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Abstract
For MEMS devices modern technologies are used to

integrate very complex components and subsystems
closely together. Due to mixed-domain problems as well
as the occuring interactions between the closely coupled
system components the design is a sophisticated process.
The interactions between the MEMS components have to
be analysed by system simulation already in an early
design stage. In this paper a modeling approach is intro-
duced that enables the incorporation of mechanical
microsystem components into the system simulation using
network and system simulators like SABER. The
approach is based on multi-terminal models of basic
mechanical elements and their composition to more com-
plex microsystems. First results for a micromechanical
resonator are presented.

1 Introduction

Microsystems are characterized by the interaction of
components operating on different physical domains. The
analysis of such complex systems requires the modeling
and simulation of single components as well as the overall
system simulation. Two general methods exist for system
simulation:
- Coupling of special simulators for the different physi-

cal domains or the different abstraction levels.
- Modeling of the different components with a common

modeling approach suitable for a powerful system sim-
ulator.

Both approaches are under investigation for some years.
This paper is focusing especially on the second method.

A similar situation exists in electronics: analog and dig-
ital systems of very different complexity have to be con-
sidered in their interaction, especially in mixed-mode
designs. Modeling and design of such systems is sup-
ported by powerful circuit and system simulators, libraries
of basic components, and hardware description languages
(HDL's). Therefore, it is useful to look for similarities in
microsystems and microelectronics design, modeling, and
simulation.

Using analogies, network-based modeling approaches
were developed in non-electrical domains long time ago
[9], [10], [17]. The main idea is to decompose a complex
system into components (or subsystems) coupled together
by signals. These signals may be divided into flow quan-
tities and differences quantities. Conservation laws exist
for these two kinds of quantities (generalized KIRCH-
HOFF's laws). Many components may be modelled as
two-poles (resistors, capacitors, springs, masses, ...), but
the approach is not restricted to such two-poles or two-
ports (transformers, gyrators) also.

A more general approach decomposes a complicated
microsystem into much more simpler components. These
components may be modelled asn-poles (multi-termi-
nals). These n-poles may be decomposed further into a
combination of basic components (structural modeling) or
may be described by equations or differential equations
(behavioural modeling - as it is done in this paper). In gen-
eral, we propose acombined structural-behavioural
modeling approach.

The usage of behavioural modeled n-poles  is the main
difference to the approaches used in the 60's to the late
80's. Circuit simulators in this area like the well-known
SPICE simulator were not able to handle behavioural
descriptions. Therefore, all of the subsystems had to be
structurally modelled by networks composed of very sim-
ple basic elements. Especially, the modeling of nonlinear
effects and of multi-dimensional problems was too cum-
bersome for a widely accepted design methodology and
the development of building-block libraries based on such
a network approach.  By using the proposed way it is pos-
sible to model microsystems in three spatial dimensions
and to model the interactions between motions in different
directions and between different physical domains. This is
a step towards generatingnonlinear macromodels - one
of the most important possibilities for simulating the
behaviour of complete micromachines [1], [18]. Already
in the linear case, such macromodels proved to be very
useful in the simulation of the interaction between the
mechanical and the electronic subsystems for control and
signal processing [5], [11], [14], [19], [21].

The simplest way to model complex systems by mixed
structural-behavioural descriptions is the application of



Hardware Description Languages (HDL's). Powerful sim-
ulators like SABER, ELDO, or SPECTRE have their own
model description languages (MAST, HDL-A, and
SPECTRE-HDL, respectively). The advent of a new HDL
(VHDL-AMS, under standardization by IEEE) for mixed
discrete and continuous systems as well as electrical and
non-electrical systems is a large step to a unified treatment
of heterogeneous microsystems [3]. The ability of the
forthcoming VHDL-AMS-simulators to handle large con-
tinuous systems (non-electrical as well as electrical) and
digital systems (e.g. for integrated signal processing) is a
very natural way to model and to simulate microsystems.
For basic structures like beams or membranes, the con-
struction of behavioural models may be supported by
model generators [15]. In this context FEM simulations
can be used to verify VHDL-AMS-models.

The modeling approach is sketched out in Fig. 1: A
complicated micromechanical acceleration sensor is
decomposed into simpler components, e.g. beam elements
and coupling elements. Each component is modelled as a
n-pole with its own behavioural description. Flow and dif-
ference quantities are the forces and torques in all 3 direc-
tions (x, y, z) and the displacements or velocities,
respectively. The combination of the components is mod-
eled by the interconnection of the n-poles.

In this paper, we describe the development of behav-
ioural models of micromechanical components with dif-
ferent degrees of accuracy. The models were coded in
MAST for the SABER simulator and their accuracy was
compared with FEM simulation results using ANSYS. In
this way, a model library may be developed for the design
of micromechanical structures and - in principal - other
kinds of microsystems.

2 Fundamentals

The analysis of mechanical components in the design of
MEMS devices is based on finite element analyses. The
mechanical structure is therefore split into finite elements
and the behaviour of the whole scheme is modeled by the
complex ensemble of these elements [2], [8]. The accu-
racy of the simulation is determined by the choice of the
particular approach and the number of elements used.
Either volume elements or spatial beams can be used as
finite elements to simulate micromechanical beams (fig.
2). A volume element considers the spatial dimensions of
the beam. It has 8 nodes with forces acting on and dis-
placements occuring.

The spatial beam approach is based on an abstraction,
where only both end points of the beam and the forces and
displacements occuring on them are taken into account.
Effects like e.g. the transverse contraction cannot be taken
into account with this type of model.

Static and dynamic behaviour of each finite element is
modeled by equation (1).

M, D andK represent the mass, damping and stiffness
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Fig. 1: Principle of an acceleration sensor and its
decomposition into beam elements
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matrices of the element [13]. Displacements and torsions
of the nodes are comprised in vectorx and the forces and
torques acting on the element are represented by vectorF.
An entire micromechanical structure is composed of these
finite elements. The behaviour of the entire system is
described by an equation of the same type as equation (1),
but using stiffness, mass and damping matricesM’ , D’  and
K’ , which are composed of the matrices of the elements.
Subsequently vectorsx’  andF’  are used, containing all
nodes of the entire system. Fortunately the work of setting
upM’ , D’ , K’ , x’  andF’  is done by the simulator.

As the spatial beam shall be the basis of the modeling
for the system simulation with SABER, it will be consid-
ered in more detail. If a spatial beam element is considered
(fig. 2), only both ends (node 1 and 2) are important for the
external behaviour. Linear and rotational displacements in
the 3 spatial directions can occur at these points. They are
caused by forces and torques affecting the nodes in the 3
spatial directions.

The behaviour of a beam element is determined by the
properties of its material (densityρ, matrix of modulus of
elasticity E, matrix of modulus of shearing elasticity G)
and the geometrical dimensions (length L, cross-sectional
area A=b*h, volume V). Furthermore the torsional planar
moment of inertia It, the planar moments of inertia Im and
In and also the polar moment of inertia Ip are required for
the calculations. The displacements contained inx are
denoted by w and the torsions byϕ. The first index of
these quantities indicates the direction of effects and the
second index is the number of the node under consider-

ation. Forces are denoted byF and torques byM compris-
ing vector F. The same index declarations as for
displacements and torsions apply to both of them.

Subsequently there is a distinction between the coordi-
nate system of the element (l, m, n) and the coordinate sys-
tem of the entire system (x, y, z). Within one element the
displacements and torsions are related to the coordinate
system of the element, while after connecting the elements
to form a more complex system, the position of the ele-
ments is considered with respect to the whole system’s
coordinate system.

On the assumption of the linear theory the stiffness
matrixK is given by a 12*12 matrix. For nonlinear config-
urations FE codes use an additional stiffness matrixK* ,
which however shall not be taken into account in the fur-
ther considerations.

In the static case the stiffness matrixK represents the
relation between the vector of displacementsx and vector
of forcesF. The coupling between a bending around the
m-axis and a displacement inn-direction (and vice versa)
is taken into account in theK-matrix.

The mass matrixM contains the rotational and transla-
tional inertia of the beam element. FE codes often use
lumped inertia. This results in a sparse 12*12 matrix with
8 non zero elements, subsequently this shall be used as a
basis for modeling in SABER.

In FE codes the damping matrixD can be defined arbi-
trarily using Rayleigh constants, a material dependent
damping, a constant damping ratio, a modal damping or an
element damping. In the following a damping matrix is
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used having the same locations of nonzero elements as the
mass matrix.

Once the matrices for each element are provided, the
stiffness, damping and mass matrices of the entire system
can be set up. The stiffness matrix of the entire system is
formed of the stiffness matrices of the elements and so on.
To provide the system’s matrices, a coordinate transfor-
mation from the element’s coordinate system (l,m,n) to
the global coordinate system (x,y,z) is necessary in most
cases. Then the solution of the system of equations is car-
ried out using the appropriate boundary conditions like
node forces and torques, displacements and torsions.

3 Modeling for SABER

The objective of the modeling for SABER is to provide
basic mechanical elements, using the analog behavioural
description language MAST. A more complex system like
e. g. an acceleration sensor will be composed of this basic
elements. In this section the derivation of a model is
explained, using the spatial beam as an example. A variety
of mechanical systems can be composed in the same way.

As shown in fig. 2 the spatial beam has 2 mechanical
pins, each having 6 degrees of freedom. Consequently the
model of the beam for the network analysis has 12 termi-
nals, 6 for each mechanical pin. These can be subdivided
into 3 translational (labeledt) and 3 rotational terminals
(labeledr). Each terminal has corresponding through and
across variables. The translational terminals use the force
F as through variable and the displacementw as across
variable. The rotational terminals use the torqueM as
through and the angle of rotationϕ as across variable. Ter-
minals, across and through variables are provided with 2
indices. The first index indicates the direction of the effect
and the second index the node under consideration. Fig. 3
shows the terminal definition of the spatial beam element.

The behaviour of the beam element at the terminals can
be described by equation (1), ifM, K, andD represent the
element matrices. As a result a beam can be composed of
an arbitrary number of beam elements. The restraint con-
ditions at the ends of the beam can be modeled by external
wiring. A fixed restraint, leading to zero displacements
and torsions at a distinct node, is achieved if all terminals
of this node are clamped to ground. An open restraint, with
vanishing forces and torques, is simply modeled by open
terminals on that end. Furthermore models of fragments of
beams have been provided, consisting of 2, 4, 6 and 8
basic elements.

4 Connection Elements

The terminal behaviour of a beam element is described
using terminal quantities in a local coordinate system.
This local coordinate system is fixed relative to the beam.
In order to connect beam elements not arranged along a
straight line, but joining another at a certain angle, a con-
nection element is necessary to provide the coordinate
transformation from one element coordinate system to the
other. This is necessary to enable the simulator to satisfy
the equilibrium conditions for forces and torques at the
connecting node.
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Fig. 3: Terminal definition of the spatial beam
element



The terminal behaviour of the connection element is
described by the transformation matrixT. This matrix is
given by the angles between the axes of the local coordi-
nate systems of the two connected beam elements:

cos(l2, l1) is the cosine value of the angle between the
l-axes of the coordinate systems at terminal 2 and 1 of the
connection element. The other elements ofT have to be
determined accordingly. Using the same variable defini-
tions as in fig. 3 the terminal quantities of the connection
element have to meet the following relations:

Basing on these relations a SABER-model of connec-
tion elements was developed.

5 Model Validation

A first validation of the modeling approach was carried
out, using a simple cantilever beam described in [16]. This
test beam is shown in fig. 5. It consists of p+ doped Silicon
and is manufactured using anisotropic etching techniques.

This simple structure was chosen, because it is possible
to obtain an analytical solution as a reference. ANSYS-
simulations of the beam were also done for comparison,
using spatial beam elements from ANSYS respectively.
The beam was subdivided into 100 elements along its
length.

To test the static behaviour a force of 7.3*10-4 µN was
applied to the beam in all 3 directions. Table 1 compares
the results of the analytical calculations and the static anal-
ysis of the ANSYS and SABER models. The maximal dis-
placement at the free end of the beam is considered. These
maximal displacements can be calculated analytically ([4]
or [7]) by the equations:

The results of the SABER simulation match quite good
to the results of the finite element analysis and the analyt-
ical calculations. Because we are dealing with linear sys-
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Fig. 4: Modeling of the connection of beam
elements with different directions
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Fig. 5: Cantilever beam for test purposes

Table 1: Static analysis of the beam, fixed on one side.

Static Load
[µN]

Analytical
Solution [µm]

ANSYS
(100 Elements)

[µm]

SABER
(2 Elements)

[µm]

SABER
(4 Elements)

[µm]

SABER
(8 Elements)

[µm]

Fy=7.3*10-4 2.295 2.298 2.296 2.296 2.296

Fz=7.3*10-4 3.672*10-3 3.667*10-3 3.674*10-3 3.674*10-3 3.674*10-3

Fx=7.3*10-4 8.964*10-7 8.971*10-7 8.971*10-7 8.971*10-7 8.971*10-7

∆x
Fx L

AE
----------= ∆y

Fy L
3

3EIy
-------------= ∆z

Fz L
3

3EIz
------------=



tems, displacements of single elements are added and thus
there is no difference between models with a different
number of elements.

The example from fig. 5 is also used to verify the
dynamic properties of the models generated with our mod-
eling approach. For this purpose the natural frequencies of
a beam can be calculated analytically ([4], [7] or [20]).
The longitudinal vibration is described by the partial dif-
ferential equation:

wx(x,t) is the longitudinal displacement. Considering
the special boundary conditions in this case, one can
obtain the well known natural frequencies:

Bending vibrations are described by:

wy(x,t) is the lateral displacement iny-direction. Using
Iz instead ofIy yields the lateral displacementwz(x,t) in z-
direction. Boundary conditions result in the eigenvalue
equation cosh(λk)cos(λk) = -1 for the spatial eigenvalues
λk. Taking the solutionsλk the natural frequencies are:

Torsional vibrations are described by:

ϕ(x,t) is the angular displacement. Natural frequencies
are:

Some of the analytical natural frequencies are shown in
table 2.

It was tested how far the generated SABER models
match the natural frequencies of vibration. Therefor AC-
analyses were carried out in SABER. In a first simulation
run the beams with 2, 4 and 8 elements were stimulated
using a sinusoidal forceFy of 7.3*10-6 µN in y-direction
and the frequency range was swept from 8 kHz to 1.2
MHz. The force was chosen 100 times smaller compared
to table 1, due to the resonance effects expected. The
results of the simulation are shown in fig. 6. The 2 element
beam can model 2 natural frequencies, the 4 element beam

4 natural frequencies and the 8 element beam 8 natural fre-
quencies. As known from finite element calculations, the
precision of the models increases with the number of ele-
ments. Furthermore it can be seen that lower natural fre-
quencies match better than higher ones. The reason for
this is, that one beam element is able to model one region
of curvature only. Higher order natural shapes of vibration
are composed of a larger number of regions with different
curvature and are therefore approximated with less accu-
racy.

Within the second simulation run a forceFz of the same
value (7.3*10-6 µN) was used as stimulus. The frequency
range was swept from 100 kHz to 2 MHz. The beam has 2
natural shapes of vibration in this range, being modeled
using the three different models. The natural shapes of
vibration, generated by torsion around thex-axis, can be
simulated using the provided models as well. Fig. 7 shows
the results of a simulation with a torqueMx as excitation
in the frequency range from 500 kHz to 1 MHz.

Table 2 compares the natural frequencies calculated by
ANSYS, the natural frequencies of the provided SABER
models and the natural frequencies of the analytical solu-
tion. The errors are always refered to the analytical solu-
tion.
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6 Conclusion

The applicability of the introduced modeling approach
to include mechanical components into the system simu-
lation with SABER was shown using a resonating struc-
ture as an example. The approach gives an accurate
description of the static and dynamic behaviour of linear
spatial beams as well as more complex configurations

constructed from those beams. The application of the
described methods in addition with electrostatic comb
drives and capacitive readout is discussed in separate pub-
lications ([6] and [12]). [6] uses a surface micromachined
acceleration sensor as an example and [12] a vibrating
angular rate gyroscope.
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