
An Algorithm To Determine Mutually Exclusive Operations In

Behavioral Descriptions

Jian Li Rajesh K. Gupta

Department of Computer Science Information & Computer Science

University of Illinois at Urbana-Champaign University of California, Irvine

Urbana, Illinois 61801 Irvine, CA 92697

Abstract

Scheduling and binding are two major tasks in ar-
chitectural synthesis from behavioral descriptions. The
information about the mutually exclusive pairs of oper-
ations is very useful in reducing both the total delay of
the schedule and the resource usage in the �nal circuit
implementation. In this paper, we present an algo-
rithm to identify the largest set of mutually exclusive
operation pairs in behavioral descriptions. Our algo-
rithm uses data-ow analysis on a tabular model of
system functionality, and is shown to work better than
the existing methods for identifying mutually exclusive
operations.

1 Introduction
Architectural (or high-level) synthesis attempts to

build a macrolevel circuit consisting of major func-

tional blocks and their interconnection from a given

behavioral description. Two of the major tasks in ar-

chitectural synthesis are operation scheduling and re-

source binding [1]. Scheduling determines the start

time of each operation while binding maps operations

to hardware components. Binding and scheduling are

inter-related problems. Decisions made in binding of-

ten a�ect the result of scheduling and vice versa. For

instance, an assignment of two operations to a func-

tional unit prevents placement of the operations to

the same control step. The quality of binding and

scheduling can be determined by the resource usage

and the total delay. The two goals of reducing total de-

lay and reducing resource usage are often conicting.

Total delay can be reduced by maximizing operations

in each control step. This, however, often increases

the number of required resources. On the other hand,

resource sharing often results in additional serializa-

tion and hence a longer delay. One exception to this

tradeo� is in the case of \mutually exclusive" opera-

tions that can share resources without increasing the

total delay.

We consider two operations in a process as mutu-

ally exclusive (m.e.) if the results of the two opera-

tions are never needed together in an execution of this

process model. This de�nition subsumes previous def-

initions [2] as we show later. There are three di�erent

situations where the results of two operations are not

needed in an execution of a behavior at the same time:

1. When two operations lie in di�erent branches of

a conditional statement, they will never need to

be executed together. An operation pair that can

be determined to be m.e. based on the language

structures in HDL descriptions is called a struc-
tural m.e. pair.

2. Two operations not in di�erent branches of a con-

ditional statement may still be m.e. if they lie on

di�erent control paths. Such a pair of operations

is referred to as a behavioral m.e. pair.

3. Two operations are considered data-ow m.e. pair
if they produce data used by operations that are

pair-wise mutually exclusive.

The three cases of m.e. operations are illustrated in

the example below:

Example 1.1. Consider the following HDL description in
HardwareC. It is modi�ed from the example in [2].

process jian(a, b, c, d, e, f, g, x, y, u, v)

in port a[8], b[8], c[8], d[8], e[8], f[8], g[8];

in port x, y;

out port u[8], v[8];

{

static T1;

static T2[8];

static T3[8];

static T4[8];

static T5[8];

T1 = (a + b) < c; /* -- 1 -- */

T2 = d + e; /* -- 2 -- */

T3 = c + 1; /* -- 3 -- */

if(y) {

if(T1)

u = T3 + d; /* -- 4 -- */

else if(!x)

u = T2 + d; /* -- 5 -- */

if(!T1 && x)

z = T2 + e; /* -- 6 -- */

}

else {

T4 = T3 + e; /* -- 7 -- */

T5 = T4 + f; /* -- 8 -- */

u = T5 + g; /* -- 9 -- */

}

}

Operator pairs f+4, +5g, f+4, +7g, f+4, +8g, f+4, +9g, f+5,

+7g, f+5, +8g, f+5, +9g, f+6, +7g, f+6, +8g, and f+6, +9g

are structural m.e. pairs. Operator pairs f+4, +6g and f+5,

+6g are behavioral. Operator pairs f+1, +7g, f+1, +8g, f+1,

+9g, f+2, +3g, f+2, +4g, f+2, +7g, f+2, +8g, and f+2, +9g

are data-ow m.e. pairs. 2

1.1 Related Work

Kim and Liu [3] proposed an algorithm that can

identify mutually exclusive operators based on lan-

guage constructs. In [4] status bits are assigned to

determine the active basic blocks. The mutual exclu-

siveness of two basic blocks are determined by check-

ing the intersection of the active cube sets of their

status bits. These two approaches only identify struc-

tural m.e. pairs.

Wakabayashi and Yoshimura proposed a scheme us-

ing condition vectors (CV) [5]. This approach iden-

ti�es all structural m.e. pairs and some data-ow

m.e. pairs. Due to an incomplete data-ow analysis, it

does not identify all data-ow m.e. pairs. Also, due to

the lack of analysis on condition dependencies in the

behavioral description, it does not identify any behav-

ioral m.e. pairs.

The path-based scheduling algorithm [6] determines

the conditional usage of operators by analyzing every

execution path in the control-ow graph. Operators

are mutually exclusive if they do not appear in the

same path. A path analysis alone identi�es only struc-

tural and behavioral m.e. pairs.

Juan, Chaiyakul, and Gajski [2] proposed condition

graph to solve this problem which perform better than

other previous approaches. However, their approach

also fails to identify all data-ow m.e. pairs.

Table 1 summarizes the results of applying all above

approaches to Example 1.1. Our approach is indicated

by column \TDT". TDT stands for Timed Decision

Table, a behavioral model introduced in [7] for hard-

ware presynthesis optimizations. In this paper, we

show how data-ow analysis can be combined with

TDT optimizations to build an e�cient algorithm for

mutual exclusion determination.

Table 1: A comparison of m.e. operator pairs identi�ed

by di�erent approaches.
mutually approaches
exclusive

operators Kim's SB CV path-based CG TDT

f+1, +7g
p p

f+1, +8g
p p

f+1, +9g
p p

f+2, +3g
p p

f+2, +4g
p p

f+2, +7g
p p p

f+2, +8g
p p p

f+2, +9g
p p p

f+3, +5g
p p p

f+3, +6g
p p p

f+4, +5g
p p p p p p

f+4, +6g
p p p

f+4, +7g
p p p p p p

f+4, +8g
p p p p p p

f+4, +9g
p p p p p p

f+5, +6g
p p p

f+5, +7g
p p p p p p

f+5, +8g
p p p p p p

f+5, +9g
p p p p p p

f+6, +7g
p p p p p p

f+6, +8g
p p p p p p

f+6, +9g
p p p p p p

Kim's Kim and Liu's approach [3]

SB the status bits approach [4]

CV the condition vector approach [5]

path-based the path-based approach [6]

CG the condition graph approach [2]

TDT the TDT approach in this paper

The rest of this papers is organized as follows.

Section 2 gives an overview of our approach which

takes three steps to identify each type of m.e. oper-

ator pairs. Section 3 shows in more details how be-

havioral m.e. pairs are identi�ed. Section 4 presents

a data-ow analysis based procedure for identifying

data-ow m.e. pairs. We present the experimental re-

sult and show how m.e. information can be used in

Section 5. Finally we conclude in Section 6.

2 Overview of Our Approach
Our m.e. detection algorithm is implemented us-

ing a tabular model that lists control ow explicitly.

Hierarchy is used in order to avoid explosion in the

size of the tables. There are three major steps in our

approach.

Step 1. The �rst step in our approach is to translate

the input behavioral description into the TDT repre-

sentation. We assume that the behavioral description

is speci�ed using a HDL. In particular, we support

input descriptions in HardwareC [8] and VHDL.

TDTexample =
A ActionSet1

ActionSet1 = +1; +2;+3;TDT1

TDT1 =
y Y N

A ActionSet2 ActionSet3

ActionSet2 = TDT2;TDT3

ActionSet3 = +7; +8;+9

TDT2 =

T1 Y N

x X N

A +4 +5

TDT3 =
!T1 && x Y N

A +6

(a)

TDTexample =
A ActionSet1

ActionSets = +1; +2;+3;TDTs

TDTs =

y Y Y Y N

T1 Y N N X

x X N Y X

A +4 +5 +6 ActionSet3

ActionSet3 = +7; +8;+9

(b)

Figure 1: The TDT representations of the example

behavioral description: (a) the TDT representation

directly converted from the input HDL, (b) the merged

TDT representation.

In the TDT representation, a hardware system is

modeled as a set of interacting and concurrently exe-

cuting processes. Each process is represented by a pro-
cess TDT which is executed repeatedly. The body of

a process TDT is modeled as hierarchically connected

TDTs and action sets. In contrast to process TDTs,

some other TDTs may be executed only once when

they are invoked. These TDTs are called procedure
TDTs. A TDT consists of four quadrants: condition

stub, condition matrix, action stub and action matrix.

A TDT represents a set of mappings from conditions

to action sets. An action set is a list of actions with

a concurrency type. A set of actions are considered

of the type `data-parallel' when any two actions in an

action set can be executed simultaneously unless there

are data dependencies between the two actions. Other

possible concurrency types that can be speci�ed in an

action sets are serial and parallel [7].

In Figure 1(a), we show how the input HDL is

modeled in the TDT representation. The double out-

lines surrounding the �rst table indicate that this is

a process table. This table represents the HardwareC

process example in Example 1.1. The semi-columns

in ActionSet1, ActionSet2 , and ActionSet3 indicate

that a data-parallel type is speci�ed in those action

sets. TDT1 calls ActionSet2 which contains TDT2
and TDT3. TDT2 and TDT3 are connected in a se-

quence in their enclosing action set.

When a procedure TDT is invoked for execution,

the conditions are �rst checked to determine which

action set in the corresponding column is to be exe-

cuted. Take for example, when TDT2 is executed, �rst

the value of T1 is checked. If T1 evaluates to FALSE,

+5 is executed. Otherwise, the operation for +4 is car-

ried out. More details of the TDT model can be found

in [7, 9]. Related work on tabular representations can

be found in [10, 11].

In the TDTmodel, operators in di�erent columns of

a TDT are mutually exclusive. Thus, after converting

a behavioral description into a TDT representation,

all structural m.e. pairs can be easily identi�ed. For

example, after the conversion, operators +4 and +5 in

the given HardwareC description appear in di�erent

columns of TDT2 as shown in Figure 1(a). Therefore

f+4, +5g can be identi�ed as a m.e. operator pair.

Step 2. The second step in our approach is merg-

ing smaller TDTs to create bigger ones. After merg-

ing, both structural and behavioral m.e. pairs can be

identi�ed by asserting that any two di�erent operators

from di�erent columns of a TDT are m.e. operators.

Figure 1(b) shows the merged TDT representation of

the behavioral description in Example 1.1. Consider,

for example, operators +4 and +6 from two di�er-

ent if statements in the behavioral description. After

merging, they appear in di�erent columns of TDTs
and can be determined as a behavioral m.e. pair.

Step 3. The third step in our approach performs a

def-use analysis to identify data-ow m.e. pairs. The

def set of an operator refers to the set of operators

that de�ne a variable used in this operation. The use
set of an operator is the set of operators that use the

variable de�ned by this operation. In our example, we

have

� use(+2) = f +5, +6g, and

� use(+3) = f +4, +7g.

Since all four pairs f+5;+4g, f+5;+7g, f+6;+4g,
and f+6;+7g are mutually exclusive, f+2;+3g is a

m.e. pair because in no invocation of the speci�ed sys-

tem will the results of both +2 and +3 be needed at

the same time. All m.e operators thus identi�ed are

data-ow m.e. operators. To summarize, we list each

m.e. pair with its type in Table 2.

Table 2: Classi�cation of m.e. pairs.

m.e. Pair Type m.e. Pair Type

f+1, +7g data-ow f+1, +8g data-ow

f+1, +9g data-ow f+2, +3g data-ow

f+2, +4g data-ow f+2, +7g data-ow

f+2, +8g data-ow f+2, +9g data-ow

f+3, +5g data-ow f+3, +6g data-ow

f+4, +5g structural f+4, +6g behavioral

f+4, +7g structural f+4, +8g structural

f+4, +9g structural f+5, +6g behavioral

f+5, +7g structural f+5, +8g structural

f+5, +9g structural f+6, +7g structural

f+6, +8g structural f+6, +9g structural

3 Identi�cation of Behavioral m.e.

Pairs
To identify behavioral m.e. pairs, we merge leaf

TDTs directly translated from the behavioral descrip-

tions. Leaf TDTs are merged by recursively identi-

fying and applying one of the following two merging

cases: (I) merging TDTs in a sequence, (II) merging

TDTs in a hierarchy. In this paper, we focus our dis-

cussion on the merging cases that involves only proce-

dure TDTs, since a description with condition loops

can be transformed into one without condition loops

while preserving the speci�ed system behavior [12].

3.1 Merging TDTs in a Sequence

Two procedure TDTs in a sequence can be merged

if (I) they appear in an enclosing action set of con-

currency type data-parallel, and (II) they share no

columns except Don't Care columns or columns that

contain no action sets. A Don't Care column is col-

umn that will never be selected for execution [7]. The

result of merging in this case is a TDT which con-

tains the union of the columns in the original TDTs

if the two condition stubs are identical. Otherwise

transformations are needed to �rst change the condi-

tions stub into the same. Four transformations can

be applied to the condition rows of a TDT for this

purpose: row insertion, row splitting, row negation,

and row swapping. These transformations are part

of the behavior-preserving TDT transformations pre-

sented in [13]. The transformation row insertion refers

to adding a row with all Don't Care entry values. The

transformation row negation refers to negating a con-

dition and the entry values in its row accordingly. Any

two condition rows may be swapped without changing

the speci�ed behavior. This is referred to as row swap-

ping. The transformation row splitting is applied to a

row with a condition which is a logic expression. The

procedure of this splitting is outlined in [13]. In the

following, we show one example of TDT merging that

involves two TDTs in a sequence.

Example 3.1. The TDT sequence fTDT2;TDT3g in Fig-
ure 1 satis�es the conditions for merging TDTs in a sequence.
Before merging, we perform row splitting to convert TDT3 to
TDT 0

3
and then row negation to convertTDT 0

3
to TDT 00

3
as

shown below.

TDT
0

3
:

!T1 Y Y N
x Y N X

A +6

TDT
00

3
:

T1 N N Y
x Y N X

A +6

TDT2 and TDT
00

3
can then be merged into TDTm where

TDTm =

T1 Y N N
x X N Y

A +4 +5 +6

After merging, we have ActionSet2 = TDTm. 2

3.2 Merging TDTs in a Hierarchy

Procedure TDTs in a hierarchy result from nested

branches in behavioral HDL descriptions. Due to

space limit, we refer interesteds reader to [13] for the

detailed algorithms. Below we give one example.

Example 3.2. TDT1 in Figure 1 has two action sets
ActionSet2 and ActionSet3 in its two di�erent control paths.
From Example 3.1, we know that ActionSet2 is itself a TDT
denoted TDTm:

TDT1 =
y Y N

A ActionSet2 ActionSet3

ActionSet2 = TDTm

=

T1 Y N N
x X N Y

A +4 +5 +6

The above two tables form a calling hierarchy and they can be
merged into the following table which is also denoted as TDTs
in Figure 1.

TDTs =

y Y Y Y N
T1 Y N N X
x X N Y X

A +4 +5 +6 ActionSet3

2

As we mentioned earlier, after merging, both struc-

tural and behavioral m.e. pairs can be identi�ed by

asserting that any two di�erent operators from di�er-

ent columns of a TDT are m.e. operators.

4 Identi�cation of Data-ow m.e.

Pairs
Data-ow m.e. pairs are identi�ed with the help of

a def-use analysis. We give our de�nition of the use

set of an operator in below.

De�nition 4.1 The use set of an operator o is the
set of operators that uses the variable de�ned by o.

Table 3: The use sets of operators in Example 1.1.

operator operator use set operator operator use set

+1 f +4, +5, +6g +6 f OUT g
+2 f +5, +6g +7 f +8 g
+3 f +4, +7g +8 f +9 g
+4 f OUT g +9 f OUT g
+5 f OUT g

Use sets of all operators in a behavioral descrip-

tion can be computed using standard data-ow tech-

niques [14]. We list the operator use sets of the exam-

ple behavior description in Table 3. An `OUT ' indi-

cates that the result of the operator is written to an

output port or sent to another process via a messaging

channel.

Given the use sets of operators and information on

whether or not some of the operator pairs are mutually

exclusive, additional information on m.e. pairs can be

obtained following Theorem 4.1 as shown in below.

All m.e. pairs thus detected are said to be data-ow

m.e. pairs.

Theorem 4.1 Given two operators o1 and o2 and
their use sets USE(o1) and USE(o2),

(a) o1 and o2 are mutually exclusive if 8� 2
USE(o1), � and o2 are mutually exclusive;

(b) o1 and o2 are mutually exclusive if 8� 2
USE(o1); 8� 2 USE(o2), � and � are mutually
exclusive;

(c) o1 and o2 are not mutually exclusive if 9� 2
USE(o1) such that � and o2 are not mutually ex-
clusive.

(d) o1 and o2 are not mutually exclusive if 9� 2
USE(o1)9� 2 USE(o2) such that � and � are
not mutually exclusive;

For proof the interested readers are referred to [13].

After TDT merging, any pair of operators that ap-

pear in di�erent columns of a TDT are determined as

a m.e. pair. We can also determine that any pair of op-

erators with a data-dependency between them is not

a m.e. operator pair. With this information as a start-

ing point, we can apply Theorem 4.1(a) recursively to

determine all data-ow m.e. pairs. The order to ap-

ply Theorem 4.1(a) is presented in the Algorithm 4.1.

The rest of the Theorem can be used to prove that

Algorithm 4.1 identi�es the complete set of data-ow

m.e. pairs.

Algorithm 4.1 Algorithm to Identify Data-ow
m.e. Operator Pairs

dataow meFind(optimized tdt) f
Create a def-use graph G = fV;Eg where

V = fojo is an operatorg[fOUTg,
E = f (o1; o2) jo2 2 USE(o1)g ;

V isited fOUTg;
foreach edge e = (o1; o2) do
me(o1; o2) `N';

foreach pair (o1; o2) do
if o1 and o2 in di�erent columns of a TDT then
me(o1; o2) `Y';

repeat
Pick o 2 (V � V isited) where 8p 2 USE(o) have
been visited;

foreach � 2 V isited do
Determine me(o; �) by Theorem 4.1(a);

V isited V isited [fog;
until (all nodes in V have been visited).
g

The complexity of this algorithm is O(n3), where

n is the number of operators. The creation of def-

use graph takes O(n2). The �rst loop takes O(E)

where E is the number of edges in the def-use graph.

The second loop takes O(n2). The repeat loop will

be repeated n times. The �rst operation in this loop

needs to be expanded before actual implementation,

since we are showing only an outline. If we manage a

list of unvisited nodes and for each un-visited node we

also manage a list of use nodes, the total time spent

on the �rst operation in n iterations will be O(n2). In

each iteration of the repeat loop, the inner loop takes

O(n2) since it takes O(jUSE(o)j) to check Theorem

4.1(a).

5 Results and Discussion
Our approach for identifying m.e. operations has

been implemented as a part of the PUMPKIN presyn-

thesis system [15]. We have run our system on sev-

eral high-level synthesis benchmarks and behavioral

description examples that appeared in previous publi-

cations on detection of m.e. operations. For compari-

son, we have also run other approaches that identi�es

m.e. operations on the same set of behavioral descrip-

tions. The result of our experiments is summarized in

Table 5. Statistics of the experimental examples are

summarized in Table 4.

Table 4: Example statistics.

behavioral total # of total # of

description operators m.e. pairs

kim 24 120

jian 9 22

juan 6 7

parker 16 55

waka 1 14 21

waka 2 16 22

waka 3 8 12

The behavioral descriptions in Table 5 are either

picked from previous publications or from the high-

level synthesis benchmark suite. Description `kim'

refers to the example used in [3]. Description `jian'

is described in Example 1.1. Description `juan' refers

to the example used in [2]. Description `parker' is

a HardwareC example from the high-level synthesis

benchmark suite.

Table 5: The result for m.e. operator pair identi�ca-

tion.

behavioral # of m.e. pairs identi�ed
description Kim's SB CV path-based CG TDT

kim 120 120 120 120 120 120

jian 10 10 12 14 20 22

juan 1 1 3 3 7 7

parker 43 43 54 43 43 55

waka 1 15 15 21 15 21 21

waka 2 20 20 22 20 21 22

waka 3 10 10 12 10 12 12

For comparison, we have run other approaches

along with ours on above mentioned examples. Kim's

refers to Kim and Liu's approach [3]. Approach `SB'

stands for the status bit approach [4]. Approach `CV'

refers to the condition vector approach [5]. The ap-

proach `path-based' refers to an approach based on

path analysis [6]. Approach `CG' stands for the us-

age condition approach using condition graphs [2]. Fi-

nally, approach `TDT' refers to our approach based on

TDT modeling and def-use analysis.

We discuss mutual exclusiveness in the context

where operations can share resources in a certain im-

plementation. For example, it won't be useful to con-

sider the the mutual exclusiveness of an integer sub-

traction and a oating point subtraction. For this rea-

son, we only consider certain types of operators that

can be implemented on the same type of function units

when we count the number of operators and compute

the number of m.e. operator pairs. The line `waka 1'

lists the experimental result assuming all addition and

subtraction can be implemented on one type of adders.

The line `waka 2' shows the result assuming all oper-

ations are implemented on ALUs. The line `waka 3'

considers only addition and adders.

The result in Table 4 shows that the TDT based

approach performs better than previous approaches.

The `CG' approach outperforms all other previous ap-

proaches. However, it does not detect all data-ow

m.e. pairs, especially when the result of one opera-

tion is used in a condition checking. For example, the

`CG' approach does not identify operator pair f+1;+7

g as a m.e. pair, nor does it identify m.e. operator

pairs f+1;+8 g and f+1;+9 g. Though possible to

improve the set of axioms presented in [2] to identify

more data-ow pairs, our approach uses TDT con-

version and merging which are also required in HDL

presynthesis optimizations. Therefore m.e. detection

is easily integrated in our framework as a one of the set

of optimizations and analysis for improving synthesis.

Given a merged TDT representation, our ap-

proach does spend only polynomial time to �nd ad-

ditional data-ow pairs and hence the complete set of

m.e. pairs. This is possible since the merging phase

has exponential complexity in time. The explosion in

TDT size and exponential complexity can be avoided

by keeping hierarchy in the TDT representation. In

theory this may lead to failure to identify some of

the behavioral m.e. pairs and hence more date-ow

pairs. However, in practice, our approach works well

as shown in Table 4 and Table 5.

5.1 Use of m.e. Information

Information on m.e. operator pairs can, for in-

stance, be used in synthesis to obtain optimal schedul-

ing. Consider the same example behavior description

in Example 1.1. Assume that only one adder is used.

We use a modi�ed list scheduler which utilizes infor-

mation on m.e. pairs. As shown in Figure 6, if no

information on m.e. operators is provided, the sched-

ule length is 9 cycles. If the set of m.e. information

produced in CG approach is provided to the sched-

uler, the schedule length of 4 cycles is obtained. If

a complete set of m.e. operator pairs, as produced in

the TDT-based approach, is used for this example, the

resulting scheduling length is 5 cycles.

A pair of m.e. operators are compatible for resource

Table 6: Scheduling results when informed of di�erent

sets of m.e. pairs.

description number of control steps

no CG TDT

jian 9 4 3

sharing. Therefore the m.e. information can be used

to reduce resource usage in general when incorporated

in high-level synthesis frameworks [16].

6 Conclusion and Future Work
In this paper, we have given a classi�cation of

m.e. operator pairs based on how they can be detected.

We divide m.e. pairs into three categories: structural,

behavioral, and data-ow. Both structural and behav-

ioral m.e. pairs can be detected directly after input

HDL description has been converted into the TDT

representation and merging is carried out. We have

presented an e�cient algorithmfor detecting data-ow

m.e. pair. We haven't considered the case when the

execution of one operation makes another unnecessary.

Currently we are exploring the scope of m.e. anal-

ysis and its generalization to enhance synthesis by in-

creasing resource sharing.

7 Acknowledgement
This research is supported in part by NSF CA-

REER Award MIP 95-01615. The �rst author also

acknowledges the support from FMC fellowship pro-

vided by the FMC foundation and the college of en-

gineering at the University of Illinois, and a Thesis

Completion Grant from The University of Illinois.

References
[1] G. De Micheli, Synthesis and Optimization of Digital

Circuits. McGraw-Hill, 1994.

[2] H.-p. Juan, V. Chaiyakul, and D. D. Gajski, \Condi-

tion graphs for high-quality behavioral synthesis," in
Proceedings of the IEEE International Conference on

Computer-Aided Design, pp. 170{174, 1994.

[3] T. Kim, J. W. Liu, and C. L. Liu, \A scheduling algo-

rithm for conditional resource sharing," in Proceedings
of the IEEE International Conference on Computer-

Aided Design, pp. 84{87, 1991.

[4] C.-J. Tseng, R.-S. Wei, S. G. Tothweiler, M. M. Tong,

and A. K. Bose, \Bridge: A versatile behavioral syn-

thesis system," in Proceedings of the 25thDesign Au-

tomation Conference, pp. 84{87, 1988.

[5] K. Wakabayashi and T. Yoshimura, \A resource shar-
ing and control synthesis method for conditional

branches," in Proceedings of the IEEE International
Conference on Computer-Aided Design, pp. 62{65,

1989.

[6] R. Camposano, \Path-based scheduling for synthe-

sis," IEEE Trans. CAD, vol. 10, no. 1, pp. 85{93,

1991.

[7] J. Li and R. K. Gupta, \HDL Optimization Us-

ing Timed Decision Tables," in Proceedings of the
33rdDesign Automation Conference, pp. 51{54, June

1996.

[8] D. Ku and G. D. Micheli, \HardwareC - A Language

for Hardware Design (version 2.0)," CSL Technical

Report CSL-TR-90-419, Stanford University, Apr.
1990.

[9] J. Li and R. K. Gupta, \Decomposition of Timed De-
cision Tables and its Use in Presynthesis Optimiza-

tions," in Proceedings of the IEEE International Con-

ference on Computer-Aided Design, November 1997.

[10] K. Rath, M. E. Tuna, and S. D. Johnson, \Behavior
tables: A basis for system representation and trans-

formation system synthesis," in Proceedings of the

IEEE International Conference on Computer-Aided
Design, pp. 736{740, 1993.

[11] A. J. W. M. ten Berg, C. Huijs, and T. Krol, \Re-
lational algebra as formalism for hardware design,"

Microprocessing and Microprogramming, 1993.

[12] R. Camposano, \Behavior-preserving transformations

for high-level synthesis," in Proc. Workshop on Hard-

ware Speci�cation, Veri�cation, and Synthesis: Math-
ematical Aspects, New York: Springer Verlag, 1989.

[13] J. Li and R. K. Gupta, \System modeling and presyn-
thesis using timed decision tables," Tech. Rep. UCI

ICS-TR-97-12, University of California, March 1997.

[14] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:

Principles, Techniques and Tools. Addison Wesley,
1986.

[15] J. Li and R. K. Gupta, \Timed Decision Table: A
Model for System Representation and Optimization,"

Technical Report UIUCDCS-R-96-1971, University of

Illinois, 1996.

[16] S. Raje and R. A. Bergamaschi, \Generalized resource

sharing," in Proceedings of the IEEE International
Conference on Computer-Aided Design, 1997.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

