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Abstract
One of the main tasks within the high-level synthesis (HLS)
process is the verification problem to prove automatically
the correctness of the synthesis results. Currently, the re-
sults are usually checked by simulation. In consequence,
both the behavioral specification and the HLS results have
to be simulated by the same set of test vectors. Due to the
HLS and the inherent changes in the cycle-by-cycle beha-
viour, the synthesis results require an adaption of the ini-
tial test vector set. This reduces the advantage gained by
using the automated HLS process. In order to decrease
these simulation efforts, in this paper a new method will be
presented that enables the usage of the same simulation
vectors at both abstraction levels and the execution of an
automated simulation comparison.

1 Introduction

With high level synthesis (HLS) tools, the circuit be-
havior can be specified at an abstract behavioural level.
The specification is realized as an algorithmic description
usually by VHDL programs [8] and then transformed into
a register transfer (RT) design. HLS is a well-known re-
search area (e.g. [2], [3], [7]), and the first commercial tool
[9] is already available. However, one open question in
HLS domain is the verification of the synthesized RT de-
sign. Several verification methods are currently available,
but usually, the results are checked by simulation. A set of
simulation vectors is created for the simulation of the algo-
rithmic specification. Due to the HLS and the resulting
changes in the cycle-by-cycle behaviour, an adaption of the
original vectors or a complete new set of simulation vectors
for the generated RT design is necessary. Simulations at
both levels have to be performed and the results have to be

checked. In the case of the RT simulation, the examination
of the results is a difficult task, because the RT design is
generated code and, therefore, the designer has to analyse
unknown source code. Assuming that simulation is one of
the most time intensive steps, this significantly reduces the
advantage gained by using the automated HLS process. In
order to decrease these simulation efforts, automated sim-
ulation methods are necessary. One straightforward meth-
od is the usage of the same set of simulation vectors for the
simulation of the algorithmic specification and the simula-
tion of the generated RT design. If a common set is used,
an automated simulation comparison is possible. During
the creation of common simulation vectors, the different
cycle-by-cycle behaviour has to be regarded. During the
generation of the comparison, also the different semantics
of the specification language and the realized interpretation
of this semantics in HLS process with request to the simu-
lation task has to be considered.

One of the first systems, dealing with these problems, is
the Satya System [4]. In Satya, a new specification is gen-
erated by adding scheduling results from synthesis to the
original specification. The generated specification and the
synthesized RT implementation are then checked for
equivalence. The disadvantage is obvious, since instead of
the original specification the generated specification is
checked for equivalence. Another verification approach
based on simulation comparison is presented in [1]. Here,
special hardware structures are created in the RT design
which allow a comparison between the specification simu-
lation and the RT simulation at some synchronization
points. The applicability of this approach is limited due to
the required internal change of the HLS process.

This paper presents a new approach for comparing sim-
ulation results of an algorithmic VHDL specification and a
synthesized RT design, also represented as a VHDL de-
scription, using the interface synthesis of a HLS process.
One common simulation set is used and the normal HLS



process has not to be changed. In this paper, first, the
boundary conditions for an efficient simulation compari-
son will be discussed. Next, an overview of the used design
flow is given and the proposed simulation comparison us-
ing the interface synthesis is described. The enclosed sam-
ple design will illustrate the application of the proposed
method and underline the efficiency and simplified porta-
bility onto other HLS systems.

2 VHDL for simulation and high-level synthe-
sis

When using HLS the circuit behavior can be specified
at an abstract level by synchronous VHDL programs. The
data path as well as the controller part are synthesized start-
ing at this behavioral specification. In HLS, an important
step is the scheduling, which assigns the operations to con-
trol steps and determines the degree of parallelism and the
timing of the circuit [6]. Therefore, the scheduling may
change the cycle-by-cycle behavior of the initial specifica-
tion. For example, an operation which needs one clock cy-
cle in the specification may need several clock cycles in the
synthesized RT design. To give the designer control over
the scheduling step, and thus the possibility to determine
the degree of change in the resulting cycle-by-cycle beha-
viour, different I/O scheduling modes have been developed
(e.g. [7], [9], [11]). These modes represent alternative in-
terpretations of the VHDL timing concepts.

In the HLS system used in this approach four different
scheduling modes are realized. Three of them are based on
the approach represented in [9], the last one was presented
in [7]. In [9], a VHDL specification style was defined with
three different I/O scheduling modes. These modes are the
"cycle-fixed" I/O scheduling mode, the "superstate" I/O
mode and the "free-floating" I/O scheduling mode. When
using the "cycle-fixed" I/O scheduling mode, the simula-
tion vectors need not to be adapted since the cycle-by-cycle
behavior of the specification is unchanged. The I/O opera-
tions, this means the read and write signals of the design,
are tied to particular cycles. Only other operations, e.g. ad-
ditions, register reads and writes, could be shifted in time.
Therefore, in this scheduling mode, the main advantage is,
that the designer synthesize the exact timing behaviour of
the initial specification. Thus, a direct simulation compari-
son is possible. However, the designer has to have an exact
know-how about the required circuit, and only few optimi-
zation possibilities are left for the scheduler. When using
the "superstate" I/O mode, the scheduler has some more
optimization alternatives and as a result, the cycle-by-cycle
behaviour may change. The scheduler can shift I/O opera-
tions in time, but only within the boundaries between two
adjacent clock edge expressions. These two clock state-

ments form the boundary of one superstate in which all I/O
operations remain. Now, the scheduler can add clock cy-
cles to lengthen the superstate (Figure 1). Consequently, a
direct cycle-by-cycle comparison is not possible and would
lead to incorrect simulation results. Thus, some transfor-
mations have to be performed to use the initial simulation
vectors. When using the "free-floating" I/O mode, the per-
mutation of I/O operations and clock edge expressions are
possible. The timing constraints are explicitly defined by
the designer without any reference to the simulation beha-
viour. Therefore, it is impossible to reuse the same simula-
tion vectors. With this scheduling mode, the designer
convey the most optimization possibilities to the scheduler.

Figure 1: Adding clock cycles in the "superstate"
I/O scheduling mode

In [7], a VHDL description style is defined using a
"min/max constraint" I/O scheduling mode. The cycle-by-
cycle behaviour of the specification is defined by minimum
and maximum time conditions in absolute timing values.
Therefore, the designer has not to have the exact know-how
about the required circuit. Just as the "cycle-fixed" I/O
scheduling mode, the synthesized result has exactly the
same timing behaviour as the original specification. Thus,
a direct simulation comparison is also possible.

In Table 1, the different scheduling modes are classi-
fied corresponding to there comparison capability.

In summary, the "cycle-fixed" and the "min/max con-
straint" I/O scheduling mode can be compared directly.
With the "free-float" I/O scheduling mode a cycle-by-cycle

direct cycle-by-
cycle comparison

cycle-by-cycle
comparison
with transformation

cycle-by-cycle
comparison
impossible

cycle-fixed
scheduling mode

superstate
scheduling mode

free-float
scheduling mode

min/max constraint
scheduling mode

Table 1: Cycle-by-cycle comparison and sched-
uling modes
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comparison is impossible, due to the permutation of I/O
operations and clock edge expressions. Consequently, the
main research work concerning verification by simulation
comparison is concentrated on the "superstate" I/O sched-
uling mode, where a cycle-by-cycle comparison is possible
by some transformations.

3 Simulation Comparison by Using Interface
Synthesis

3.1 Design flow

The simulation comparison realized in this design flow
is based on the "superstate" I/O scheduling mode. This
mode is implemented in the CADDY II synthesis system.
A detailed overview of the methodology used in CADDY
II is given in [10]. In the following, the design flow is de-
scribed and the integration of the scheduling mode genera-
tion and the simulation comparison is shown in Figure 2.

Figure 2: Overview of designflow with synthesis
and simulation comparison

In the first step, the VHDL preprocessing is started.
One main task during the preprocessing is the realization of
the different scheduling modes ("constraint realization").
The CADDY II synthesis process is based on the "free-
float" I/O scheduling mode. Other modes can be realized
by setting corresponding constraints. In the VHDL specifi-
cation an attribute has to be set which defines the required
scheduling mode. Then the preprocessor generates the nec-
essary constraints for the scheduler. Due to this strategy,
any scheduling mode between the "cycle-fixed" and the
"free-float" mode could be generated. The second main
task during the preprocessing is the preparation of the sim-
ulation comparison, e.g. the insertion of the comparison
point detection (CPD) signal. This task is described in
more detail in section 3.2. Finally, the preprocessing gen-

erates a flow graph description, the interchange format for
the CADDY II system, and the synthesis process is started
without any change for the simulation comparison. The re-
sulting RT design is represented by a VHDL description.
As soon as the synthesis process is finished, the simulation
of the specification and the simulation of the RT design can
be started. In this case, the Synopsys simulator was used,
but also other VHDL simulator can be applied. After sim-
ulation, the results are automatically stored in a Synopsys
specific data format and then transformed into ASCII files.
Finally, these files are compared with a simple Perl script
and the results are displayed. Assuming the interface com-
ponent used for the simulation comparison is correctly
specified, the designer can then decide whether there are
any faults in the synthesis process. If any differences occur,
the synthesis process has generated an invalid RT descrip-
tion.

3.2 Realization of the comparison point detection

When realizing a simulation comparison using the "su-
perstate" I/O scheduling mode, the following requirements
has to be fulfilled:

• common simulation vectors (simulation environ-
ment) have to be used for the simulation of the
algorithmic specification and the RT design

• a handshake protocol has to be implemented
because of the different timing behaviour of the
specification and the synthesized design (section
3.2.1)

• the simulation comparison points of the specifica-
tion and the RT design have to be defined (section
3.2.2)

• a signal has to be generated that displayed the
comparison points in the RT design (section 3.2.3)

3.2.1 Implementing a handshake protocol

To implement a common simulation environment for
simulations with different timing behaviour, a handshake
protocol has to be implemented. This ensures that the val-
ues of the input signals can not change faster than the de-
sign can calculate the results. Basically, several handshake
protocols are possible. The most commonly used types are
the two phase handshake protocol and the four phase hand-
shake protocol. In the following example implementing a
greatest common divider (gcd) algorithm a four phase
handshake protocol is realized:

ARCHITECTURE behaviour OF gcd IS
BEGIN

PROCESS

VHDL
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VHDL
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simulation vectors
VHDL

result
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VARIABLE x1, x2 : UNSIGNED(7 DOWNTO 0);
BEGIN

WAIT until clock‘event and clock = ‘1‘ and
in_ready = "1";

x1 := in1;
x2 := in2;

IF (x1 /= SIGNED‘("00000000") and
x2 /= SIGNED‘("00000000")) THEN
WHILE x1 /= x2 LOOP

IF x1 < x2 THEN
x2 := x2 - x1;

ELSE
x1 := x1 - x2;

END IF;
END LOOP;
outp  <= x1;

ELSE
outp <= "00000000";

END IF;

out_ready <= "1";

WAIT UNTIL clock‘event and clock = '1' and
out_request = "0“;

out_ready <= "0";
END PROCESS;

END;

First, the simulation environment provides an in_ready
signal which indicates that the gcd processing can be start-
ed. As soon as the outputs are calculated the design set an
out_ready signal and indicates that the results can be
picked up. The environment confirm the pick-up by setting
an out_request signal to the value zero and in the last step,
the design reconfirm this by setting the out_ready signal
back to the value zero.

Further, the example contains two "wait until" state-
ments. In the "superstate" I/O scheduling mode, these two
boundaries define one superstate, in which the whole gcd
algorithm is executed.

3.2.2 Definition of the simulation comparison point

The next question that has to be discussed is, where
could the specification simulation and the simulation of the
RT design be compared. In the "superstate" I/O scheduling
mode two adjacent clock edge statements are defined as a
superstate [9]. The scheduler can insert new clock edges in
a superstate, however, the initial clock edges will remain
(Figure 1). Thus, the simulation comparison points are al-
ready specified by this definition (Figure 3). As an illustra-
tion, the gcd example contains two "wait until clock"
statements which forms one superstate. Hence, these two

clock edge statements are the points where the simulations
could be compared.

Figure 3: Comparison points in the "superstate“ I/
O scheduling mode

One last open question concerning this comparison
point definition has to be answered. In a VHDL simulation,
all signals have to be updated at the clock edges. Therefore,
the output signals in the specification are stable until the
next assignment is executed. The synthesis process now in-
terprets this simulation behaviour and transforms it into the
behaviour of a real circuit with some delays. Currently,
four different interpretations are used for output signals:

1. After a defined setup time, the output signals are
stable until the next assignment is executed

2. At an exact defined hold time, the output signals
are stable until the next assignment is executed

3. After a defined setup time, the output signals are
stable for the rest of the clock period

4. At an exact defined hold time, the output signals
are stable for the rest of the clock period

Using interpretation 1 or 2 in the synthesis process, the
output signals are stable until the next assignment is exe-
cuted. Therefore, in the generated RT design, the signals
are stable until the next comparison point is executed (Fig-
ure 4). The necessary registers for the output signals are al-
ready generated and the simulation results could be
compared without any change to the synthesis process. Us-
ing interpretation 3 or 4, the output signals are only stable
for the rest of the clock period. As a result, the signals are
not stable until the next comparison point is executed (Fig-
ure 4). Synthesis systems using these interpretations have
to generate extra registers for the simulation comparison.
Most of the synthesis systems including the CADDY II
system realize interpretation 1 or 2 and, therefore, a re-im-
plementation of the synthesis system is not necessary.

comparison point
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RT- design
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process
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Figure 4: Interpretations used for output signals
in the synthesis process

3.2.3 Generation of the comparison point detection sig-
nal

Finally, the comparison points have to be displayed in
the RT design. The easiest way to perform the comparison
is by generating a special internal signal [1]. This signal is
used to determine the comparison points between the sim-
ulation results of the specification and the simulation re-
sults of the RT design. In this approach, the signal is named
CPD (comparison point detection signal) and can be gener-
ated by using the interface synthesis. The advantage of this
method is especially the efficiency and the simplified port-
ability onto other HLS systems. A change in the synthesis
process in not necessary. The signal can simply be generat-
ed by defining a special procedure and the corresponding
component. Further necessary properties, e.g. a correct in-
terpretation for output signals, are already integrated in the
normal interface synthesis process of most HLS systems.

Generally, the CPD signal generation can be divided in
four steps:

1. Generation of a procedure write1_cpd.

2. Inserting the procedure write1_cpd at every
clock edge in the specification.

3. Implementation of an interface component
WRITE_CPD.

4. Synthesizing the specification with the usual
synthesis process

First, a procedure write1_cpd has to be generated. Cur-
rently, there are two possibilities available: the VHDL pre-
processor generates the procedure or the designer develops

it on it‘s own. The procedure write1_cpd has one output
signal CPD. This signal is set to the value one for one clock
period and is then set to the value zero.

Second, this procedure has to be inserted in the specifi-
cation. One possibility is that the designer inserts the pro-
cedure at every clock edge statement in the specification:

ARCHITECTURE behaviour OF gcd IS
BEGIN

PROCESS
VARIABLE x1, x2 : UNSIGNED(7 DOWNTO 0);

BEGIN
WAIT until clock‘event and clock = '1' and

in_ready = "1";
write1_cpd(CPD);

-- algorithmic specification of the gcd
...
out_ready <= "1";

WAIT UNTIL clock‘event and clock = '1' and
out_request = "0“;

-- second comparison point
write1_cpd(CPD);

out_ready <= "0";
END PROCESS;

END;

The other possibility is, that the VHDL preprocessor in-
serts the write1_cpd procedure at every clock edge during
the generation of the intermediate format for the CADDY
II system. In this case, the write1_cpd procedure would not
appear in the algorithmic specification. Now, the procedure
is inserted at every clock edge in the specification and set
the CPD signal to the value one for one clock period. As a
result, during a specification simulation, the CPD signal
has always the value one.

The third step is the implementation of an interface
component WRITE_CPD. During the CADDY II synthesis
process, every procedure has to be replaced by a compo-
nent. These components are defined in the CADDY II li-
brary. Now, a new component for the write1_cpd
procedure has to be defined in this library*:

Component "WRITE_CPD"
Interface

In  1 "Start" Ctrl 1
Out 2 "CPD" Data 1

Gates 1200
Area  2000 1000
Power 1000

* In the meantime, components for the CADDY II library
could also be described in VHDL.
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Operation *write1_CPD
Fix 1 "Start" 1 0

End

Specifying this component, a first synthesis property
has to be considered: the synthesis process is able to gener-
ate an input signal Start that indicates exactly when this
component is activated. This property has to be realized
from every HLS system as soon as it supports sequential
components that are multi-cyclic and non pipelined.
Hence, this property can be used, to realize the comparison
point detection. In the RT design, the signal Start is set to
the value one as soon as the component WRITE_CPD is ac-
tivated. As mentioned before, the procedure corresponding
to this component was inserted at every clock edge in the
specification. As a result, the component is activated at ev-
ery clock edge in the RT design (RT-WAIT) that corre-
sponds to a clock edge in the specification (S_WAIT).
Therefore, this activation indicates the comparison points
(Figure 5).

Figure 5: write_cpd before and after synthesis
process

A second synthesis property used here is the interpreta-
tion of the component behaviour. The component beha-
viour is interpreted exactly as the procedure behaviour.
This means, a component is activated exactly when the cor-
responding procedure is called. For example, the CPD sig-
nal of the procedure write1_cpd is set to the value one for
one clock cycle. The CPD signal of the component
WRITE_CPD has exactly the same behaviour. As soon as
the component is activated, the signal is set to the value one
for one clock period. During the scheduling, the compo-
nent behaviour does not change. For every new clock cycle

inserted due to the "superstate" I/O scheduling mode, the
CPD signal is automatically set to the value zero. In most
other HLS systems, the CPD signal is also set to the value
one as soon as the component is activated, however, for ev-
ery new clock cycle inserted the CPD signal is undefined.
Therefore, in this cases, the designer has to define explicit-
ly that the CPD signal has to be set to the value zero. In the
fourth and final phase, the synthesis process is executed.
The procedure write1_cpd and the component
WRITE_CPD are used as a normal interface component
taking advantage of the synthesis properties realized in
CADDY II. Consequently, changes of the synthesis pro-
cess are not necessary. Afterwards, the resulting RT design
can be simulated

3.2.4 Generation of the CPD signal with other HLS sys-
tems

To implement the generation of the CPD signal the de-
signer has to specify a procedure and a corresponding com-
ponent. The procedure as well as the component can be
realized with any other HLS system. For these HLS sys-
tems, there exist only the requirements concerning the out-
put signal interpretation and the interface synthesis
properties that have already been described. In more detail,
the following steps have to be performed:

1. The simulation behaviour of the output signals
has to be interpreted accordingly interpretation 1
or 2 as described in Figure 4. Especially inter-
pretation 2 is commonly used, and thus, is gen-
erally available.

2. Concerning the interface synthesis, two proper-
ties are required: the HLS system must be able
to generate a signal that indicates when the com-
ponent is activated and it has to be allowed to
define a default value of this signal when the
component is activated and currently in its pro-
cessing phase. These properties are available in
all HLS systems which support the definition of
sequential components that are multi-cyclic and
non pipelined.

3.3 Comparing simulation results

In this approach, the Synopsys Simulator is used for the
simulation of the specification and of the generated RT de-
sign. After synthesis, both simulations are started and the
results are stored in a Synopsys specific waveform format.
With the Synopsys wif2a program, this format is trans-
formed into an ASCII format. Now, the results can be com-
pared, e.g. with a simple Perl script. According to the
definition of the CPD signal, the signal values can be com-
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pared when the CPD signal is set to the value 1 at a rising
clock edge. Therefore, the comparison algorithm is quite
simple. As long as the last simulation cycle is not executed,
the CPD signal is scanned. As soon as the CPD signal is 1
at a rising clock edge, the signal values of the specification
and of the RT design are compared in the following cycle;

otherwise a comparison is not possible.
For illustration purposes, the waveforms of the specifi-

cation and the synthesized RT design implementing the
gcd algorithm are given in Figure 6. Here, the transforma-
tion results are shown for seven clock cycles and the first
two phases of the specification, respectively.

4 Conclusion

In this paper, a new verification technique has been pre-
sented for verifying the HLS results through a simulation
comparison. A key feature of this approach is that no
changes of the HLS process are required. For an easier
comprehension of the approach, the paper first provided a
classification of different scheduling modes and their suit-
ability for a cycle-by-cycle simulation comparison. Based
on the "superstate" I/O scheduling mode, the detection of
the required comparison points are described. This detec-
tion is realized by using the interface synthesis. Therefore,
the designer has only once to define a new interface proce-
dure and the corresponding interface component such that
the HLS system generates automatically the necessary sig-
nal for the comparison point detection. The related synthe-

sis step does not require any specific property for the
generation of this signal. The user defined interface com-
ponent is handled in the same way as a common library
component. Finally, the automated simulation comparison
process is described. The proposed verification technique
has been implemented in the CADDY II system and sever-
al examples have been synthesized and compared success-
fully.
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