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Abstract

As VLSI circuit speeds have increased, the need for ac-
curate three-dimensional interconnect models has become
essential to accurate chip and system design. In this paper,
we describe an integral equation approach to modeling the
impedance of interconnect structures accounting for both
the charge accumulation on the surface of conductors and
the current traveling along conductors. Unlike previous
methods, our approach is based on a modified nodal anal-
ysis formulation and can be used directly to generate guar-
anteed passive low order interconnect models for efficient
inclusion in a standard circuit simulator.

1 Introduction

As VLSI circuit speeds have increased, the need for
accurate interconnect models has become essential to ac-
curate chip and system design. Recently, much work has
been directed at rapidly solving for the inductance or capac-
itance of these structures, starting directly from Maxwell’s
equations [1, 2]. However inductance and capacitance are
not necessarily decoupled quantities, and for higher fre-
quencies a distributed model is necessary. In this paper,
we describe an integral equation approach to modeling the
impedance of interconnect structures accounting for both
the charge accumulation on the surface of conductors and
the current traveling along conductors. While such com-
putations by themselves are not new, we show that with
our approach, based on a modified nodal analysis formula-
tion, it is possible to generate guaranteed passive low order
models for efficient inclusion in a circuit simulator such
as SPICE. Additionally, the algorithm is ripe for accelera-
tion techniques such as the Fast Multipole Method [1, 3]
or the Precorrected-FFT [4] approach allowing the analy-
sis of larger, more complex three-dimensional geometries.
In Section 2 we discuss the integral formulation and dis-
cretization from which we derive the large dense linear

system describing the interconnect. In Section 3 we de-
scribe applying recent model order reduction techniques
to our formulation in order to directly generate passive
reduced-order models. In Section 4, we present results of
using the new formulation, and in Section 5 we present
some conclusions.

2 Formulation

Parasitic extraction for a set of conductors involves de-
termining the relation between the terminal (or port) cur-
rents and the terminal voltages. For a terminal-pair
problem in the sinusoidal steady-state at the frequency

, this relation is described by the admittance matrix,
,
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where are vectors of the terminal current and
voltage phasors, respectively [5]. Note that column of
can be computed by setting entry of to one, the rest to
zero, and then computing the resulting current vector .
The column of is then given by .

In order to do that, we need to compute the result-
ing currents given a set of potentials. To that end, we
turn to an integral equation approach derived directly from
Maxwell’s equations and a discretization operation simi-
lar to the Partial Element Equivalent Circuit (PEEC) ap-
proach [6]. However, after generating the large linear
circuit describing the interconnect, and unlike the stan-
dard PEEC method, we apply the circuit solution technique
known as Modified Nodal Analysis in such a manner so
that the Block Arnoldi algorithm can be used to produce
guaranteed passive reduced order models.

2.1 Integral Equation and Discretization

At each point inside the conductors, we have [7]
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Figure 1: A discretization of a long and thin conductor
only along 1 coordinate direction. Filaments sections are
smaller near the surfaces to properly capture skin effect.
Panels cover all surfaces (only some are shown).

where the scalar and vector potentials are, respectively
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is the electric field, and are the electric permittivity
and the magnetic permeability of the medium, respectively,

is the volume of all conductors, is the charge density
and is the current density. Note that we are assuming that
the influence of the charge and currents at any point in the
structure is instantaneously felt everywhere. This is called
the Electromagneto-Quasistatic approximation, which we
can assume for structures small compared to the wave-
length, as is generally the case for interconnect structures.

To model current flow in the PEEC method, the inte-
rior of conductors is divided into a grid of filaments, each
carrying a constant current density along its length. If the
conductor is long and thin, as is often the case with this
type of structures, we can assume the length direction as
the dominant current flow direction, and use filaments only
in that direction, as shown in Figure 1. For plane type
structures, one can use a grid of filaments in two coordi-
nate directions. For the general case, without assuming any
dominant direction, a 3D grid of filaments must be used.
To model charge accumulation, the surface of each conduc-
tor is covered with panels, each holding a constant charge
density. Figure 1 shows only the panels connected to the
central node, for simplification.

The combination of the filaments and panels, plus
sources, , at the terminal pairs, generates a “circuit”
whose solution gives the desired admittance parameters, as
in the particular case shown in Figure 2. Each of the node
points connecting the filaments is a node in the circuit, each
filament is a branch of the circuit, as well as each panel, as
shown. To generate a system of equations, we first deter-
mine the constitutive relations of filaments and panels. To
that end, we apply the Galerkin method to the discretized
version of (2) (see [6] for details). The constitutive relation
for filaments will be
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Figure 2: The “electric circuit” corresponding to the dis-
cretization of the conductor in Figure 1. The quantities
shown will be used in the MNA formulation.

where is the vector of filament currents. The
diagonal matrix of filament DC resistances is

defined as
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where and , are respectively the length and cross section
of filament , and is the conductivity of the associated
conductor. The matrix of partial inductances, , is the

dense, symmetric positive semidefinite matrix given
by
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where is the cross section of filament , is its volume
and is a unit vector with the filament length direction
(equivalent quantities for filament ). The node potentials
come from the panel charges on the surface and are given
by
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where is the vector of the node voltages,
is the charge on each of the panels, and

is the potential coefficients matrix formed by

1
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where is the surface of panel , is its area, is the
node location, is the number of node points on the

surface and is the number of internal node points (nodes
without any panel connected to it).

Unlike the PEEC method, however, in our formulation
we compute the coefficients of potential matrix in a dif-
ferent way, allowing the verification of charge conservation
on every node. will be computed with:

1
4

1
10

clearly in the form of partial coefficients of potential, where
and are the same as in (9), but is now the center



of each panel . In our case . Note that we
allow multiple panels on each node - as is the case for nodes
on edges or apices of conductors. Furthermore, we shall
see that this form allow us to establish a set of equations
amenable to generating passive reduced-order models.

The current flowing onto the panels is given by
(assuming for the sinusoidal steady state), and since

the panel node voltages in (8) are voltages relative to infin-
ity, we can view the panel branches as connecting the panel
node to the zero potential node at infinity. Then the panel
branch voltages are given by 0 where

are the potentials in the panels. Combining, we get the
constitutive relation for panels:

1
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With (11) and (5) we can write the constitutive relations for
the elements as a single matrix in , ,

0
0
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2.2 Applying Modified Nodal Analysis

We can now apply Kirchoff’s Voltage and Current Laws
via the circuit solution technique known as Modified Nodal
Analysis to derive a system of equations whose solution
gives . Note that we will only use voltage sources be-
cause one needs to connect all the sources to the zero poten-
tial node at infinity and that node is only connected to ca-
pacitors. This is necessary in order to be able to use Model
Order Reduction techniques with expansions around 0
(a DC solution is desirable if we want to use the model in
time-domain simulations).

Kirchoff’s Current Law, which implies that the sum of
the branch currents leaving each node in the network must
be zero, is represented by

0 13

where is the sparse nodal incidence matrix sum-
ming the filament and panel currents leaving each node,

is the sparse matrix summing the currents
through the voltage sources, is the number of nodes (ex-
cluding the one for the point at infinity), is the number of
filaments plus panels (each of these elements forms a branch
in the circuit), and is the number of voltage sources
in the circuit (same as in the beginning of this section).

is the vector of branch currents, is
the vector of currents leaving each voltage source (always
connected to ground) and entering the nodes. Note the 0

in the right hand side due to the inexistence of any current
source in the circuit.

Applying Kirchoff’s Voltage Law to the circuit, we ob-
tain
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where is the vector of voltages at each node in the
network, are the known source voltages, and is the
vector of voltages at each branch (filaments or panels). See
Figure 2 for an illustration of these quantities.

Note that is exactly the terminal voltage vector ,
from (1). will be equal to .

Combining (14) with (13) and (12) yields the system of
equations

0
0

0 0

0
0 15

To accurately capture frequency dependent effects for
time domain circuit simulation, (15) could be solved for
specific frequencies, and then a rational fitting algorithm
can be used to compute a model for the package [8, 9]. An-
other approach is to include a sparse tableau version of (15)
in a circuit simulator instead of solving for the terminal be-
havior [6]. However, even with the approximations in this
section (assuming dominant directions for the current flow)
the size of (15) becomes extremely large if high accuracy
is desired, and these methods become computationally in-
tractable. Instead, it is necessary to reduce the size of
system through a model order reduction technique which
is the topic of the next section.

3 Coupled Circuit-Interconnect Simulation
and Passive Model Order Reduction

The basic idea of MOR techniques is to reduce the size
of the system described by the circuit equations, usually
written in a convenient state-space form, to a much smaller
one that still captures the dominant behavior of the original
system. This approximation is then used to generate a
model to be inserted in a circuit simulator such as SPICE

or SPECTRE. The field of MOR has matured significantly
in the past few years. Recently, MOR techniques, such
as the PRIMA algorithm [10], have been presented, that
are guaranteed to produce stable and passive reduced-order
models. To apply this algorithm, the circuit equations are
written in state-space form

16

where .



To derive a state space form of (15), the powers of the
Laplace variable must all be to the first power only.
However, the matrix in (12) contains terms with both
and 1 . To separate the 1 power, note first that as seen
in Figure 2, the branch currents can be categorized into two
types, ; where represents the currents in
filaments and represents the currents onto panels. Also,
consider separating into ; where the lines of
corresponds to the external nodes and corresponds
to the internal nodes. Based on this categorization, (13)
becomes

0 0
0
0

17

The zero-blocks correspond to and , which are al-
ways null since there are no panels or voltage sources con-
nected to internal nodes. We can also rewrite (14) sepa-
rating the branch voltages in ; . and
correspond to the voltages in external and internal nodes,
respectively.

0
0
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The desired equation in state-space form must now be
built using these last two matrix equations plus the consti-
tutive relations expressed in (12). Using the first equation
in (17) and the constitutive relation for panels, we can write

1 0 19

Furthermore, using the second relation in (18), we have

1 0 20

On the other hand, using the constitutive relation for fila-
ments with the first relation in (18), yields

0 21

Using (20) and (21) plus the relations not yet used in (17)
and (18), and separating the terms multiplying , we obtain
the state-space form:

0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0
0 0
0 0 0

0 0 0

0
0
0

which is clearly in a form similar to Eqn. (16).
Note that we can avoid computing 1 explicitly, which

is computationally expensive, using a recycled Krylov-
subspace iterative algorithm, as described in [11, 12]. To
generate passive reduced order models as in [10, 13, 14], it
is enough that is positive semidefinite while must be
positive semidefinite.

is positive definite. If is generated via a Galerkin
approach, then it too is positive definite, and so is

1 . Since is a block diagonal matrix consisting
of blocks which are each positive semidefinite, then so is

.
For to be positive semidefinite, 0 for any

. Let , then

0

since is positive semidefinite.
The number of states in this nodal formulation in the

presented state-space form is , where is the
number of filaments, is the number of nodes (internal +
external) and is the number of sources.

4 Formulation Results

To verify that our nodal formulated parasitic extraction
program gives correct results, we first present a comparison
between a time-domain simulation using our model and ex-
perimental measurements. Figure 3 shows a real connector
structure from Teradyne Inc. composed of 18 pins with
a ground shield around and between the conductors. For
this experiment all pins are connected to ground through
resistors. Then a noisy input is connected in series with
one of these resistors and a step with a 500 rise-time
is imposed on it. The voltage waveform at an adjacent
pin is collected. Figure 4 shows the waveform measured
at that pin and compares it with results of a time-domain
simulation performed using a 140 order reduced model
computed from a 742 order model. As can be seen from
the plot the waveforms are qualitatively similar and accept-
able accuracy is obtained. If higher accuracy is required, a
finer discretization can be used.

Let us now analyze the efficiency of the Model Order
Reduction algorithm. Figure 5 shows the impedance fre-
quency response of one pin of the same connector, using
a simple discretization of 150 filaments and 2400 panels,
for different order reduced models. These responses were
computed with our nodal formulation in the Model Order
Reduction algorithm using moment matching at 0. The
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Figure 3: A 3D connector
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Figure 4: Comparison between measured time-domain
waveforms and simulated results obtained using a reduced-
order model of the connector example.

full system has 352 states. In the figure, models with orders
94 and 246 are compared to the exact response. Note the
strong improvement from 94 to 246 states. Although we
can see that for increasing size models we match the full
model response in a larger range of frequencies, and that
we can actually compute accurate reduced-order models,
their sizes need to be larger than what we could expect.

To understand what is happening, let us consider a very
simple structure composed of two long and thin conductors,
as show in Figure 6. Both conductors are 1 long, 37
wide, 13 in height and the distance between them is
17 . The structure is discretized in 416 panels and 150
filaments producing a 323 order model. Figure 7 shows
the magnitude of the frequency dependent impedance of
both the full system and of a 62 order reduced model
using 0 as the expansion point. Figure 8 shows the
positioning of the system and reduced model poles. Notice
the relatively large number of real poles near the origin
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94 state model 
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Figure 5: Various reduced order models for the connector
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Figure 6: A simple example geometry.

(observe the scaling of the plot). The real poles correspond
to the added modes resulting from the discretization of
the conductor into bundles of filaments. The effect of
this large cluster of poles (in this case about 90% of all
poles) near the origin is weak. In fact, all of these poles
are nearly or exactly canceled by zeros and thus do not
have a strong effect on the response. These weak poles
are then responsible for the large orders required for any
general PEEC-based model. The choice of one or several
expansion points away from 0 could be a solution but
that is computationally more expensive and it is not obvious
what points to choose. Furthermore, a correct solution near

0 (DC solution) is essential to time-domain simulation.
Efficient and generic ways to overcome this difficulty are
currently under investigation.

5 Conclusions

In this paper we showed that the PEEC method com-
bined with Modified Nodal Analysis can be used in a guar-
anteed passive model order reduction algorithm to model
three-dimensional interconnect structures. A reduced-
order model based on this formulation was shown to pro-
duce the correct results for a real connector example. The
difficulties in obtaining low-order reduced models for these
PEEC-based models were described and directions for fur-
ther research were presented.
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Figure 7: Magnitude of the impedance response for the sim-
ple geometry using the nodal formulation with an expansion
point in 0.Continuous line: full system; dashed line:
reduced model.
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