
Abstract

We present an interactive two layer router integrated
in an analog IC design environment used in an SDL
(schematic driven layout) design flow. Special features are
its customizability, the treatment of arbitrary polygons and
an advanced handling of source/target polygons in order
to avoid net internal design rule violations during
connection phase.

A global routing algorithm is used to split the route
into separate parts each routable in a single layer. After
via placement a specialized maze router performs the
advanced single layer routes in 90 or 45 degree mode. The
resulting route can be modified by interactive via move-
ment and rerouting of obsolete partial routes.

1 Introduction

Designing analog ASICs in modern mixed signal
BCD processes (Bipolar, CMOS, DMOS) requires a large
amount of expert knowledge in order to meet constraints
like symmetry, voltage drops, current density, temperature
gradients, piezoelectrical effects, electromigration a.s.o..
Unlike in digital design it is not possible to treat all of
these constraints automatically up to now.

Several approaches to automatic synthesis and layout
of analog cells have been presented ([DeG87], [Rij89],
[Koh90], [Car89], [Gie90], [MzB93]). Their goal is to
generate the final layout of an analog cell following a
given set of specifications without the need of an expert
analog designer. In such cases these tools can be very
efficient and save considerable design time. However, most
of these systems are devoted to one or several specific
classes of analog cells and cannot easily be extended to
other classes.

To overcome these shortcomings an interactive layout
style as reported in [DoDu91] seems to be the right choice.

* This work was supported by german BMBF under JESSI AC12 contract

No. 01M2885K

Today, the SDL design flow is widely used for analog and
mixed signal ASIC design. The power of this design flow
builds on using automated algorithms in an interactive
design environment to speed up IC design.

The SDL design flow used at R. Bosch GmbH [Sch96]
is based on Mentor Graphics’ ICstation and uses
customized device generators to generate analog cells
manually placed by expert analog designers. For the
routing process a routing tool has been developed which
consists of two routing algorithms, ANALOGROUTER
(AR) and GLOBALROUTER (GR).

This routing tool was not designed to perform
automatic routing of complete circuits but to provide the
circuit designer with an interactive tool capable of
improving designer's efficiency. It contains special features
required by Bosch's analog designers.

In the following section we describe the single layer
maze routing algorithm AR, developed at R. Bosch GmbH.
In Section 3, we present the global routing algorithm GR,
developed at IMS, and in Section 4 we give a brief
overview of the implementation and integration into the
Mentor Graphics ICstation environment. An example
layout done with GR and AR will be shown. Finally, we
give some concluding remarks.

2 ANALOGROUTER

Within Mentor Graphics' ICstation all multi-port nets are
decomposed into series of symbolic two point connections
between already layouted net components. Therefore, AR
was built to create a connection between two objects,
source (S) and target (T). S and T can be ports of a device
or elements of a partly routed net, arbitrary polygons as
well as paths. When multiple two point connections are
selected for routing, AR performs a heuristic net sorting to
bring the connections into an order which is favorable to
the routability.

An Interactive Router for Analog IC Design*

Thorsten Adler Jürgen Scheible
Institute of Microelectronic Systems Robert Bosch GmbH

University of Hanover, Germany
adler@ims.uni-hannover.de

72703 Reutlingen, Germany

2.1 Basic principle and database

AR is a single layer maze router based on the well
known Lee algorithm [Lee61] and shows the following
special features:

• 45 degree option for HVD routing (horizontal,
vertical and diagonal path segments),

• layer independent routing directions combined
with routing over active area,

• special distance rules in diagonal directions and
current driven wire widths,

• treatment of arbitrary polygons with special
connecting behaviour.

Wire width w can be chosen by the user or is
determined by the current flowing through S and T speci-
fied by properties in the schematic. AR's database is a two-
dimensional bitmap, which represents a rectangular part of
the current layout, called 'routing area'.

The algorithm consists of three steps: Database gene-
ration through oversizing due to distance rules (Sect. 2.2),
path searching algorithm (Sect. 2.3) and connection beha-
viour (Sect.2.4).

2.2 Oversizing

The routing algorithm is based on a modification of
the well known Lee algorithm which calculates paths of
one grid width only. Therefore, for each route all polygons
have to be oversized by s d w= +min / 2 where dmin is the
minimum distance between two wires and w is the current
wire width. This operation guarantees, that the calculated
one grid path can be replaced by a path of width w without
violating the design rules. Figure 1 shows different possi-
bilities for sizing. In a true sizing procedure circle
segments originate from corners (Fig. 1a). For HV routing
a sizing procedure which just moves edges is adequate
(Fig. 1b). For HVD routing a sizing procedure which
squashes 90 degree corners to diagonal ones is needed to
enable the path searching algorithm to create diagonal path
segments (Fig. 1c). This is important in order to avoid
electromigration, because current density at diagonal
corners is two times less than that in 90 degree corners.

a) true sizing b) 90 degree mode c) 45 degree mode

sss

Figure 1: Different oversizing strategies

2.2.1 Special distance rules in HVD-routing

Modern mixed signal processes like BCD exhibit
direction dependent distance rules. A special rule of this
kind prescribes a larger spacing between metal wires in
diagonal directions. This rule requires a special sizing
procedure in diagonal directions. Another rule demands
that all coordinates have to be on grid. This leads to the
requirement that the diagonal path segments must be
widened in order to bring the corners of the wire shape on
grid.

Both rules can be fulfilled by using direction
dependent sizing values s45 and s90 where d d45 90> and

w w45 90> are the direction dependent distances and wire

widths, respectively, as shown in Figure 2.

obstacle

wire

outline of sized obstacle
becomes centerline of wire

w
90 w45

d45
d90 s45

90s

Figure 2: Special design rules in diagonal
directions

To provide this special oversizing a new sizing
method has been implemented in AR.

2.2.2 Direction dependent sizing

The sizing algorithm works on databases in which
polygons are represented by their corners in anti clockwise
order. Following this order each corner is replaced by one
or more corners of an octagon, whose center is placed on
the original corner (Fig. 3).

original polygon sized polygon

sizing octagon

region with inner cycles

90s

s45

Figure 3: Oversizing with direction dependent
sizing values using sizing octagons

The number of corners created by one corner of the
original polygon (see arrows in Fig. 3) is determined by the
angles of the corresponding edges. The octagon is given by
the sizing values s90 and s45 .

During sizing it is checked if a new edge intersects
with one already created. This case indicates an inner cycle
which is eliminated immediately (see Fig. 3). Holes within
the original polygon are also deleted as inner cycles which
does not affect routing behaviour.

Standard sizing algorithms with one unique over-
sizing value for all directions have to use s45 for sizing in

order to fulfill all distance rules. This leads to a waste of
space in orthogonal directions because s s90 45< . Our

sizing method guarantees that all distance rules are kept
without wasting space and has been applied for patent
[DE7].

2.3 Path searching algorithm

The distance D between two points (x1, y1) and

(x , y)2 2 is defined as D x x y y
n nn= − + −2 1 2 1 . In

Lee‘s wave the distance of a bitmap element to the source
S, where the wave has started, is given in manhattan
metric (n = 1): Orthogonal neighbours in the bitmap have
a distance D1 1= , diagonal neighbours distance D1 2= . In
this case, the set of bitmap points with the same index i has
the shape of a square, if S is a single point. The HVD-wave
of AR must propagate in euclidean metric (n = 2) in order
to define real distances. Therefore, diagonal neighbours
should have the distance D2 2= . This is approximated

by the value DHVD = 1 5. . In order to propagate the wave

with integer values orthogonal neighbours of an element i
are indicated with i+2, diagonal neighbours with i+3. This
leads to wave fronts nearly shaped as circles.

A 'tunnel polygon' calculated by GR (see Section 3) is
used to restrict wave propagation during path searching.
Direction preserving backtracking from target to source
and path generation is similar to Lee's algorithm.

2.4 Special connecting behaviour

When S or T are arbitrary polygons net internal
design rule violations may occur in the region, where the
generated wire connects to the polygon. Design rule
violations of this kind can be angles less than π/2 or
distance rule violations between opposite1 edges (Fig. 4).

1 Edges are opposite, if their prolongation’s include an angle less than π/2

source/target
source/target

δ DRC error

a) DRC error due to
 δ<π/2

b) DRC error due to
 short wire segment

Figure 4: Net internal design rule violations

Design rule violations of type (b) are avoided by the
definition of minimum lengths for the end segments of a
connecting wire. This can be achieved by oversizing S and
T before path searching and prolongation of the generated
path afterwards. Design rule violations of type (a) are
avoided by defining connectable points on the edges of S
and T.

In Figure 5, connectable points on source and target
are indicated by points and thick lines. Allowed directions
for end segments of wires are indicated by arrows. The
wire connecting to S or T must end on a connectable point
with an allowed direction.

source or
target

oversized
source or

target
source or

target

connectable points

allowed directions

Figure 5: Connecting to source or target

The methods described have been applied for patent
[DE0]. AR has been purchased by Mentor Graphics and is
now commercially available to all users.

3. GLOBALROUTER

GR is a two layer global routing algorithm for two
point connections and was developed as an extension to
AR adding new features. As with AR source and target can
be ports of a device or elements of a partly routed net,
arbitrary polygons as well as paths. To speed up routing
GR runs on a coarse grid (see Sect. 3.2) and computes so
called 'tunnel polygons' which are used by AR to restrict
wave propagation during detailed single layer routing. GR
has the following features in addition to those mentioned
in Section 2: two layer routing, different wire widths for

each route and each layer and different routing costs for
each routing layer and vias.

3.1 Basic principle and database

GR splits the overall two layer route into separate
parts each routable in a single layer. It calculates via
positions and calls AR to perform the detailed single layer
routes between S, T and the computed vias.

GR’s database is a two-dimensional bitmap which re-
presents a rectangular area of the current layout. Each data
element represents one grid point. The routing algorithm is
based on AR’s algorithm and, therefore, all polygons have
to be oversized by 2/wds min += (see Section 2.2).

Each grid point contains a 32 bit integer value which
holds information about the current layout situation. Bits
31 and 30 are used to mark all grid points inside source or
target polygons. Bits 21 to 29 store information whether
it's forbidden to extend the wave from the current grid
point to the neighbouring grid points. The least significant
22 bits are used to store the index during wave propagation
(see Sect. 3.2).

Figure 6 shows a polygon and its representation inside
GR’s database.

sized polygon database

a
b c d

e
f

a

b
c

d

e

f

Figure 6: Layout representation inside GR’s
database

The arrows in the enlarged grid point a in Figure 6
mean that it is forbidden to propagate the wave from grid
point a into grid points b, c, d, e and f. For each forbidden
direction a flag is set in the corresponding integer value.
For source and target polygons each grid point touched by
the polygon is marked as source or target. The source grid
points are stored in the initial wavefront (see Sect. 3.2).

To reduce memory requirements and runtime the grid
size is chosen as large as possible. After sizing the smallest
possible polygon has a width of W w smin min= + 2 which
equals to W w dmin min min= +2 2 for wires with minimal
width. In order to store all polygons correctly the grid size
G has to be: G W< min .

Furthermore, all sized polygons must not overlap.
Figure 7 gives an example for two overlapping polygons.
After sizing all polygons are stored sequentially in the
internal database. Due to the layout representation used it
seems possible to propagate the wave from grid point a to
grid point b. Therefore a boolean OR is performed in order
to generate non-overlapping polygons (Fig. 7).

databasesized polygon

a b a b
boolean OR

Figure 7: Two overlapping polygons

GR’s database consists of three levels containing
source, target and obstacle polygons: The two routing
layers and an intermediate layer used to calculate the via
positions during global routing. This intermediate layer is
a boolean OR of layer 1 obstacles oversized by svia1

2 and
layer 2 obstacles oversized by svia2 yielding all space not
usable for placement of via origins.

3.2 Wave propagation

GR's wave propagation can be customized by the cost
function f l cost l cost num of vias costlayer layer via= ⋅ + ⋅ + ⋅1 1 2 2 _ _

with costlayer1 , costlayer2 and costvia representing the cost

factors for routes in layer 1, routes in layer 2 and vias, re-
spectively. The wave propagation of GR is similar to that
of AR. In HV and HVD mode all bitmap elements i (ele-
ments with index i) label their applicable3 orthogonal
neighbours no(i) with layercosti ⋅+ 2 . The upper or lower

neighbour in the other routing layer is labeled with
i costvia+ ⋅2 . In HVD mode this step is followed by

marking all applicable diagonal neighbours nd(i) with

layercosti ⋅+ 3 . This sequential labeling guarantees that no

grid element is labeled twice and, therefore, reduces run-
time [Oht86]. All newly labeled grid points are stored in a
priority queue which consists of a number of linear lists. A
single linear list is used to store one single wavefront4.
Therefore, no sorting is needed.

2 svia1=dlayer1+via_widthlayer1/2

3 Neighbours which are not yet indicated and could be reached from element i
4 A wavefront contains all grid elements with the same index

3.3 Path generation

After the wave has reached the target polygon the
path from source to target with minimum costs can be
determined. This is done similarly to the algorithm used by
AR. The resulting path contains all grid points (grid size
G) in which the detailed route done by AR should be
realized. GR converts the resulting path into a tunnel poly-
gon and calls AR in order to perform the final route. This
polygon is used by AR to restrict the wave propagation to
grid points inside that polygon. GR calculates the exact via
positions and calls AR for every single layer route needed.

3.4 Program flow

GR’s program flow is shown in Figure 8:

ICstation selected
overflow

paths, vias

User interface (ICgraph)

single-layer
 overflows

tunnel polygons

GLOBALROUTER

C++:

Wave propagation
Path generation

AMPLE: Oversizing obstacles
Mask operations

AMPLE interface

Database generation

AMPLE: Tunnel polygons
Via areas
'Expensive' routes
Via positions
Via placement
'Cheap' routes
Path generation

parameters

symbolic paths via positions

C++: Oversizing obstacles

Wave propagation
Path generation

ANALOGROUTER

Database generation

Figure 8: GR’s program flow

At first, the database is generated through polygon
sizing and boolean mask operations. Afterwards, GR
computes the global route. This step yields the tunnel
polygons and via positions in coarse grid G. Figure 9
shows an example for cost costlayer layer1 2< .

global route (layer1)

global route (layer2)

source
(layer1)

target
(layer2)

via position
(coarse grid)

possible

via positions

Figure 9: The global route

In order to shorten the ‘expensive’ routes AR is called
to route these connections first although the exact via
positions (grid g) are not yet known. Therefore, the via
holes are used as temporary targets for these routes. These
holes are computed by a boolean AND between the via

positions in coarse grid and all possible via positions
calculated during database preparation.

Afterwards, GR computes the exact via positions
which are determined by the start and/or end points of the
just performed ‘expensive’ routes (see Fig. 10). After via
placement all 'cheap' routes are done by AR to complete
routing.

.

global route
 (layer1) via hole

 exact route
(done by AR)

exact via
 position

target
(layer2)

via position
(coarse grid)

possible
via positions

Figure 10: Determining exact via positions

4. Implementation and example

The algorithms described were integrated into Mentor
Graphics’ ICstation environment to speed up analog IC
design at R. Bosch GmbH. The algorithms were implemen-
ted using C++ and Mentor Graphics' build-in program-
ming language AMPLE (see Fig. 8). AMPLE is mainly
used to provide the user interface between AR, GR and the
ICstation. AR is totally written in C++ whereby AMPLE is
used in GR to perform polygon sizing, boolean mask
operations and via calculations. In a later version of GR all
routines will be implemented in C++ to speed up routing.

To provide greater flexibility and greater interaction
the designer has the ability to move the placed vias inside
their via holes if he is not satisfied with automatic via
placement (see Fig. 10, 12 and 13). After via movement a
reroute function is used to reroute the now obsolete routes
connecting to the moved via(s).

All parameters like routing costs and wire widths are
customizable through an interface shown in Figure 11.

Figure 11: GR’s user interface

The route depicted in Figure 12 was accomplished in
about 3 seconds CPU time on a SUN SPARCstation 5 with
routing costs set to [1,2,1] (see Fig. 11). This includes five
calls to AR to perform the detailed single layer routes.
Figure 13 shows the same example with routing costs set to
[2,1,1]. For this route placement of vias above source or
target polygons was enabled.

5. Conclusion

In our paper, we presented two routing algorithms AR
and GR developed at IMS Hanover and R. Bosch GmbH.
The algorithms have been integrated into an interactive
analog IC design environment customizable through an
user friendly interface. Both tools are used in an SDL
design flow to speed up analog ASIC design in modern
mixed signal processes.

AR is a single layer maze router with a special over-
sizing algorithm and an advanced treatment of arbitrary
polygons during connection phase. Due to its oversizing
algorithm AR is able to generate diagonal path segments
near obstacle corners which leads to a reduction of current
density. GR is a two layer global router built upon AR
which splits two layer routes into separate single layer
parts each routable by AR. GR calculates all via positions
and places the needed vias. The route done by GR and AR
is customizable through an integrated reroute function
after designer based via movements.

AR is currently used at R. Bosch GmbH to design
analog and mixed signal ASICs and is commercially
available to all users. The integration of GR into Bosch's
SDL design flow is currently in progress.

source

target

layer2 route layer1 route

via

via hole

Figure 12: A routed example

source layer2 route

targettunnel polygon

via

via

Figure 13: Vias above source and target

References

[Car89] L.R. Carley et al, "ACACIA: The CMU Analog
Design System", IEEE CICC, pp. 4.3.1-4.3.5, 1989

[DE0] DE 19530951.0, "Verfahren zur Anordnung von
Leiterbahnen auf der Oberfläche von Halbleiter-
bauelementen", C. Rödel, J. Scheible, applied for
patent by R. Bosch GmbH, Stuttgart, 23.08.95

[DE7] DE 19531651.7, "Verfahren zur Anordnung von
Leiterbahnen auf der Oberfläche von Halbleiter-
bauelementen", C. Rödel, J. Scheible, applied for
patent by R. Bosch GmbH, Stuttgart, 29.08.95

[DeG87] MGR DeGrauwe et al, "IDAC, an Interactive Design
Tool for Analog CMOS Cicuits", IEEE JSSC,
vol. SC-22, no. 6, pp. 1006-1116, Dec. 1987

[DoDu91] L.-O. Donzelle, P.-F. Dubois, "A new approach to
layout of custom analog cells", Proc. EDAC,
pp. 480-483, 1991

[Gie90] G. Gielen, K. Swings, W. Sansen, "An Intelligent
Design System For Analogue Integrated Systems",
Proc. EDAC, pp. 169-173, 1990

[Koh90] H. Koh, C. Sequin and P. Gray, "OPASYN: A
Compiler for CMOS Operational Amplifiers", IEEE
Trans. on CAD of IC, vol. 9, no. 2, pp. 113-125,
Feb. 1990

[Lee61] C.Y. Lee, "An Algorithm for Path Connections and
its Applications", IRE Trans. on Electronic
Computers, pp. 346-365, 1961

[MzB93] V. Meyer zu Bexten et al, "ALSYN: Flexible Rule-
Based Layout Synthesis for Analog IC's",
IEEE JSSC, vol. SC-28, no. 3, pp. 261-268, 1993

[Oht86] T. Ohtsuki (editor), "Advances in CAD for VLSI:
Layout Design and Verification", North-Holland,
p. 110, ISBN 0 44 87894 7, 1986

[Rij89] J. Rijmenants et al, "ILAC: An Automated Layout
Tool for Analog CMOS Circuits", IEEE JSSC, no. 2,
pp. 417-425, April 1989

[Sch96] J. Scheible, "Device Generatoren und Autorouter für
den Layoutentwurf analoger IC-Schaltungen in
modernen Mischprozessen", 4. GMM/ITG-Diskus-
sionssitzung, ANALOG '96, Oct. 1996, Berlin

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

