
Abstract

This paper presents a new approach to cross-level hier-
archical high-level synthesis. A methodology is presented,
that supports the efficient synthesis of hierarchical specified
systems while preserving the hierarchical structure. After
synthesis of each subsystem the determined component
schedule and the synthesized RT-structure are added to its
algorithmic specification. This provides an automatic selec-
tion of optimized complex components. Furthermore, the
component schedule enables the sharing of unused subcom-
ponents across different hierarchical levels of the design.

1 Introduction

The specification of complex systems, which can be
hierarchically composed of several subsystems is becoming
more and more important. In this context, the complexity of
the subsystems, also called components, is increasing as
well. Examples for such subsystems are microprocessor
cores, application specific functional units (e.g. DCT, FFT),
and interface controllers. However, state-of-the-art high-
level synthesis systems produce insufficient results in terms
of quality of the result and execution time when considering
large applications [1].

This paper addresses the problem of an efficient synthe-
sis of hierarchical specified systems. Main feature of the
presented hierarchical synthesis approach is the optimized
integration of already synthesized module specifications as
complex register-transfer components, in the further high-
level synthesis flow. Note that such components can be
autonomous in the entire system. For this, it is important
that the behavioral specification, the synthesized register-
transfer structure, and the already determined schedule of
the used components are known throughout the whole high-
level synthesis process. Therefore this information is added
to the RT component library. This allows an efficient speci-
fication of less area consuming hierarchical designs while
synthesis time can be reduced.

* This work is partially supported by the DFG.

1.1 Related Work

A closer investigation of existing approaches shows that
the termshierarchical synthesis and complex components
are not used uniformly at algorithmic level. Three different
methodologies, which use the term hierarchical synthesis,
can be identified: First, data-flow graph clustering or parti-
tioning methods followed by the synthesis of the clusters
and partly of the clustered data-flow graph. Second, using
already synthesized systems as components, but without
regard to internal component structures (“black-box reuse”).
Last, using already synthesized systems as components with
the possibility of sharing subcomponents with regard to
internal component structures (“white-box reuse”).

A common technique of most of the clustering methods
is the collection of operations with a high similarity measure
into one cluster [2]. Then allocation, and binding is per-
formed separately for each cluster. Further approaches can
be distinguished by the clustering or partitioning strategy
used [3]. The partitioning strategies are mainly based on the
control-flow [4], the data-flow, the procedure-calls, or use
techniques of regularity extraction [5]. During scheduling
first the determined clusters and subsequently the clustered
data-flow graph are considered. Another clustering approach
tries to merge clusters with high similarity measure after the
clustering step, in order to build complex data-path elements
and to increase the cluster size [6].

Clustering techniques perform scheduling in a bottom-
up traversal of the cluster or the given loop/subroutine hier-
archy. The second approach for hierarchical synthesis
allows the usage of already synthesized components for fur-
ther high-level synthesis tasks without regarding specific
component structures. The register-transfer library used in
the Olympus system [7] can contain any component that is
specified in HardwareC. A similar approach is integrated in
AMICAL [8], with the difference that a proprietary compo-
nent intermediate format is used for synthesis. However, all
previous mentioned approaches perform component reuse
and resource sharing just at one hierarchical level of the
design, without respect to its component structures (“black-
box reuse”).

Cross-Level Hierarchical High-Level Synthesis*

Oliver Bringmann and Wolfgang Rosenstiel

Forschungszentrum Informatik an der Universität Karlsruhe (FZI)
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

and Universität Tübingen, Sand 13, 72076 Tübingen, Germany

The approach presented in this paper offers a technique
of hierarchical synthesis according to the last mentioned
methodology and supports “white-box reuse”. This method-
ology requires an enhanced library model in order to con-
sider already synthesized component structures during
synthesis of modules at a higher hierarchical level.

A closer investigation of existing library models shows
that specific libraries developed for the corresponding high-
level synthesis system and technology-oriented libraries can
be distinguished. Specific libraries are used in the high-level
synthesis tools System Architect’s Workbench (SAW) [3],
Synopsys Behavioral Compiler [4], and Olympus [7]. The
libraries differ in the complexity of their components, but
specific component structures and the behavioral component
specification are not considered. Only some recently intro-
duced approaches consider an enhanced component model.
OSCAR [9] and ISE [10] represent complex components as
behavior templates in order to match multiple operations by
a single component. Additionally, in [10] components may
contain multiple functional outputs. In contrast to the other
systems mentioned, CATHEDRAL-III [6] uses a constructive
approach. Complex data-path elements are constructed from
primitive operators, which are mapped to primitive library
components, or to hardware building blocks of a module
generator. Reusing complex components as primitive opera-
tors or complex data-path elements is not possible. A similar
technique is used in the pre-synthesis system ACE [11].
Their component models are more abstract, but the system
only provides some architectural transformations, like the
merging of components. GENUS is a generic, technology ori-
ented register-transfer library used by the synthesis system
BdA [12]. GENUS automatically generates a component for
an operation from elementary function units. But it is not
possible to hierarchically combine elementary components
to build complex components. Hence, several operations of
a given behavioral specification can not be mapped onto
such complex components.

This paper is organized as follows: Section 2 describes
the basic concepts of hierarchical synthesis including the
underlying component model and the identification of com-
plex components as one important subtask. Section 3
addresses the implementation of our approach into the high-
level synthesis system CADDY-II. Some examples, including
experimental results, are presented in section 4. Finally, this
paper concludes with a summary in section 5.

2 A Concept for Hierarchical Synthesis

In this section, we explain in more detail our hierarchi-
cal synthesis concept. First, the underlying component
model is described. Then an outline of our hierarchical syn-
thesis concept is given. Finally, the main topic of this paper,
the identification of complex components is presented.

2.1 Component Model

The underlying component model provides the reuse of
arbitrary, already synthesized modules and includes the
VHDL behavioral description, the RT structure, and the cal-
culated schedule to the conventional high-level synthesis
library model. Hence, the components may contain a sepa-
rate controller, such their can be autonomous in the entire
system. This component model introduces a “white-box
reuse” approach, where the synthesis system can decide
automatically, whether the additional component informa-
tion are used or not. As opposed to conventional approaches
no inline-expansion of the component specification is
needed to perform optimization across different hierarchical
levels. Therefore, the overall synthesis time can be kept low.
Furthermore, the visible component structure can be used to
improve technology-dependent optimizations during high-
level synthesis.

2.2 Hierarchical Synthesis Concept

The proposed hierarchical synthesis technique is illus-
trated in figure 2. The entire system is synthesized in bot-
tom-up traversal of the hierarchy. Each symbol represents a
subdesign which is saved in the component library after syn-
thesis. Based on the enhanced component module an auto-
matic selection of optimized complex components and some
optimizations across different levels of hierarchy can be per-
formed. The most important optimization is the sharing of
autonomous subcomponents across different levels of hier-
archy. Due to space limitations, a more detailed description
of that task is beyond the scope of this paper. For further
information the reader is referred to [13].

Figure 1. Example of a “White-Box” Component

DCT

DCT

DCT

ModulDFG RT-Library

*

F
S

M

>

*

+

+
+ +

Figure 2. Hierarchical Synthesis Model

RT-Library

+*

B
ot

to
m

-U
p

S
yn

th
es

is

Specification
Schedule

RT Structure

System Specification

High-Level Synthesis

+
+*

–
–

+
+ +* +

+*

–
–

2.3 Identification of Complex Components

One task that has to be solved during hierarchical syn-
thesis is the identification of complex components in the
control-data flow graph, distinguishingdirect component
instantiation and component matching. Direct component
instantiation denotes a user specified component instantia-
tion in the algorithmic specification. In this case, the user
may preset the allocation of a complex component by invok-
ing the corresponding procedure in the specification. The
term component matching denotes the matching of compo-
nent and system data-flow subgraphs, in order to identify
suitable optimized complex components for the design. The
basis of component matching is the component behavioral
specification, which can easily be transferred into a control-
data flow graph. Thus, the matching problem needs to be
solved first for the control-flow subgraphs and second for
the data-flow subgraphs of the specification, in order to
reduce the complexity.

Figure 3 illustrates both mentioned possibilities of com-
plex component identification with three levels of hierarchy.
In the first step, the mult-add subcomponent has been identi-
fied as a part of componentf3. Componentf3 has been
instantiated directly by nodef3 of the overall system and can
also be identified as a part of the overall system.

For the sake of clarity, this example illustrates only the
data-flow graph matchings. The task of component identifi-
cation is to be integrated in allocation as well as scheduling.
Thereby, the synthesis system has to decide automatically
whether specialized and optimized complex components or
several primitive components are allocated. After schedul-
ing, all DFG operations covered by one component are
folded into a single complex operation node. Hence, no
enhancements are needed in the further synthesis steps.

3 Implementation into CADDY-II

3.1 Overview of the CADDY-II Synthesis System

This section concentrates on the methods used for hier-
archical synthesis regarding complex component structures
in the high-level synthesis system CADDY-II. The underlying
synthesis algorithms are only summarized here and can be
found more detailed in [14], [15], [16] and [17]. The main

synthesis steps used in the CADDY-II system aredata-flow
analysis, allocation, scheduling, component adaption,
assignment, data-path generation andcontroller generation.
Tasks of the allocation are the selection of the component
types to be used from the library including the number of
each component type, and the optimization of the clock fre-
quency. The scheduling has two tasks: One is the assign-
ment of a control step in which the operation starts. The
other is the assignment of an operation to a component type.
Task of component adaption is the insertion of additionally
needed component ports including registers and multiplex-
ers in order to select one of the inserted input ports. This is
needed when common subcomponents shall be shared. Task
of the assignment, also named binding, is the mapping of
operations to component instances, the allocation of an opti-
mized number of registers, and the mapping of variables to
the allocated registers. For a detailed description of the
assignment the reader is referred to [14]. The presented hier-
archical synthesis methodology involves mainly the alloca-
tion and the scheduling phases.

3.2 Definitions

The hierarchical synthesis is based on the presented
flexible concept of complex components. In the following,
we will define some useful notations. We define two main
data structures for hierarchical synthesis. First, the tupleS :=
〈Ds, CFGs, As〉 which denotes the data structures of the cur-
rently synthesized subsystem, whereDs represents the data-
flow graph,CFGs the control-flow graph, andAs the cur-
rently allocated components of the system. The data-flow
graphDs is annotated with additional information about the
assigned components and the assigned clock cycle after
each synthesis step. After synthesis, the estimated or back-
annotated physical component parameterPc and a list of all
allocated subcomponentsCc are added to the tupleS, before
this new synthesized component can be added to the compo-
nent libraryL.

Second, the component listL, which contains all avail-
able componentsCc of the library can be defined by the
tupleC := 〈Cc, Dc, CFGc, Pc〉 with C ∈ L, whereCc repre-
sents all used subcomponents,Dc represents the scheduled
and assigned component data-flow graph, CFGc represents
the component control-flow graph, andPc the list of esti-
mated or backannotated physical component parameters.Ci
∈ Cc, ∀ i ∈ {1, …, n} denotes thei-th subcomponent out of
n used subcomponents from the component at higher hierar-
chical level and is of the type〈Cc, Dc, CFGc, Pc〉.

3.3 Allocation with “White-Box” Components

As mentioned above, the main task of the allocation is
the determination of the component types including their

Figure 3. Identification of Complex Components

f3

f3

Overall System Componentf3 Subcomponent

+

×

+

+
×

+

+

×

×
+

+

+

Instantiation

Identification
Identification

number, from a library. Objective of this section is the exten-
sion of the existing allocation method [15], in order to han-
dle the white-box component model. The principal
algorithm is given in the following:

algorithm Allocation(S, L)
As := Initial_Allocation(Ds, L);
repeat

inc_dec_components_and_evaluate(As, S, L);
Aopt := best_allocation;
if As <> Aopt then

As :=Aopt;
end if ;

until no_improvement_found_in_last_iterations;
end Allocation;

Algorithm 1. Allocation of Complex Components

The search process strongly depends on the function
inc_dec_component_and_evaluate, which generates itera-
tively a series of new allocations by incrementing and decre-
menting the number of components and evaluates the
allocations. This function is guided by a global estimation
function, based on the probabilities of scheduling DFG
operations into given control steps. Important for white-box
components is the calculation of an initial allocation and the
matching of component DFGs, if the number of allocated
components should be increased. The following algorithm
determines an initial allocation with respect to white-box
components:

algorithm Initial_Allocation(Ds, L)
Mc := set of all components C ∈ M, the operations of which cover

at least one DFG node;
for all C ∈ Mc do

save Ds; N(C) := 0;
nc := choose a root node of the component DFG Dc;
for all ns ∈ Ds, with oplist(ns) ⊂ oplist(nc) do

Dm := matching(Ds, Dc, ns);
if Dm ≠ ∅ then

N(C) := N(C) + |Dm|;
Ds := Ds \ Dm;

end if ;
end do ;
cost(C) := area(Pc)

α · performance(Pc)
β ·

est_resynth_area(C)δ / N(C)γ ;
restore Ds;

end do ;
As := component set, selected in order of increasing cost(C) and

the specific component types, so that no resource conflicts
occur during ASAP scheduling;

return As;
end Initial_Allocation;

Algorithm 2. Generation of Initial Allocations

Task of the matching algorithm is to solve the data-flow
graph isomorphism problem betweenDs and Dc with the
known root nodens. This can easily be done in a topological

sorted graph with a complexity of O(|V|+|E|) by a simple
comparison of the operation lists, the ports, and the inter-
connections, where |V| denotes the number of nodes and |E|
the number of interconnections of the component data-flow
graphDc. The matching algorithm is also used in the main
allocation phase, especially in the algorithm
inc_dec_component_and_evaluate to calculate a set of fea-
sible components within an increment step [15], based on
the same cost functioncost(C). The weighting parametersα,
β, γ, andδ can be chosen by the user. The complexity of the
overall allocation algorithm amounts O(|Cr|

3), where Cr
denotes the set of matching components.

The algorithm Initial_Allocations heuristically deter-
mines the number of covered data-flow graph nodesN(C) of
Ds, for each component, in order to generate a ranking of
components with similar operation lists. The actual initial
allocation step is directed by the generated component rank-
ing. Note that the functionoplist returns the operation list of
a subcomponent. For a detailed description of further alloca-
tions steps the reader is referred to [15].

3.4 Scheduling with “White-Box” Components

Goal of the scheduling is to assign of operations to con-
trol steps and to component types. Furthermore, the respec-
tive component DFG and the already determined component
schedule are to consider. Inputs of the scheduling algorithm
are the data-flow graph of the systemDs and the scheduled
component data-flow graphDc. In contrast to the system-
DFG Ds, the component-DFGDc consist of subcomponent
nodes, which are assigned to component types and control
steps, instead of operation nodes.

As scheduling algorithm list scheduling is implemented
where the single clock cycles are scheduled consecutively.
To keep the run time complexity low and to avoid backtrack-
ing a global heuristic estimation function, based on the
probabilities of scheduling DFG operations into given con-
trol steps, is used to guide the decisions in every clock cycle.
In addition to the estimation function the cost function
cost(C) presented for allocation is also used here. If no valid
schedule can finally be obtained, the allocation is rejected
and a new allocation is generated.

The extension of the scheduling algorithm has to con-
sider the additionally allocated components caused by
white-box components, in order to find subcomponents
which can be shared with other components. Furthermore,
in each step of the list scheduling algorithm and for every
operation out of the ready set, all possible component types
must be determined and evaluated. Therefore the above
matching algorithm must be called for every operation of the
ready set in each clock step. Note that the ready set contains
all operations of the current clock step with already deter-
mined inputs. Due to the linear time complexity of the

matching algorithm, the effect in terms of execution time
can be neglected. Assigning DFG operations of the ready set
to component types at a given clock step is done by the fol-
lowing algorithm. Note that this algorithm is called in every
iteration of the list scheduling algorithm, that is for every
clock step.

algorithm generate_and_evaluate_assignments(S, C, R, cstep)
while R ≠ ∅ do

select op ∈ R; R := R \ {op}; Mc := ∅;
for all C ∈ L do

Mm := matching(Ds, Dc, op);
if Mm ≠ ∅ and (C ∈As or (C ∈Cc and unused(C,cstep))) then

Mc := Mc ∪ {Mm};
end if ;

end do ;
for all C ∈ Mc do

evaluate_component_assignment(S, C, op, cstep);
generate_and_evaluate_assignment(S, C, R, cstep);

end do ;
end do ;

end generate_and_evaluate_assignments;

Algorithm 3. Component Type Binding during Scheduling

The algorithm recursively generates all feasible assign-
ments to component types and all operation subsets in the
current clock step. Premise of the algorithm is the already
determined set of actual ready componentsR. The function
unused checks by using the component CDFG, if a subcom-
ponent is not used in the current control step. Note that the
component libraryL can be reduced before calling the algo-
rithm generate_and_evaluate_assignments to components
which covers at least one node of the DFGDs. A detailed
description of the underlying scheduling algorithm includ-
ing the used global estimation function can be found in [16].

4 Experimental Results

Experimental results of our approach on several
designs, including some benchmark circuits, are given in
this section. First, just for reasons of comparability the
results for the fifth order elliptic wave filter benchmark are
given. This benchmark demonstrates two essential features
of our hierarchical synthesis approach: First, identification
of complex component structures in the system data-flow
graph, and second, the possibility of sharing subcompo-
nents. The filter benchmark consists of eight data-flow sub-
graphs which match the multiply-accumulate component.
Table 1 shows some results for different allocations with and
without subcomponent sharing, and compares this with the
traditional component model. In this table, a component
with a data initiation interval of one clock cycle and an exe-
cution time of two clock cycles is specified by the notation
‘1 : 2’, for instance.

As a result, we get the performance improvements
listed in column entitled “gain”. In this example the, speed-

up of the design is up to 5 clock cycles with equal hardware
costs. This is because the multiply-accumulate component
may share the internal adder, if an additional adder is
needed. In contrast, if subcomponent sharing is not sup-
ported, a resource conflict can only be solved by adding a
further clock step. The CPU time for the filter on a Sun
SPARC 20 was less than 2 seconds for a fixed set of allo-
cated components and less than 12 seconds for an enlarged
design space exploration by synthesizing different sets of
automatically allocated components.

Second, we will present the results of the FDCT bench-
mark, shown in table 2. The given component costs are
taken from [9] and amount 10 units for using an adder, 20
units for using an multiplier, and 25 units for using a multi-
ply-accumulate unit. The column entitled “costs” is filled
with the area-time product as cost function. Nine different
data-flow subgraphs are identified and mapped to the multi-
ply-accumulate unit by the system. Applying subcomponent
sharing, a speedup of up to 8 clock cycles can be achieved.
In comparison to non-encapsulated components, the perfor-
mance results of the synthesized circuits are equal in most of
the determined cases, while the area costs can be reduced.
Particularly, the optimal circuit in relation to the area delay
ratio is synthesized using two multiply-accumulate units and
two adders. The CPU time for the FDCT benchmark was
less than 4 seconds for a fixed set of allocated components
and less than 16 seconds for an enlarged design space explo-
ration.

Table 1.5th Order Elliptical Wave Filter

with complex components without complex components

resources clock steps (cs) resources clock
steps
(cs)

+ MAC MAC with
sharing

without
sharing

gain
+ * *

1 : 1 1 : 2 1 : 3 1 : 1 1 : 1 1 : 2

1 1 0 16 20 4 2 1 0 16

2 1 0 15 15 1 3 1 0 15

1 2 0 14 19 5 3 2 0 14

1 0 1 18 21 3 2 0 1 19

1 0 2 17 21 4 3 0 2 17

Table 2.Fast Discrete Cosine Transformation

with complex components without complex components

resources clock steps (cs) resources clock
steps
(cs)

+ / – * MAC with
sharing

without
sharing

gain
+ / – *

10 20 25 costs 10 20 costs

1 0 3 765 9 14 5 4 3 900 9

1 0 2 720 12 18 6 3 2 770 11

1 1 2 990 11 19 8 3 3 810 9

2 0 2 700 11 16 5 4 2 880 11

2 1 2 900 10 13 3 4 3 900 9

2 0 3 855 9 13 4 5 3 990 9

2 0 1 810 18 20 2 3 1 900 18

1 1 1 715 13 21 8 2 2 780 13

2 2 1 850 10 13 3 3 3 810 9

2 1 1 715 11 13 2 3 2 770 11

Finally, the results of the simulated annealing processor
taken from [18] are presented. At first, the needed floating-
point components and then the overall simulated annealing
algorithm have been specified. The high-level synthesis sys-
tem CADDY-II maps all floating-point operations to the pre-
vious designed components and synthesizes the entire
system hierarchically with respect to the used floating-point
components. All instantiated subcomponents of the floating-
point components are now ready to be used as shared com-
ponents within the entire simulated annealing design. The
floating-point multiplier for instance, consists of an integer
multiplier, an integer adder, and a barrel shifter. These com-
ponents can be used additionally for other integer arithmetic
operations of the whole design. As a result, all specified
arithmetic operations could be covered by the subcompo-
nents of the floating-point units. Table 3 lists the synthe-
sized results for a hierarchical and a inline-expanded
description. By using encapsulated components, the control-
ler size of the simulated annealing processor could be
reduced to 46% of the controller size of the inline-expanded
description by an equal performance. The CLB count is
related to the Xilinx XC4000 family and is given to get more
detailed information. The CPU time could be reduced from
20 to 7 seconds when using the hierarchical description.

In summary, the presented results show several advan-
tages of the hierarchical synthesis method regarding com-
plex component structures. The system automatically
identifies optimized complex components which cover parts
of the data-flow graph. When using subcomponent sharing,
the synthesized circuits need less clock cycles under
resource constraints, and are less area consuming under tim-
ing constraints. Furthermore, the run-time of the synthesis
algorithm could be decreased compared to non-hierarchical
approaches.

5 Summary and Conclusion

This paper presented a new approach for hierarchical
high-level synthesis regarding complex component struc-
tures. The presented experimental results encourage further

investigations in this area. The advantages of the presented
approach are: First, the concept of complex components
offers the basis for a hierarchical synthesis methodology
with respect to specific component structures, in order to
increase the degree of optimization. Second, resource shar-
ing can be performed across different levels of hierarchy of
autonomous components, with a separate controller. Third,
each synthesized module can be reused in the same design
as a complex register-transfer component. Finally, multiple
instances of one component have to be synthesized only
once.

6 References

[1] R. Bergamaschi:Productivity Issues in High-Level Design: Are
Tools Solving the Real Problems?. Proceedings of DAC, 1995.

[2] M. McFarland, T. Kowalski:Incorporating Bottom-Up Design into
Hardware Synthesis. IEEE Transactions on CAD, vol. 9, 1990.

[3] D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor, J. V.
Rajan, R. L. Blackburn: Algorithmic and Register-Transfer
Synthesis: The System Architect’s Workbench.Kluwer, 1990.

[4] T. Ly, D. Knapp, R. Miller, D. MacMillen:Scheduling using
Behavioral Templates. Proceedings of DAC, 1995.

[5] D. Sreenivasa Rao, F. Kurdahi:Hierarchical Design Space
Exploration for a Class of Digital Systems. IEEE Transactions on
CAD, vol. 1, pp. 282-295, 1993.

[6] W. Geurts, F. Catthoor, H. De Man:Quadratic Zero-One
Programming-Based Synthesis of Application-Specific Data Paths.
IEEE Transactions on CAD, vol. 14, pp. 1-11, 1995.

[7] D. C. Ku, G. De Micheli:High-Level Synthesis of ASICs Under
Timing and Synchronization Constraints. Kluwer, 1992.

[8] P. Kission, H. Ding, A. Jerraya:VHDL Based Design Methodology
for Hierarchy and Component Re-Use. Proceedings of EURO-
VHDL, 1995.

[9] B. Landwehr, P. Marwedel, R. Dömer:OSCAR: Optimum
Simultaneous Scheduling, Allocation and Resource Binding Based
on Integer Programming, Proceedings of EURO-VHDL, 1994.

[10] R. Ang: Library Insertion and Reuse of Datapath Components in
High-Level Synthesis. PhD Thesis, University of California, Irvine,
1996.

[11] B. G. Hald, J. Madsen:A Flexible Representation for High-Level
Synthesis. Proceedings of 2nd Asian Pacific Conference on
Hardware Description Languages, 1994.

[12] P. Jha, N. Dutt:Design Reuse through High-Level Library Mapping.
Proceedings of European Design & Test Conference, 1995.

[13] O. Bringmann, W. Rosenstiel:Resource Sharing in Hierarchical
Synthesis. Proceedings of ICCAD, 1997.

[14] W. Rosenstiel, H. Krämer:Scheduling and Assignment in High-
Level Synthesis. In R. Camposano, W. Wolf: High-Level VLSI
Synthesis, Kluwer, 1991.

[15] P. Gutberlet, J. Müller, H. Krämer, W. Rosenstiel:Automatic Module
Allocation in High-Level Synthesis. Proc. of EURO-DAC, 1992.

[16] P. Gutberlet, H. Krämer, W. Rosenstiel:CASCH - a Scheduling
Algorithm for High-Level Synthesis. Proceedings of EDAC, 1991.

[17] P. Gutberlet, W. Rosenstiel:Timing Preserving Interface
Transformations for the Synthesis of Behavioral VHDL. Proceedings
of EURO-VHDL, 1994.

[18] B. Eschermann, O. Haberl, O. Bringmann, O. Seitz: COSIMA:A
Self-Testable Simulated Annealing Processor for Universal Cost
Functions. Proceedings of EuroASIC, 1992.

Table 3.Simulated Annealing Processor

Components
Hierarchical
Description

Inline-Expanded
Description

Area
Reduction

Datapath: Multiplier 1 1 0 %

Add/Sub 2 2 0 %

Barrelshifter 1 1 0 %

Leading_Zero 1 1 0 %

Comparator 2 3 33 %

Multiplexer 19 27 30 %

Register 11 12 8 %

Controller: Gate Equivalents 158 307 49 %

CLBs 56 104 46 %

States 11 26 58 %

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

