Bracken, “Interconnect Simulation with Asymptotic
Waveform Evaluation,” PhD dissertation, Carnegie Mellon
University, 1994.

[10] J. H. Shao and R. M. M. Chen, “Two-Pole Approximation for
High Speed Interconnect Design,” manuscript, 1997.

[11] B. Tutuianu, F. Dartu, and L. Pileggi, “An Explicit RC-Circuit
Delay Approximation Based on the First Three Moments of
the Impulse Response,” in Proc. DAC, pp. 611-616, 1996.

[12] B. C. Kuo,Automatic Control Systems, 7th Edition, Prentice-
Hall, 1995.

[13] J. B. Rosen, “The Gradient Projection Method for Nonlinear
Programming. Part II. Nonlinear Constraints,” Journal of the
Society for Industrial and Applied Mathematics, vol. 9, no. 4,
pp.514-532, Dec., 1961.

[14] R. Gupta and L. T. Pileggi, “Transmission Line Synthesis via
Constrained Multivariable Optimization,” IEEE Trans. CAD,
vol. 16, no.1, pp.6-19, Jan., 1997.


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


