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Abstract
In this paper, we address the problem of layout-driven

scheduling-binding as these steps have a direct relevance
on the �nal performance of the design. The importance
of e�ective and e�cient accounting of layout e�ects is well-
established in High-Level Synthesis (HLS), since it allows
more e�cient exploration of the design space and the gen-
eration of solutions with predictable metrics. This feature
is highly desirable in order to avoid unnecessary iterations
through the design process.By producing not only an RTL
netlist but also an approximate physical topology of imple-
mentation at the chip level, we ensure that the solution
will perform at the predicted metric once implemented, thus
avoiding unnecessary delays in the design process.

1 Introduction
With recent advances in semiconductor technology, in-

creases in design complexity and drastic reduction in time-
to-market, the need for High Level Synthesis (HLS) on
higher abstraction levels where functionality and design
tradeo� are easier to understand is unavoidable. How-
ever, the gap between HLS and physical design severely
prevented the acceptance of HLS for practical applications.
This is because most of existing CAD systems treat HLS
tasks and physical design independently. They su�ers from
three major drawbacks: (1) it is not known whether the
design will meet the constraints or not until both HLS
and physical design have been �nished; (2) it is di�cult
for the early design tasks to make the right decision with-
out knowing the information related to layout; (3) when the
constraints are not met, it is di�cult to identify where the
problem comes from and at which level the design should be
modi�ed; (4) The time-consuming phase of placement and
routing has to be run within each iteration in the design
process, thus lengthening that process considerably.

2 Previous Work
3-D [7] presented an approach to the problem of

scheduling-binding while simultaneously considering 
oor-
planning. As operations are scheduled and functional mod-
ules are allocated, 3-D decides their shape and position
on the 
oorplan concurrently. However, this approach
didn't consider the cost and delay of registers, multiplex-
ors, and wiring. There are several e�orts that addressed
binding with layout information. GBA [8] considered bind-
ing with physical information. However, GBA applies

only to one dimension bit-slice design. PBITNET [9] and
LDB [3] incorporate the interconnection delay when binding
is performed. Ewering [10] and ApplaUSE [11] addressed
the binding with physical information problem by moving
placement earlier before bus and register assignment, but no
physical information is taken into account when FU binding
is performed. SMB [12] presented an integrated approach
for minimizing critical path delay by simultaneously per-
forming FU binding and 
oorplanning.

On the other hand, our approach estimate the layout in-
formation before actually perform scheduling-binding tasks
and use the layout information to guide our scheduling-
binding tasks.

3 Architectural Model and Problem

De�nition
In high-level synthesis, an RTL system that consists of

FUs, storage units, and interconnections is synthesized from
the behavioral description. In order to explore the impact
of physical design information in HLS, we need to de�ne a
target architecture. We con�ne our scope to multiplexor-
based architectural model in this paper and multi-cycled
operations are possible.

Our problem can be de�ned as follows:

Given (1) a data 
ow graph (DFG), (2) maxi-
mum allowable clock period and execution time,
which are usually part of the system speci�cation,
(3) component shape functions, identify whether
there is a feasible RTL datapath solution or not.
If there is a solution, perform scheduling and
binding and generate an RTL netlist and its cor-
responding 
oorplan; Otherwise, report it to the
user and output the best solution that could be
achieved.

The example in Figure 1 illustrates the problem. We
assume that the controller is implemented as a Moore FSM
with status and control registers and work here concentrates
on the datapath area and delay metrics.

4 Our Approach
The 
ow of our algorithm is shown in Figure 2. The

main features of this work are the following: (1) the �nal
result is evaluated without actually going through the time
consuming phase of placement and routing, and the fast
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Figure 1: An example illustrating the inputs and outputs
of the problem

layout information feedback is used to guide scheduling-
binding tasks; (2) when time constrains are met, the al-
gorithm will output not only a scheduling solution and a
structural RTL netlist, but also it's corresponding physical
topology which can be carried through silicon implementa-
tion in a predictable manner; (3) whenever time constraints
are not met, our scheduling and binding techniques provide
a means of exploring the design space in a realistic and e�-
cient way, with this exploration, our scheduling and binding
techniques will provide feedback to the previous tasks if the
constraints can not result in any feasible solution and out-
put the best implementation that can be achieved;

Given a 
ow graph and time constraints, �rst, we calcu-
late the number of control steps using maximum execution
time divided by the maximum clock period. Then we es-
timate the RTL minimum clock period using the way pro-
posed in MinClkGen [5]. The RTL clock period and the
number of control steps are then used to estimate lower
bound of the resources [5]. The underlying concept of the
resource estimation is that, if there are n operations that
need to be �nished within s states, and a component used
to perform an operation requires at least c clock cycles to
�nish the execution before it could be used again to exe-
cute another operation, then clearly, the minimum number
of components required is equal to d (n� c)/s e. Next, we
construct a fully connected netlist in which each FU is con-
nected to every register and each register is connected to
every FU and feed it into our our physical level estimation
tools ChipEst-FPGA [1] and CompEst-FPGA [2] to obtain
an approximate topology of the layout. CompEst-FPGA is
a component estimation tool which predicts the area and
delay of a given RTL component netlist. Once we have
obtained a shape function for each component, ChipEst-
FPGA is used to generate an approximate topology of the
overall design. At this moment, we can get distance metrics
between the di�erent units and this step provides valuable
feedback to the scheduling and binding task in HLS as de-
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Figure 2: Layout-driven scheduling-binding technique for
HLS

scribed later.

4.1 Set Cut-O� Point for Scheduling-
Binding

Having estimated all the path delays, we can set the cut-
o� point to decide whether a path can be used for binding
or not. Cut-o� point is a number such that all paths whose
delays fall above that number will not be considered as can-
didates for binding. Let's denote the initial cut-o� point for
binding as CTinit and the cut-o� point for the current it-
eration as CTcurrent. Let cr delayprev be the critical path
delay of the previous binding solution and � be the factor
of choosing the current cut-o� point. The user can decide
whether � should equal 1, 10, 100, 1000... so that the trade-
o� between the time spent on exploration and the number
of solutions explored can be made.

The initial cut-o� point and current cut-o� point can be
obtained by the following equation:

CTinit = dMAX(Delayi;j;kji; k = 0; 1; :::r; j = 0; 1; :::f)e (1)

CTcurrent = b(cr delayprev � �)=10c � 10=� (2)

where Delayi;j;k is the delay from the ith register, through
the jth FU to kth register, r is the number of registers, and
f is the number of FUs.

4.2 Scheduling-Binding
Our approach then sequentially performs scheduling and

binding simultaneously, one control step at a time. Mainly,
it has the following basic steps:

� Obtain the number of available functional units

and registers: Once a cut-o� point is set, paths with



delay longer than the cut-o� point are dropped from
consideration for scheduling-binding. The functional
units and registers appeared on the remaining paths
are available for scheduling-binding in current control
step.

� Resource constrained execution interval analy-

sis: Recall that our problem is both time and resource
constrained. Once the number of control steps is calcu-
lated and the current available resources are estimated,
we use execution interval (EI) analysis under resource
constraints proposed by Adwin et. al [6] to detect
the feasibility of partial scheduled data 
ow graph.
The analysis prunes the search space of scheduling-
binding without limiting the solution space and there-
fore speeds up the scheduling-binding algorithm.

� Generating ScheduleGroups: A depth-�rst, recur-
sive procedure is used to generate di�erent Schedule-
Groups under a given set of operations that are already
bound in the previous control steps, a set of operations
that will be scheduled and bound within current con-
trol step, and a set of operations that are ready to be
scheduled and bound.

� ScheduleGroup selection: Di�erent Schedule-
Groups may corresponds to a di�erent scheduling-
binding solution. During the search procedure, instead
of �nding the best solution in each iteration, the algo-
rithm will stop further searching once a proper Sched-
uleGroup is found. The identi�cation of proper Sched-
uleGroup is described in Section 4.2.2.

4.2.1 Generating ScheduleGroups

A depth-�rst, recursive procedure is used to generate the set
of ScheduleGroups. The ScheduleGroups are constrained
by the data/control constraints between operators and the
available scheduling-binding resources based on the layout
information.
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Figure 3: A tree shows all possible ScheduleGroups

Figure 3(b) shows all possible ScheduleGroups for the
�rst control step for the given DFG which is shown in
Figure 3(a). The current available resources include two
multipliers and one adder. Each node in the tree con-
tains two entities, schedule group (ScheduleGroup) and

priority ready list (PreadyList). The priority ready list,
PreadyList, initially contains all operations that: (1)
have their dependencies scheduled & bound in the previ-
ous control steps or with primary inputs; and (2) meet
the constraints: New OEI start(Oi) � current cstep �
New OEI end(Oi).

The ScheduleGroup is initialized to null. The tree is
dynamically constructed by depth-�rst traversal using a re-
cursive call. Whenever a proper ScheduleGroup is found,
the tree construction, i.e. �nding new ScheduleGroups will
stop. Since the maximum number of operations that can
be scheduled and bound in the current control step should
be less than or equal to the number of available functional
units, the maximum depth of the tree equals the number of
the current available components.

4.2.2 Schedule Group Selection

To decide whether a schedule-group is proper or not, the
algorithm does bindable check and schedulable check. Bind-
able check checks whether operations in the schedule-group
can be bound in the current control step given the estimated
resources and the paths. Schedulable check checks whether
the rest of the unscheduled operations can be scheduled suc-
cessfully within the rest of the cycles assume that operations
in the schedule-group are scheduled in the current cycle.
If the current schedule-group is not bindable, all it's child
schedule-groups are not bindable. Otherwise, the algorithm
will proceed to perform schedulable check. If the schedule-
group is both bindable and schedulable, it may be a proper
solution, the algorithm will continue its search until no child
feasible solution can be found. The youngest child feasible
solution is chosen as the proper schedule-group (we explore
other solutions later by further lowering the cut-o� point).
If the schedule-group is bindable but not schedulable, it's
child or sibling schedule-group will be checked.

Once a proper schedule-group is found, the algorithm
will record its scheduling-binding information and proceed
to do the next cycle scheduling-binding. This process
will be repeated until all the cycles are processed. If the
scheduling-binding succeeds, the algorithm will prune all
the unnecessary interconnections, delete all the unnecessary
multiplexors and �nally, re-size the multiplexors according
to the actual interconnection information. The algorithm
will then update the area and timing information based
on the component information in the library or by invok-
ing CompEst-FPGA [2] and generate an optimized RTL
netlist. At this point, if the clock period exceeds the max-
imum clock period, layout adjustment will be invoked to
re-run our ChipEst-FPGA on the pruned RTL netlist

After layout adjustment, if the cycle time still can not
satisfy the maximum clock period constraint, we need to
reset the cut-o� point and redo the scheduling and binding.
This iteration will continue until the cut-o� point hits the
cut-o�-point threshold or a feasible solution is found.

5 Layout-Driven Scheduling-Binding

For Conditional Branches
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Figure 4: An example: (a) VHDL description (b) Con-
trol Flow Graph (CFG) (c) Data Flow Graph (DFG) (d)
Dependency Graph for DFGs (DGD)

To handle conditional branch, we use control/data 
ow
graph (CDFG) proposed by Gajski [17] as our represen-
tation. Figure 4 shows an example of a VHDL descrip-
tion 4(a), its corresponding control 
ow graph 4(b) and
data 
ow graph 4(c). The control 
ow graph captures se-
quencing, conditional branching and looping constructs in
the behavioral description, while data 
ow graph captures
operational activity described by the VHDL assignments
statements. Each node of the control 
ow graph can have
a data 
ow block associated with it that represents the op-
erations performed in that control 
ow node. The CDFG
data 
ow blocks are similar to basic blocks in structured
programming languages. The condition is represented in
the control 
ow graph by fork and joint node. The left
path following the fork node is the path the design will be
taken when the condition is true while the right path is the
path the design will take when the condition is false.

The layout driven scheduling-binding problem now be-
comes the scheduling and binding for multiple data 
ow

graphs (DFGs). The relationship between these DFGs is
represented in the control 
ow graph.

To perform scheduling-binding, we �rst build the De-
pendency Graph for DFGs (DGD), A DGD graph consists
of one start node, one end node, one or more DGD nodes,
and edges. It can be derived from the control 
ow graph.
As show in Figure 4(d), Each basic block in the control

ow graph will generate a DGD node. Two DGD nodes
are connected by an edge if there is a path in the control

ow graph, which goes through no other basic blocks. Each
DGD node has one pointer to its corresponding DFG. Also,
it contains one DGD node 
ag which will not be set un-
less all the operations in its DFG have been scheduled and
bound. An DGD example is shown in Figure 4(d). DGD
nodes Bi are derived from the corresponding basic blocks
Bi in the control 
ow graph. Each DGD node has its own
DFG.

Once we have the DGD, we build a corresponding DFG
for each DGD node. After that, we sequentially schedule
and bind the DGD and DFGs simultaneously, one control
step at a time. Within each control step, we �rst �nd out all
the ready DGD nodes. Then for each of these DGD nodes,
the layout driven scheduling-binding procedure is invoked.
Every pair of DGD nodes either have dependency or belong
to di�erent branches. That means operations belonging to
di�erent DGDs are mutually exclusive. Such operations
(belonging to di�erent DGDs) can share the same resources.

6 Experimental Results
We have implemented our layout-driven RTL binding

techniques for HLS in C on the Sun SPARC workstation.
The �rst set of experiments included behavioral description
of basic blocks are: (1) the 2nd order di�erential equation

solver. (2) Discrete Cosine Transformer (DCT). (3) the
5th order elliptic wave �lter (EWF). (4) 18 tap FIR �lter

(FIF) [13] used in a 155 Mbps ATM transceiver. The bit-
width of all the examples is 4.
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Figure 5: Experimental results for basic blocks

Figure 5 shows the experimental results. The execution
time constraints specify the maximum allowable execution



time. For di�erent number of control steps, the clock pe-
riod constraints can be calculated as the execution time di-
vided by the number of control steps. Both area and clock
period using our approach and traditional approach are
listed in the Figure 5. For the traditional approach, we use
lower bound based scheduling algorithm [4] which produces
schedule (which is optimal in resources count, but does not
consider layout e�ects), then we invoke our layout-driven
binding algorithm [3]. We make the following observations:
(1) in all cases, using our approach, we can �nd a result that
satis�es the constraints while the time constraints are vi-
olated using traditional approach; (2)traditional approach
generates a smaller RTL design which does not satisfy tim-
ing constraints; (3) the clock period constraints violation
is signi�cant, up to 100%. Thus, we can see, taking lay-
out information into account while performing high level
synthesis tasks is necessary since the violation can not be
solved by �ne tuning the HLS algorithms themselves. Our
approach is e�cient since each solution takes less than 2
minutes of CPU time.

The second set of experiments are used to test our
scheduling-binding algorithm for descriptions with condi-
tional branches. They are: (1) Kim's example [14]. (2)
Wakabayashi's example [15]. (3) One process taken from
MPEG, Cordic [16]. The examples are 8 bits datapaths.
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Figure 6: Experimental result conditional branches

Figure 6 shows the experimental results. RT Level
constraints only include FU and register delays (the de-
lay of adder-subtractor is 42:6ns and delay of multiplier
is 67:4ns). The examples shown contain multi-cycle, uni-
cycle and chaining depending on di�erent RT Level con-
straints. Resources shows the lower bound on functional
units needed for the examples. The results are listed in
the last three columns. Based on these results, we can
make the following observations: (1) The interconnection
delay contributes up to 55% on the performance. This is
slightly bigger compared to scheduling-binding for straight
line code (up to 50%) because in the conditional branch
case, the mux delay is bigger because of resource sharing.
(2) The CPU run time for chaining is longer because there
are more functional units that can perform the chained op-
erations. (3) The smaller the clock period, the shorter the
execution time, this is true for these examples and for these
RT Level constraints. Partly this is because we use CDFG

as our data representation and di�erent DFGs are forced
to be separated and scheduled into di�erent control steps
when a fork or a joint nodes occurred. This prevented the
algorithm fully exploring the parallelism of the design.

7 Conclusion
We presented a scheduling-binding approach which si-

multaneously execute scheduling and binding with layout
information, and also uses an accurate layout estimator to
simultaneously produce an RTL solution and a correspond-
ing 
oorplan. Future work will incorporate the controller
e�ects into scheduling-binding using the approach proposed
in [3].
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