
A Polynomial Time Optimal Algorithm for

Simultaneous Bu�er and Wire Sizing�

Chris C. N. Chu and D. F. Wong

cnchu@cs.utexas.edu and wong@cs.utexas.edu

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, U.S.A.

Abstract
An interconnect joining a source and a sink is divided

into �xed-length uniform-width wire segments, and some

adjacent segments have bu�ers in between. The problem

we considered is to simultaneously size the bu�ers and

the segments so that the Elmore delay from the source to

the sink is minimized. Previously, no polynomial time al-

gorithm for the problem has been reported in literature.

In this paper, we present a polynomial time algorithm

SBWS for the simultaneous bu�er and wire sizing prob-

lem. SBWS is an iterative algorithm with guaranteed

convergence to the optimal solution. It runs in quadratic

time and uses constant memory for computation. Also,

experimental results show that SBWS is extremely ef-

�cient in practice. For example, for an interconnect of

10000 segments and bu�ers, the CPU time is only 0:127
second.

1 Introduction
In the past, gate delay was the dominating factor in

circuit design. However, as the feature size of VLSI de-

vices continues to decrease, interconnect delay becomes

increasingly important. Nowadays, feature size has been

down to 0.25�m in advance technology. Interconnect

delay has become the dominating factor in determining

system performance. In many systems designed today,

as much as 50% to 70% of clock cycle are consumed by

interconnect delay [8]. It is predicted in [11] that the fea-

ture size will be reduced to 0:18�m by 1999 and 0:13�m
by 2002. So we expect the signi�cance of interconnect

delay will further increase in the near future.

Both bu�er sizing and wire sizing have been shown

to be e�ective techniques to reduce interconnect delay

and many works have been done during the past few

years. For example, [2, 3, 4, 10, 14] are various results on

wire sizing alone. [16] applies the sequential quadratic

programming approach to simultaneous gate and wire

sizing. This algorithm is comparatively slow as it has to

solve a sequence of quadratic programming subproblems.

�This work was partially supported by the Texas Advanced Re-

search Program under Grant No. 003658288 and by a grant from

the Intel Corporation.

Also, no bound on the run time of the algorithm is re-

ported. [15] gives an algorithm for simultaneous bu�er

insertion, bu�er sizing and wire sizing based on dynamic

programming. However, their algorithm runs in pseudo-

polynomial time and requires a substantial amount of

memory. [1, 7, 9] give greedy algorithms for simultane-

ous transistor/bu�er and wire sizing. These algorithms

are shown to be very e�cient in practice. However, no

bounds on the run time of them are known. [5] con-

siders bu�er insertion, bu�er sizing and wire sizing si-

multaneously and a closed form optimal solution is ob-

tained. However, in that paper, only wire area capac-

itance is considered. Wire fringing capacitance, which

will become more and more signi�cant as feature size de-

creases, is ignored. Taking wire fringing capacitance into

account signi�cantly complicates the problem and [5] can

only give an approximate solution. [6] shows that the si-

multaneous bu�er insertion and wire sizing problem can

be formulated as a convex quadratic program. The con-

vex quadratic program has a small size and some special

structures, and so can be solved very e�ciently. How-

ever, if bu�er sizing is considered also, only a brute-force

enumeration of the bu�er sizes is proposed. See [8] for a

comprehensive survey on previous works.

In this paper, we consider the problem of minimizing

interconnect delay by simultaneously sizing bu�ers and

wire segments. Basically, an interconnect joining a source

and a sink is divided into some �xed-length uniform-

width wire segments. Some of the adjacent segments

have bu�ers in between. The problem is to determine the

bu�er sizes and segment widths so that the Elmore delay

from the source to the sink is minimized. In particular,

both wire area capacitance and wire fringing capacitance

are taken into account, and an approach completely dif-

ferent from that in [5] is required here. The details of the

problem formulation are discussed in Section 2.

We make the following contributions in this paper:

� We present an iterative algorithm SBWS for the

simultaneous bu�er and wire sizing problem. We

prove that SBWS always converges to the optimal

solution.



� We prove that for an interconnect wire consisting

of n bu�ers and segments, SBWS runs in O(n2 +
n log 1

�
) time, where � speci�es the precision of com-

putation (see Theorem 1). Since log 1

�
is bounded by

the number of bits in the input, the total run time is

quadratic to the input size. This is the �rst polyno-

mial time algorithm for the simultaneous bu�er and

wire sizing problem considered in this paper.

� SBWS requires only constant memory for computa-

tion.

� We demonstrate experimentally that SBWS is also

extremely e�cient in practice. For example, for an

interconnect of 10000 segments and bu�ers, the CPU

time is only 0:127 second. Besides, we observe that
SBWS runs in linear time in practice.

The rest of the paper is organized as follows. In Sec-

tion 2, we present the formulation of the simultaneous

bu�er and wire sizing problem. In Section 3, the al-

gorithm SBWS , its optimality proof and its run time

analysis are presented. In Section 4, some experimental

results to show the e�ciency of SBWS are presented. In

Section 5, we discuss some extensions of our results.

2 Problem Formulation
In this paper, a component means either a bu�er or a

wire segment. Given a source with driver resistance RD,

a sink with load capacitance CL, the source and the sink

are linked by an interconnect consisting of n components.

The i-th component is either a bu�er of size xi or a wire
segment of width xi. The simultaneous bu�er and wire

sizing problem is to minimize the delay from the source

to the sink with respect to x1; : : : ; xn. See Figure 1 for

an illustration.

2x x6

x3 x5

CL

RD

1x x7x4

R0x
D x LC

8

0 1 2 3 4 5 6 7 8

=
=

n = 7

B = {0, 3, 5, 8} m = 2

W = {1, 2, 4, 6, 7}

0r

8c

Component index

Figure 1: The simultaneous bu�er and wire sizing problem.

Given the driver resistance RD, the load capacitance CL, the

number of components n, the set of component indexes of

bu�ers B, and the set of component indexes of wire segments

W, the objective is to �nd the optimal wire widths and bu�er

sizes x1; : : : ; xn such that the delay from the source to the

sink is minimized.

In general, the source and the sink can be anything.

However, in order to simplify the notations, we will treat

them as bu�ers of �xed size in this paper. Let the source

be called the 0-th component and the sink be called the

(n + 1)-th component. Let m be the number of sizable

bu�ers in the interconnect (i.e. excluding the source and

the sink). For 1 � j � m, let bj be the component index
of the j-th sizable bu�er. Let b0 = 0 and bm+1 = n+ 1.

Let B be the set of component indexes of bu�ers, i.e. B =

fb0; b1; : : : ; bm; bm+1g. Let W be the set of component

indexes of wire segments, i.e. W = f0; 1; : : : ; n+1g� B.
If component i is a bu�er (i.e. i 2 B), then it is

modeled as a switch-level RC circuit as shown in Figure 2.

The output resistance and the input capacitance of the

bu�er are bri=xi and bcixi respectively, where bri and bci
are unit e�ective resistance and unit gate capacitance

of the bu�er respectively. As we mentioned above, we

treat the source (component 0) and the sink (component

n+ 1) as �xed size bu�ers. So x0; br0; xn+1 and bcn+1 are
set to some arbitrary values such that RD = br0=x0 and

CL = bcn+1xn+1.

xi

ix
ir

ixic

Figure 2: The model of a bu�er as a switch-level RC circuit.

If component i is a wire segment (i.e. i 2 W), then it

is modeled as a �-type RC circuit as shown in Figure 3.

The resistance and the capacitance of the wire segment

are bri=xi and bcixi + fi respectively, where bri, bci and fi
are the unit width wire resistance, unit width wire area

capacitance and wire fringing capacitance of the segment

respectively.

ix
ir

ixic
2
+ fi ixic

2
+ fi

xi

Figure 3: The model of a wire segment as a �-type RC circuit.

For 0 � i � n, if bj � i < bj+1, let

Ri =
brbj
xbj

+

iX
k=bj+1

brk
xk

(1)

Ci = bcbj+1xbj+1 +
bj+1�1X
k=i+1

(bckxk + fk) (2)

Intuitively, Ri is the sum of all resistances before compo-

nent i+1 (up to the last bu�er), and Ci is the sum of all

capacitances after component i (up to the next bu�er).



See Figure 4 for an illustration. Let the upstream ca-

pacitances of component i be Ri�1. Let the downstream

capacitances of component i be Ci if i 2 B, or Ci + fi=2
if i 2 W .

RR

Component i

Ci-1 i-1 i Ci

(sink)(source)

Figure 4: Illustration of Ri and Ci.

In this paper, the widely used Elmore delay model [13]

is used for delay calculation. Basically, the Elmore de-

lay from the source to the sink is the sum of the delays

associated with the components, where the delay asso-

ciated with a component is equal to its resistance times

its downstream capacitance. In other words, the Elmore

delay from the source to the sink is given by

D =

mX
j=0

0
@brbj
xbj

Cbj
+

bj+1�1X
i=bj+1

bri
xi

�
Ci +

fi

2

�1A (3)

The problem is to minimize D with respect to x1; : : : ; xn.

3 The Algorithm SBWS

First, observe that for 0 � i � n, (1) and (2) can be

rewritten as follows:

Ri = bri=xi if i 2 B (4)

Ri = Ri�1 + bri=xi if i 2 W (5)

Ci = bci+1xi+1 if i+ 1 2 B (6)

Ci = Ci+1 + bci+1xi+1 + fi+1 if i+ 1 2 W (7)

Next, necessary and su�cient conditions for optimal-

ity will be derived. For 1 � i � n, if i 2 B, then we can

write D in (3) in term of xi as

D = Ri�1bcixi + bri
xi
Ci + terms independent of xi

So @D=@xi = 0 is equivalent to

bciRi�1x
2
i

= briCi (8)

If i 2 W , then we can write D in (3) in term of xi as

D = Ri�1bcixi + bri
xi
(Ci +

fi

2
) + terms independent of xi

So @D=@xi = 0 is equivalent to

bciRi�1x
2
i

= bri(Ci + fi=2) (9)

Note that D is a posynomial [12] in x1; : : : ; xn. It

is well known that under a variable transformation, a

posynomial is equivalent to a convex function. So D
has a unique global minimum and no other local min-

imum. That means, if for some solution, @D=@xi = 0

for 1 � i � n, then the solution is optimal. In other

words, (8) and (9) are necessary and su�cient conditions

for optimality.

As a result, �nding the optimal solution to the prob-

lem is equivalent to solving (8) and (9) for x1; : : : ; xn,
where R0; : : : ; Rn; C0; : : : ; Cn satisfy (4), (5), (6) and (7).

Instead of solving the system of equations (4), (5), (6),

(7), (8) and (9) directly, we consider a modi�ed system

obtained by ignoring the equation R0 = br0=x0 (one of

the equations in (4) when i = 0) and adding an ex-

tra equation to �x the value of Rn. If the resulting R0

equals br0=x0 (= RD by de�nition), then the solution of

the modi�ed system will also be a solution of the original

system, and hence the optimal solution of the simultane-

ous bu�er and wire sizing problem.

We will show in the following how to solve the modi�ed

system of equations in linear time. First of all, we have

to prove the lemma below which relates xi; Ri and Ci for

any wire segment i.

Lemma 1 For any i 2 W, for the solution of the modi-

�ed system,

xi =
bribci +p(bribci)2 + 4bribciRi(Ci + fi=2)

2bciRi

Proof: Eliminating Ri�1 from (5) and (9), we havebci(Ri�bri=xi)x2i = bri(Ci+fi=2), or equivalently, bciRix
2
i
�

bribcixi�bri(Ci+fi=2) = 0. Solving the quadratic equation

and taking the positive root, we get the result. 2

So if we know Ri and Ci for some i between 1 and n,

then by Lemma 1 (if i 2 W) or by (4) (if i 2 B), we can
determine xi, and hence Ri�1 and Ci�1, in constant time.

Since Rn is �xed by the extra equation and Cn equals CL

(= bcn+1xn+1), the values of x1; : : : ; xn; R0; : : : ; Rn�1 and

C0; : : : ; Cn�1 can be found in linear time by applying the

idea above repeatedly. Hence, the modi�ed system can

be solved in linear time as in the procedure SOLVE()

below.

In SOLVE(), step 1 follows from (6) with i = n and

that CL = bcn+1xn+1, step 4 follows from (4), step 5

follows from (8), step 6 follows from (6) with i = i � 1,

step 9 follows from Lemma 1, step 10 follows from (9),

and step 11 follows from (7) with i = i� 1.

As mentioned above, in order that the solution of the

modi�ed system is also a solution of the original system,

the value of R0 computed by SOLVE(Rn) must equal

br0=x0 (= RD). For convenience, we de�ne the function



PROCEDURE SOLVE(Rn )

(Assume that CL;B;W and 8i bri;bci; fi are given.)
Input: Rn

Output: x1; : : : ; xn; R0; : : : ; Rn, C0; : : : ; Cn

1. Cn := CL(= bcn+1xn+1)
2. for i := n downto 1 do f
3. if i 2 B then f
4. xi := bri=Ri

5. Ri�1 := briCi=(bcix2i )
6. Ci�1 := bcixi
7. g
8. else f /* i 2 W */

9. xi :=
bribci +p(bribci)2 + 4bribciRi(Ci + fi=2)

2bciRi

10. Ri�1 := bri(Ci + fi=2)=(bcix2i )
11. Ci�1 := Ci + bcixi + fi
12. g
13. g

R0(Rn), which simply returns the value of R0 computed

by SOLVE(Rn ).

FUNCTION R0(Rn)

Input: Rn

Output: R0 computed by SOLVE(Rn)

1. Call SOLVE(Rn)

2. return R0

We will show in the following how to �nd the value of

Rn such that R0(Rn) equals RD.

Let x1; : : : ; xn, R0; : : : ; Rn, C0; : : : ; Cn and x01; : : : ; x
0
n
,

R00; : : : ; R
0
n
, C 0

0; : : : ; C
0
n
be the output of SOLVE(Rn) and

SOLVE(R0
n
) respectively. For all i, let

�i = R0
i
=Ri (i.e. R0

i
= �iRi)

�i =

8<
:

Ci=C
0
i
(i.e. C 0

i
= Ci=�i) if i 2 B

(Ci +
fi

2
)=(C 0

i
+ fi

2
)

(i.e. C 0
i
+ fi

2
= (Ci +

fi

2
)=�i) if i 2 W


i = xi=x
0
i
(i.e. x0

i
= xi=
i)

Intuitively, 1=�i's, �i's and 
i's are the ratios of the up-
stream resistances, the downstream capacitances and the

component sizes of the solutions corresponding to two

di�erent values of Rn.

Lemma 2 and Lemma 3 give bounds on the values of


i, �i�1 and �i�1 based on the values of �i and �i for
i 2 B and i 2 W respectively.

Lemma 2 For 1 � i � n, if i 2 B, then 
i = �i, �i�1 =

2
i
=�i and �i�1 = 
i.

Proof: Consider the procedure SOLVE().

� By step 4, x0
i
=
bri0
R0
i

=
bri0
�iRi

=
xi

�i
.

Therefore 
i = �i.

� By step 5, R0
i�1 =

briC 0
i

bcix0i2 =
briCi
i

2

bcix2i �i =

i
2

�i
Ri�1.

Therefore �i�1 = 
2
i
=�i.

� By step 6, C 0
i�1 = bcix0i = bcixi
i

=
Ci�1


i
.

Therefore �i�1 = 
i.

2

Lemma 3 For 1 � i � n, if i 2 W and 1 � �i < �i,
then

p
�i�i < 
i < �i, �i�1 = 
2

i
=�i and 1 < �i�1 < 
i.

Proof: Consider the procedure SOLVE().

� By step 9,

x0
i

=
bribci +

q
(bribci)2 + 4bribciR0i(C 0

i
+ fi

2
)

2bciR0i
=

bribci +
q
(bribci)2 + 4bribci�iRi(Ci +

fi

2
)=�i

2bci�iRi

<
bribci +

q
(bribci)2 + 4bribciRi(Ci +

fi

2
)
p
�i=�i

2bci�iRi

as �i=�i > 1

<
bribci +

q
(bribci)2 + 4bribciRi(Ci +

fi

2
)

2bciRi�i
p
�i=�i

as �i=�i > 1

= xi=
p
�i�i

Therefore
p
�i�i < 
i.

Also,

x0
i

=
bribci +

q
(bribci)2 + 4bribciRi(Ci +

fi

2
)�i=�i

2bci�iRi

>
bribci +

q
(bribci)2 + 4bribciRi(Ci +

fi

2
)

2bci�iRi

as �i=�i > 1

= xi=�i

Therefore 
i < �i.

� By step 10,

R0
i�1 =

bri(C 0
i
+ fi

2
)

bcix0i2 =
bri(Ci +

fi

2
)
i

2

bcix2i�i =

i
2

�i
Ri�1

Therefore �i�1 = 
2
i
=�i.



� By step 11,

C 0
i�1 +

fi�1

2
= C 0

i
+ bcix0i + fi +

fi�1

2

=
Ci +

fi

2

�i
+
bcixi

i

+
fi

2
+

fi�1

2

< Ci +
fi

2
+ bcixi + fi

2
+

fi�1

2
as �i � 1 and 
i > 1

= Ci�1 +
fi�1

2

Therefore 1 < �i�1.

C 0
i�1 +

fi�1

2
=

Ci +
fi

2

�i
+
bcixi

i

+
fi

2
+

fi�1

2

>
Ci +

fi

2
+ bcixi + fi

2
+

fi�1

2

max(�i; 
i)

as �i � 1 and 
i > 1

=
Ci�1 +

fi�1

2

max(�i; 
i)

=
Ci�1 +

fi�1

2


i

as �i <
p
�i�i < 
i

Therefore �i�1 < 
i.

2

In Lemma 4 and Lemma 5 below, the results of

Lemma 2 and Lemma 3 are combined so that for all i,
the values of �i, 
i and �i�1 are bounded based on the

value of �i.

Lemma 4 If �n > 1, then 1 � �i < �i for 1 � i � n.

Proof: It can be proved by induction on i. Note that

�n = 1 and it is given that �n > 1. So 1 � �n < �n.
Assume that 1 � �i < �i for some i.

Case 1) i 2 B:
By Lemma 2, �i�1 = 
i = �i > 1 and �i�1 =


2
i
=�i = �2

i
=�i > �i = �i�1.

Case 2) i 2 W :

By Lemma 3, �i�1 > 1 and �i�1 = 
2
i
=�i >

�i�i=�i = �i > 
i > �i�1.

So 1 � �i�1 < �i�1 for both cases. 2

Lemma 5 If �n > 1, then 1 < 
i � �i and �i < �i�1 <
�2
i
for 1 � i � n.

Proof:

Case 1) i 2 B:
By Lemma 2, 
i = �i. By Lemma 4, 1 < �i = 
i.
By Lemma 2, �i�1 = 
2

i
=�i = �2

i
=�i. Hence by

Lemma 4, �i < �i�1 < �2
i
.

Case 2) i 2 W :

By Lemma 3 and Lemma 4, 1 <
p
�i�i < 
i < �i.

By Lemma 3 and Lemma 4, �i�1 = 
2
i
=�i >

�i�i=�i = �i and �i�1 = 
2
i
=�i < �2

i
=�i � �2

i
.

So 1 < 
i � �i and �i < �i�1 < �2
i
for both cases. 2

Lemma 6 R0(Rn) is a strictly increasing function.

Proof: Suppose R0
n

> Rn. Then �n > 1. So by

Lemma 5, 1 < �n < � � � < �1 < �0. In particular,

�0 > 1. So R00 > R0. In other words, R0(Rn) is a

strictly increasing function in Rn. 2

For the rest of this section, x1; : : : ; xn, R0; : : : ; Rn,

C0; : : : ; Cn will be viewed as the optimal solution, and

x01; : : : ; x
0
n
, R00; : : : ; R

0
n
, C 0

0; : : : ; C
0
n
as the solution by

SOLVE(R0
n) for some R

0
n
.

Lemma 7 For any � > 0, if 1=(1+ �) � R00=R0 � 1+ �,
then jx0

i
� xij=xi < � for 1 � i � n.

Proof: If R0
n
> Rn, then �n > 1. So by Lemma 5, 1 <

�n < � � � < �1 < �0 and 1 < 
i � �i for 1 � i � n. It is
given that �0 = R00=R0 � 1+�. Therefore, for 1 � i � n,
1 < 
i < 1 + �, or equivalently, 1=(1 + �) < x0

i
=xi < 1.

This implies �� < (x0
i
� xi)=xi < 0 for 1 � i � n.

If R0
n
< Rn, using 1=(1 + �) � R00=R0, we can prove

similarly (but with the roles of the optimal bu�er and

wire sizing solution and the output of SOLVE(R0
n
) ex-

changed) that 0 < (x0
i
� xi)=xi < � for 1 � i � n.

Hence the lemma follows. 2

To �nd the value of Rn such that R0(Rn) = RD,

Lemma 6 implies that binary search can be used.

Lemma 7 gives us a condition to terminate the binary

search such that the precision of the solution is within

�. So what is left now is a range to start the binary

search. We can �nd it by �rst making an initial guess R
of Rn. Next, R is repeatedly divided or multiplied by 2

until SOLVE(R) � RD < SOLVE(2R). Then the range

[R; 2R) will contain the optimal Rn and hence can be

used to start the binary search. The algorithm is sum-

marized below.

A good initial guess for the value of R in step 1 can be

obtained by the result of [5]. When there is no fringing

capacitance, we can use [5] to �nd the exact value of the

optimal xn. With fringing capacitance (as in our case),

we can use it to obtain a good approximation to xn,
and hence a good approximation to Rn. The formula to



ALGORITHM SBWS

Input: �; RD; CL;B;W and 8i bri;bci; fi
Output: x1; : : : ; xn
1. R := an initial guess of the optimal Rn

2. if R0(R) > RD, then

3. while R0(R) > RD do R := R=2
4. else while R0(2R) � RD do R := 2R
5. Rlow := R
6. Rup := 2R
7. Rn := (Rup +Rlow)=2
8. repeat /* Binary search */

9. if R0(Rn) < RD then

10. Rlow := Rn

11. else Rup := Rn

12. Rn := (Rup +Rlow)=2
13. until 1=(1 + �) � R0(Rn)=RD � 1 + �

�nd the initial guess are listed below (explanations are

omitted due to space limitation).

Let br = X
i2W

bri, bc = X
i2W

bci, and f =
X
i2W

fi.

Let � be the value such that

e�RD

�
CL +

f

2

� Y
i2B�f0;n+1g

bribci =
�brbc
�2

�m+1
.

Let xn =

�
�2brn(CL + f

2
)=(brbc) if n 2 B

�(CL + f

2
)=bc if n 2 W

Then R =

� brn=xn if n 2 B
brn(CL + fn

2
)=(bcnx2n) + brn=xn if n 2 W

We can show that the number of iterations of dividing

and multiplying R to �nd the range is O(1). In practice,

usually only zero or one iteration is needed.

To bound the number of iterations that binary search

takes, we need the following lemma.

Lemma 8 For any 0 < � < 1, if 1=(1 + �=3n) �
R0
n
=Rn � 1 + �=3n, then 1=(1 + �) < R00=R0 < 1 + �.

Proof: If R0
n
> Rn, then �n > 1. So by Lemma 5,

�i�1 < �2
i
for 1 � i � n. As �n � 1 + �=3n, �n�1 �

(1+�=3n)2 = 1+2�=3n+(�=3n)2 < 1+3�=3n = 1+�=3n�1.
We can apply the idea inductively to show that �0 < 1+�.
Therefore, together with Lemma 6, 1 < R00=R0 < 1 + �.

If R0
n
< Rn, using 1=(1 + �=3n) � R0

n
=Rn, we can

prove similarly that 1=(1 + �) < R00=R0 < 1. 2

So by Lemma 7 and Lemma 8, if 1=(1 + �=3n) �
R0
n
=Rn � 1 + �=3n, then jx0

i
� xij=xi < � for 1 � i � n.

The number of iterations for the binary search to guar-

antee 1=(1 + �=3n) � R0
n
=Rn � 1 + �=3n is at most

O(log(3n=�)) = O(n + log 1

�
). Since each iteration takes

O(n) time, we have the following theorem.

Theorem 1 For an interconnect with n components and

for any � > 0, the algorithm SBWS solves the simulta-

neous bu�er and wire sizing problem in O(n2 + n log 1

�
)

time and O(1) memory for computation with precision �
(i.e. the optimal solution x1; : : : ; xn and the solution by

SBWS x01; : : : ; x
0
n
satisfy jx0

i
� xij=xi < � for all i).

4 Experimental Results

In this section, we will show that the algorithm SBWS

is extremely e�cient in practice. We have implemented

SBWS in C. We run it on a IBM PC with a 200 MHz

Pentium Pro processor. The precision parameter � is set
to 0:1%. Di�erent values for the number of components
n ranging from 1000 to 10000 are used. For each value of

n, 100 problem instances are generated randomly. The

average CPU time and the average number of calls to

the procedure SOLVE() are reported in Table 1. As the

table shows, SBWS is extremely fast in practice. Even

for an interconnect of 10000 components, the CPU time

is only 0:127s.

n CPU(s) # calls

1000 0.013 11.9

2000 0.026 12.1

3000 0.039 12.1

4000 0.051 11.9

5000 0.063 12.0

6000 0.076 11.9

7000 0.088 11.9

8000 0.104 12.1

9000 0.115 12.0

10000 0.127 12.0

Table 1: The average CPU time and the average number of

calls to the procedure SOLVE() for the algorithm SBWS .

Moreover, we observe that the number of calls to the

procedure SOLVE() is around 12 for all cases. So run

time is linear in practice. The CPU time is plotted as a

function of n in Figure 5 below.

5 Discussion

Our result can be extended in several ways:

Wire area and power consideration: Our algorithm

SBWS can be extended easily to minimize a weighted

sum of total wire area, power and delay. As the ob-

jective in (3) is changed, the optimality conditions (8)

and (9) will also be the di�erent. However, it is not dif-

�cult to see that the problem can still be solved by the

ideas of this paper without much modi�cation. For other

objectives like minimizing delay subject to area bound or

minimizing area subject to delay bound, we can apply the

Lagrangian relaxation technique as in [4] to reduce the

problems to a problem of minimizing a weighted sum.



Run Time of Algorithm SBWS
CPU(s) x 10-3

3n x 10
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

0.00 2.00 4.00 6.00 8.00 10.00

Figure 5: The average CPU time of the algorithm SBWS .

Interconnect with tree topology: SBWS is designed for

interconnects with a line topology. As this is the case for

most interconnects in a circuit, SBWS can be applied

to them directly. However, there are some interconnects

with tree topology. For weighted sink delay objective,

those interconnects can be handled by SBWS using a

similar technique as in [4]. That is we use an iterative

algorithm to optimize the tree edges one at a time. At

each time we manipulate an edge, we keep all the other

edges �xed and apply SBWS to that edge. For other

objectives like minimizing maximum delay or minimizing

area with delay bounds, we can apply the Lagrangian

relaxation technique as in [4] to reduce the problems to

a problem of minimizing weighted sink delay.

Better theoretical bound on run time: A quadratic run

time is proved in Theorem 1. However, the experimental

results in Section 4 suggest that the actual run time of

SBWS is close to linear. In fact, for Lemma 3, we can

argue that �i�1 � �i and �i�1 � �i. This implies that

for Lemma 8, if 1=(1+ �=O(m)) � R0
n
=Rn � 1+ �=O(m),

then 1=(1 + �) < R00=R0 < 1 + �. So we conjecture that

with a tighter analysis, one can prove that SBWS runs

in O(n log m

�
) time.

References
[1] Chung-Ping Chen, Yao-Wen Chang, and D. F. Wong.

Fast performance-driven optimization for bu�ered clock

trees based on Lagrangian relaxation. In Proc. IEEE

Intl. Conf. on Computer-Aided Design, pages 405{408,

1996.

[2] Chung-Ping Chen and D. F. Wong. A fast algorithm for

optimal wire-sizing under Elmore delay model. In Proc.

IEEE ISCAS, volume 4, pages 412{415, 1996.

[3] Chung-Ping Chen and D. F. Wong. Optimal wire-sizing

function with fringing capacitance consideration. In

Proc. ACM/IEEE Design Automation Conf., pages 604{

607, 1997.

[4] Chung-Ping Chen, Hai Zhou, and D. F. Wong. Optimal

non-uniform wire-sizing under the Elmore delay model.

In Proc. IEEE Intl. Conf. on Computer-Aided Design,

pages 38{43, 1996.

[5] Chris C. N. Chu and D. F. Wong. Closed form solution

to simultaneous bu�er insertion/sizing and wire sizing.

In Proc. Intl. Symp. on Physical Design, pages 192{197,

1997.

[6] Chris C. N. Chu and D. F. Wong. A new approach to

simultaneous bu�er insertion and wire sizing. In Proc.

IEEE Intl. Conf. on Computer-Aided Design, pages 614{

621, 1997.

[7] Jason Cong and Lei He. An e�cient approach to simulta-

neous transistor and interconnect sizing. In Proc. IEEE

Intl. Conf. on Computer-Aided Design, pages 181{186,

1996.

[8] Jason Cong, Lei He, Cheng-Kok Koh, and Patrick H.

Madden. Performance optimization of VLSI intercon-

nect layout. INTEGRATION, the VLSI Journal, 21:1{

94, 1996.

[9] Jason Cong, Cheng-Kok Koh, and Kwok-Shing Leung.

Simultaneous bu�er and wire sizing for performance and

power optimization. In Proc. Intl. Symp. on Low Power

Electronics and Design, pages 271{276, August 1996.

[10] Jason Cong and Kwok-Shing Leung. Optimal wiresizing

under the distributed Elmore delay model. IEEE Trans.

Computer-Aided Design, 14(3):321{336, March 1995.

[11] Jim DeTar. Advances outpace SIA roadmap (Semicon-

ductor Industry Association alters projections) (Industry

Trend or Event). Electronic News, 42(2147):1, December

16 1996.

[12] R. J. Du�n, E. L. Peterson, and C. Zener. Geometric

Programming { Theory and Application. John Wiley &

Sons, Inc., NY, 1967.

[13] W. C. Elmore. The transient response of damped linear

network with particular regard to wideband ampli�ers.

J. Applied Physics, 19:55{63, 1948.

[14] J. P. Fishburn. Shaping a VLSI wire to minimize Elmore

delay. In Proc. European Design and Test Conference,

1997.

[15] John Lillis, Chung-Kuan Cheng, and Ting-Ting Lin. Op-

timal wire sizing and bu�er insertion for low power and

a generalized delay model. IEEE J. Solid-State Circuits,

31(3):437{447, March 1996.

[16] N. Menezes, R. Baldick, and L. T. Pileggi. A sequential

quadratic programming approach to concurrent gate and

wire sizing. In Proc. IEEE Intl. Conf. on Computer-

Aided Design, pages 144{151, 1995.


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


