An Effective General Connectivity Concept for Clustering

Jianjian Song, Zhaoxuan Shen and Wenjun Zhuang
National Supercomputing Research Center
89 Science Park Drive, Singapore 118261
songjj@nsrc.nus.edu.sg

Abstract

This paper shows how algorithmic techniques and
parallel processing can speed up general connectivity
computation. A new algorithm, called Concurrent Group
Search Algorithm (CGSA), is proposed that divides
NV =D vertex pairs into N-1 groups. Within each
group general connectivities of all pairs can be calculated
concurrently. Our experimental results show that this
technique can achieve speedup of 12 times for one circuit.
In addition, group computations are parallelized on a 16-
node IBM SP2 with a speedup of 14 times over its serial
counterpart observed. Combining the two approaches
could result in a total speedup of up to 170 times,
reducing CPU time from over 200 hours to 1.2 hour for
one circuit.

Our new model is better than those without clustering
because it characterizes the connection graph more
accurately, is faster to compute and produces better
results. The best performance improvements are 43% for
one circuit and 49% for another.

1. Introduction

Clustering is used extensively in VLSI physical
design. In general, the connectivity of each pair of
modules is defined and calculated and then those pairs
that are strongly connected are clustered [16]. Clusters
provide a hierarchical structure of the modules related to
their connections. The concept has been applied to
placement, [7], [12], [15], [16], [21], [28], partitioning
[4], 191, [18], [10], and floorplanning [5], [6].

Clustering has received a great deal of attention in
partitioning. [4] shows that partitioning with clusters can
obtain for some circuits up to 49.6% smaller cut sizes
than those with the bisection algorithm and up to 66.8%
smaller ratio cut sizes than those with the ratio-cut
algorithm. [18] reports 60% better results for partitioning

than the F&M method. [9] finds clustering can reduced
the number of nets cut by 46% compared to the standard
min-cut approach [1]. The BISECT partitioning algorithm
in [15] could be 73 times faster than the F-M. 17%
average improvement in bisection width is obtained in
[10].

In the area of placement, up to 21.6% reduction is
achieved in the number of feed-throughs in [28]. Up to
41% improvement of open nets after channel routing is
obtained in [7]. Clustering is also combined with
simulated annealing in [12] to obtain 6-17% improvement
in the estimated wire length and [20] to reduce chip area
by 21% and the total wire length by 8-11%. Another
application of clustering is to delay minimization as
shown in [14].

One way to find good clusters is to define
connectivity and clustering criteria. Two modules (or
clusters) that are strongly connected can form a larger
cluster. Once the clusters are formed they will not be
disbanded. Success of this approach is heavily dependent
on connectivity definition.

The conventional connectivity between two modules
considers the weighted nets directly connecting the two
modules. A number of attempts are made to define the
strength of connection between two modules such as the
conjunctivity and disjunctivity models in [16] and [18],
and simple sum of net weights in [5]. They all use the
number of common nets as the measure of how strongly
two modules are connected. But different repulsive forces
are used such as the total number of nets connected to a
module [16] or the total number of nets in the smaller
clusters as well as the number of modules in the smaller
clusters [18]. Connectivity is defined with Rent’s rule in
[7] and multiple attributes in [12].

Another way to find good clusters is to form clusters
first and then evaluate if they satisfy a quality measure so
that they can be preserved. A clique is found and is called
a cluster if it satisfies the module size and cluster density

thresholds in [4]. Cycles of modules are found by random
walk and two modules are clustered if they both appear in
at least two cycles in [10]. The more cycles they appear
together the stronger they are connected. Another
approach tries to generate all clusters at the same time
[20], [23].

Zhuang, et al. proposed a steady cluster concept in
[24], [25], [26] and later formulated definition of stable
and near stable clusters in [28]. It has been shown that
cluster quality is related to connectivity estimation in
[22]. The concept of general connectivity and a
conductance network model for its calculation are
described in [22] and [28] and are shown to be effective
together with stable cluster concept in reducing the
number of feedthroughs by as much as 21.6%. The
concept of general connectivity between two modules is
that both direct and indirect connections of the two cells
should be considered for connectivity estimation.

Zhuang, et al. In [28] have shown that application of
the general connectivity to a circuit with 1724 cells could
reduce the number of feedthroughs of the resulting
placement by 21.6% in comparison to a traditional
inside-outside approach although only the second-order
connectivity was used. A new general connectivity model
is proposed in [19] based on better understanding and
analysis of connection graphs and physical characteristics
of netlists.

This paper describes further research initiated in [19].
[ts main contributions are better understanding of
clustering process and a new algorithm for general
connectivity calculation and its parallel implementation.
The new algorithm is 12 times faster than our old
algorithm for one calculation. Our parallel program
achieves speedup of up to 14 times on a 16-node IBM
SP2 parallel computer. The program reduces CPU time
for one calculation from 200 hours to merely 1.2 hours.

2. The General Connectivity Concept and
Definition

A netlist can be represented by a weighted
hypergraph where each module is a node and each net is
one hyper-edge with an associated weight of importance.
Let G(V, E, W) be a weighted graph, where V={v; | i = I,
2, ..., n} is a set of vertices, £={ e; = (v;, v)) |1 5'i, j <}
is a set of edges, and W={w, € R | ee E} is a set of real
numbers called the weights defined on E of G. A
weighted hypergraph can be mapped to a weighted graph
as follows. Each node corresponds to one vertex in G(V,
E, W) and each edge is one edge of G(V, E, W). A multi-
pin net with r nodes can be mapped to a r-clique i.e., a

complete graph with r vertices. G(V, E, W) is called
weighted connection graph.

Some heuristics can be developed to guide us in
defining general connectivity between two vertices on
G(V, E, W), which should take into consideration of the
effect of vertices indirectly connected with the two
vertices. In general we believe that all the edges on paths
between the two vertices should have some contribution
to their general connectivity.

First, the connectivity between any two vertices
should be greater than zero iff there exists a path between
them (Nonzero Principle of Path). In other word, any path
between two vertices should have nonzero contribution to
the general connectivity of the two vertices. Secondly,
Any edge in a path between two cells should have
nonzero contribution to the connectivity of the two cells
(Nonzero Principle of Edge). Assuming an edge in a path
has zero contribution, the edge can then be removed from
the path without affecting the connectivity of the two
cells. But the path does not exist anymore, which is
contradictory. Thirdly, The contribution of a path between
two cells to the connectivity of the two cells is inversely
proportional to the length of the path (Inverse Distance
Square Principle). The contribution of an edge in a path
between two cells to the connectivity of the two cells is
inversely proportional to the square of the path length and
proportional to the weight of the edge. Fourthly, If an
edge appears in more than one path between two cells, its
contribution to the connectivity of the two cells should
only be related to the shortest paths of all the paths in
which it appears (Shortest Path Principle).

A sequence of vertices <V, , V,, .., v, ., V, >1is
said to be a k-path (path length equal to £) between two
vertices Vi and Vi denoted by p(iy, i, k), iff €., € E

forj=0,1, ..., k-1,and v, # v, forany 0 <j#1[<k. Let
J

E i =1 € |j =0, 1, .., k-1} be the set of all the

edges on the path.

Let P, t, k)={Vp(stk) } be the set all the k-paths
between v, and v, , and Epj = UE b be the set of all
peP(s.t.k)
the edges on paths in Pfs, ¢, k).

k-1
Lis, t, k) = Epg, 4 19 — U Epg, 4 1s the set of edges
i=1
that appear on a k-path and not on any shorter path
between v, and v,

The 4"™-order general connectivity between vertices v,
and v, is defined as

q @ q @
q 2q 2q 2q q
@ 2q @ q @

Figure 1. The connection graph for Example 1.

> w,
LEI(S t,i)

GC(s, t, k) = Z (1)

l

Example 1 : Given the connection graph in Figure 1,
calculate GC(2,6,2) and GC(2,6,3).

L(2,6,1) = ¢, L26,2) = {21), (1,6)} and
L(2,6,3)={(2.3),(3,1),(1,5),(5,6)}. Therefore, GC(2,6,2) =
29+q _3q9 4

2?2 4

GCR.63) - 2414, 4*2a+2q+q _1Tg
2? 3? 12

Once general connectivities are found, clustering can
be done by combining modules with highest
connectivities. Our solution to a linear placement problem
is given in Figure 2, where the traditional direct
connectivity solution results in the total wire length of 50
and ours is 42. A partition example is given in Figure 3
where reduction in the number of cut lines by 45% is
observed.

3. The Concurrent Group Search Algorithm

One method to calculate the general connectivity of a
connection graph is to search through the graph for the
subgraph for one pair of vertices at a time. It can be
shown that many redundant searches will be performed
and therefore time wasted. For a connection graph with N

NN -1

vertices, a total of 3 ——=pairs of general

connectivities need to be calculated. Assume that the
vertices are numbered with consecutive integers starting

from 1. The NN =1 pairs can be divided into N-1

groups: {[1,2], [1,3], ..., [L,N]}, {[2,3], [2.4], ..., [2.N]}
,--» { [N-1,N]}. All general connectivity calculations in
each group can be calculated by traversing the search tree
once. This method is faster as it only searches all the

Based on the Traditional Connectivity

E

Total Length = 50
Based on the General Connectivity

Total Length = 42
reduced by 16%

Line Placement Exam ple

The Connectivities with various order K

Cell-pair | K=1 K=2 K=3 K=4 K=5 K=6 K=17
A-B 30000 30000 | 35550 | 43050 | 43850 43850 43850
A-C 12500 | 20270 | 25270 | 26070 26070 26070
A-D 20000 | 3330 | 34570 | 34570 34570 34570
A-E 20000 40000 | 48880 | 51380 | 51380 5.1380 5.1380
A-F 20000 40000 | 4220 | a5%0 | 475%0 47560 47560
A-G 20000 40000 | 4220 | 45%0 | 47560 47560 47560
B-C 20000 30000 | 30000 | 3370 | 36040 37490 37490
B-D 20000 30000 [36660 | 41660 | 42460 42460 42460
B-E 20000 | 33320 | 34570 | 34570 34570 34570
B-F 12500 | 24710 | 28460 | 28460 28460 28460
B-G 12500 | 24710 | 28460 | 28460 28460 28460
C-D 20000 30000 | 30000 | 33m0 | 3690 37490 37490
C-E 07500 17490 | 22490 | 2320 23200 23290
C-F 13320 | 19570 | 19570 19570 19570
C.G 13320 | 19570 | 19570 19570 19570
D-E 10000 10000 1770 | 25270 | 26070 26070 26070
D-F 07500 | 21930 | 25680 | 25680 25680 25680
D-G 07500 | 21930 | 2560 | 25680 25680 25680
E-F 20000 40000 | 4220 | 4560 | 4750 47560 47560
E-G 20000 40000 | 4220 | 45000 | 4750 47560 47560
F-G 20000 40000 | 4220 | 4220 | 44620 45720 45720

Figure 2. Linear placement example using the
general connectivity concept.

N(N -1)
2

search trees N times instead of times. In

addition, each group is independent of the other so that
computations can be carried out in parallel. The method is
named Concurrent Group Search Algorithm (CGSA).

Algorithm 1 describes how the k™-order general
connectivities for a layout with N vertices are computed.
It basically traverses the connection graph once for every
vertex to build a tree with the depth of £ and one vertex
being its root. It will store an edge once only on the
shortest path that the edge appears. Once this tree is built,
all the k™-order connectivities related to the vertex can be
calculated simultaneously. Subroutine Compute GC(s, k)
may create up to (N-1)* paths and N edges may need to
be compared to know if the edges on a path are new.
Therefore, the worst-case time complexity of the
algorithm is O(N**).

8

:qﬁkﬂ

7

1
12

13

CUT LINE =11

(a) Partition based on direct connectivity.

CUT LINE =6
reduced by 45%

(b) Partition based on general connectivity.

Figure 3. Partition solutions without and with general connectivity.

Take the graph in Figure 1 as an example. To compute the
2"_order general connectivities between vertex 2 and
each of the other vertices, the search tree starting from
vertex 2 can be constructed as shown in Figure 4. All the
2"_order general connectivities between vertex 2 and
other vertices can be calculated by traversing the search
tree once. It is clear that the 2"%-order general connectivity
between vertices 2 and 3 can be calculated as follows:

L2,3,1) ={(2,3)} and L(2,3,2) = {(2,1), (1,3)}.
Therefore,

q9,49+29 Tq
CG2,32) =21+ =7
()1224

T) @4@§%

Figure 4. Search tree and concurrent
computation for vertex 2.

4. Parallelization of the Concurrent Group
Search Algorithm

As explained in Section 3, pairs of general

N(N -1)
2

connectivities need to be calculated and can be divided
into N_l groups {[192]» [193]9 e [],N]}, {[293]9 [294]9 oo

Algorithm 1:
Fors=1toN-1
Compute GC(s, k).

Compute GC(s, k) {
/* to compute kth-order general connectivities
of [vs, vt],V vtand (t>s). */
Forx =2 Tok
For each (x-1)th pathp= <vs, ..., vt >
For each vi € Neighbor(vt)
If vi is not on path p {
Create a new kth-path q =
<VS,..,vt,vi>,
For each edge ¢ on path g
Ife ¢L(s, i, y) add e to L(s, i, X).
b
Fort=s+1ToN
Calculate GC(s, t, k) using formula (1).
} /* end of Compute GC(s, k) */

[2,N]} ,...., { [N-1,N]}. The groups can be distributed
over a number of processors to be calculated in parallel as
they are independent of each other. This kind of problem
is embarrassingly parallelizable except for load balancing
consideration. Notice that the computation loads of
groups are not identical. The first group may need more
CPU time and the last group may require the least CPU
time as they have different number of pairs. A load
balancing scheme is proposed to tackle this issue.

Our parallel code is implemented with the Message
Passing Interface(MPI) standard library on a 16-node
IBM SP2. The master-slave paradigm is adopted where
the master process dispatches tasks to slave processes and
collects results from the slaves. Static group clustering
and dynamic task scheduling are used in order to balance
the loads of slave processes as well as minimize
communication between the master and slaves. The
master process will select a number of groups to form a
task so that each task may have more or less the same
CPU time requirement, and dynamically dispatch the
tasks in the queue to the slaves during run time. For
example, 16 groups can be clustered into 4 tasks as
follows: {1,16,5,12}, {2, 15,6,11}, {3,14, 7, 10}, {4, 13,
8, 9}.

The master and slave processes are described in
Algorithm 2.

Figure 5 shows the speedup of Algorithm 2 over
Algorithm I with the number of processors ranging from
3 to 16 for the two larger circuits in Table 1. It can be
seen that speedup improves with the increasing order of
general connectivity. When the order is large enough
speedup approaches its theoretical maximum. Our group
clustering and dynamic load balancing techniques have
reduced communication time and balanced the CPU loads
within 10% of each other as shown in Figure 6 for
computing the 5™-order general connectivity of HK5851
on 16 processors.

5. Application to placement

One measurement of the performance of a placement
is chip area and the other is circuit delay. Chip area can
only be minimized by reducing the routing area. The
routing area can be reduced by reducing the number of
feedthroughs in a placement. Feedthroughs contribute
more to circuit delay than other connections of the same
length. The reduction of total wire length, especially the
number of feedthroughs, will improve the global
optimization in circuit delay. Therefore, the number of
feedthroughs can be a performance indicator for a
placement.

Algorithm 2:
Master program {
Get the number of slaves;
Cluster groups;
For each slave{
Send connection graph;
Send one task;
b
While not completed {
Receive result from a slave;
Send a new task to the slave;

H
}/* end of Master */

Slave program§{
Receive initial data;
While not done{
Receive a task;
Carry out the task;
Send results to Master;

3
}/* end of Slave */

Three commercial circuits were experimented to
evaluate Algorithm 1. The larger one, HK5851, has over
28,000 transistors. For completeness, the characteristics
of the circuits are copied from [28] as shown in Table 1.
The CPU times for general connectivities of up to 5"
order are given in Table 2.

The LSIS-II system [27] was used to conduct circuit
designs with our general connectivity model. The system
carries out automatic layout of designs based on standard
and macro cells. It has twelve subsystems for design
activities such as schematic editing, logic description and
compiling, physical cell editing, cell library management,
connectivity verification, cell clustering, automatic
placement and global routing, automatic detailed routing,
physical design and optimization, and format conversion.

Table 1.Characteristics of three circuits.

Circuit No. of Transistors | No. of Cells | No. of Net
HK5601 4,000 256 355
HK5852 6,400 608 699
HK5851 28,000 1724 1893

Table 2.CPU times in seconds for general connectivity
calculation on IBM RS6K/390.

Order 1 2 3 4 5
Time(Sec) for HK5852| 2.5 7.0 68.0 | 981.5] 147114
Time(Sec) for HK5851 | 10. 5 18.2 | 114.7 [1348.8] 16804.9

16 SPEEDUP FOR HK5851
14 +
+
4+
12 k= 7
k= +
Q_‘IOW Ok= +
= & O
g8 Xk= = g O o
& k=1 & o P o
6 7 =]
o
Ul
4 85 XX X
g X X X x
B« X x X
2 f
" ®
0 4+ttt
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17
of Processors
16 SPEEDUP FOR HK5852
14 +
+
4 - +
12 +k=5 N
k=4 +
10
g Ok=3 L, & g O
o
?!’.’_877 Xk=2 + o o 4
7] Ak=1 + = | [m]
6 g =]
ﬂ X X X x X X XX X X X
2 - R X A 85 4 a 25 A~ A =~
0 A e e L AN mm s
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
of Processors

Figure 5. Speedup results for the two circuits.

Its GUI runs on top of the SUN OpenWindow
environment.

A program was written to compute general
connectivity and to generate clusters. It consists of a new
routine to compute general connectivity based on
Algorithm 1 and a number of routines from [28] for
clustering and cluster stability verification. Once the
clusters were obtained, they were inserted into the LSIS-II
package so that designs based on the new clusters could
be carried.

The program takes its input data from the output of
circuit verification of the LSIS-1I system and produces an
output file that is used by the block initial construction
process of the LSIS-II.

Let L be the number of iterations of the clustering
process, which is called the height of the clustering tree in
[28]. The average time complexity of the clustering
process is O(LNMkH), where N is the number of cells, M
is the average degree of the cells, and k is the order of the
general connectivity.

HK5851

1400
1200 +— o _

N
o
o
o

800 T
600

Runtime (sec)

400 1

200 T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Processor #

Figure 6. CPU time of each processor in
seconds for HK5851.

The three circuits in Table 1 were experimented and
the results of two of them are listed in Table 3 and 4.

6. Performance Analysis

The placement results as shown in Tables 3 and 4 are
measured by two indicators: maximum block length and
the total number of feedthroughs. We define performance

improvement percentage of a placement i, nj, in
comparison to a reference as follows.

~_ omaxBL N S feedthrough
n=p max BL feedthrough ~

“)

where dmaxBL is the difference of the block length and p
is a weight related to the improvement of block length.

Table 3. The experimental results for HK5601.

#Blocks order Old 1 2 3 4 5 6 7

9 #feedthroughs | 229| 249 | 241 181 223| 182] 202 213

9 [Max Block Length| 239| 245 |239 [235] 237 234 236 238

9 |Max Block Length| 6 171 2 8| 3 5 7| 18
Difference

10 #feedthroughs | 269| 270 | 259] 194| 221| 189| 192] 179

10 [Max Block Length| 219 219 | 217 215] 214 210] 213 211

10 |Max Block Length| 7 5 31121 81 3] 9] 9

Difference

Table 4 Th experimental results for HK5851.

#Blocks order Old| 1 2 3 4 5
23 #feedthroughs [1889 1573 1650] 1552 1526] 1664
23 | Max Block Length | 588 574| 576| 569| 577| 576
23 | Max Block Length | 13 16 16| 12| 28| 14

Difference

24 #teedthroughs [19731694 1808 1666 1535 1654

24 | Max Block Length | 581| 555[562| 551 549] 553

24 | Max Block Length | 38 [19 23 11| 40| 16

Difference

9 blocks 010 blocks

n(%g
—

Order of General Connectivity

Figure 7. Performance results for HK5601.

The maximum block length reduction may imply the
reduction of all the horizontal wire lengths. Therefore, the
performance improvement due to its reduction is
proportional to the number of blocks in a design. Our
experiences indicate that p=0.2B is a good figure to use,
where B is the number of blocks in a circuit. Hence the
following formula is used to obtain performance values.

m._,—m. = I
ni=(0.2B)—"~ T (5)

M, f ref

where m; is the maximum block length of placement i, f; is
the number of feedthroughs of placement i, and m,.r and
Jrrare those of the reference placement.

Using Formula (5), we obtained the curves for the
two circuits as shown in Figures 8 and 9. The reference
point is the results from the placement without clustering.

7. Discussions

The earlier results in [28] and our own experiments
have all shown that placement with clustering can result
in better performance than that without -clustering
regardless of the order of general connectivity.

Computation time for general connectivity increases
with its order because the depth of the search tree is equal
to the order. The time complexity of our algorithm is
related to the order of connectivity and the order in
practice should not be larger than 5. The parallel version
displays its advantage when the order is high.

Our Concurrent Group Search Algorithm is more
effective for larger circuits. The combination of the
algorithmic techniques and parallel computing results in
speedup of 168 times against an early implementation for
the largest circuit we have tested with the order of general
connectivity equal to 5. This work makes it practical to

016 blocks 17 blocks
25
204 - b
SLE IR RS B B
=TT A B (U I I I I A
54 ... | o] I I I O I
0 H'
1 2 3 4 5 6

Order of General Connectivity

Figure 8. Performance results for HK5852.

23 blocks [124 blocks

n(%)

1 2 3 4 5
Order of General Connectivity

Figure 9. Performance results for HK5851.

apply the concept of general connectivity to large
industrial circuits.

The performance improvement with the low order
general connectivity does not seem to be stable. The
higher order results are more stable and better than the
reference ones. It may therefore conclude that the higher
order (>3) general connectivity should always be used to
ensure stable results, especially for larger circuits.

One of the reasons for the unstable results with the
low orders is that “bottom-up” cluster growth may not
produce an optimal solution. The reason is that a stable
cluster with n cells may not be a subset of any stable
cluster with (n+1) cells as shown in Figure 10.

A stable cluster with 4 cells is {1,3,4,7}. A stable
cluster with 5 cells is {1,2,3,4,7}. As can be seen,
{1,3,4,7} < {1,2,3,4,7}. The stable cluster with 6 cells is
{1,3,4,5,6,7}. But, {1,2,3,4,7} « {1,3,4,5,6,7}.

We call this fact “discontinuity of clustering
process”. Obtaining large clusters from smaller ones may
not result in an optimal solution. Therefore, high order

1 6
O—0

2 3 \4 \ 5

L @ 0

Q7

Figure 10. A stable n cell cluster may not be a
subset of any stable (n+1) cell
cluster.

general connectivity is necessary in order to obtain
optimal solutions.

References

[1] M. Brever, “Min-cut placement,” Journal of Design
Automation and Fault Tolerant Computing, Vol. 1, No. 4,
October 1977, pp.343-362.

[2] P.K. Chan, M.D.F. Schlag, and J.Y. Zien, “Spectral k-way
ratio-cut partitioning and clustering,” 30" DAC, 1993,
pp.749-754.

[3] K.X. Cheng and W.J. Zhuang, “The placement subsystem
of LSIS-II automatic layout system,” Vol. 7, No. 4, 1986,
pp.412-417.

[4] J. Cong and M. Smith, “A parallel bottom-up clustering
algorithm with application to circuit partitioning in VLSI
design,” 30" DAC, 1993, pp.755-760.

[5] W.M. Dai and E.S. Kuh, “Simultaneous floor placement
and global routing for hierarchical building block layout,”
IEEE Trans. on CAD, Vol. CAD-6, No. 5, 1987, pp.828-
837.

[6] W.M. Dai, B. Eschermann, E.S. Kuh, and M. Pedram,
“Hierarchical placement and floorplanning in BEAR,”
IEEE Trans. on CAD, Vol. CAD-8, No. 12, 1989, pp.1335-
1349.

7] C.L. Ding, C.Y. Ho, M.J. Irwin, “A new optimization
driven clustering algorithm for large circuits,” 1993
FEuropean DAC, pp.28-32.

[8] W.E. Donath, “Complexity theory and design automation,”
Proc. of the 17th DAC, 1980, pp.412-419.

[9] J. Garbers, H.J. Promel and A. Steger, “Finding clusters in
VLSI circuits,” 1990 IEEE ICCAD, pp.520-523.

[10] L. Hagen and A.B. Kahng, “A new approach to effective
circuit clustering,” 1992 IEEE ICCAD, pp.422-427.

[11] E.Q. Kang, R.B. Lin and E. Shragowitz, “Fuzzy logic
approach to VLSI placement,” IEEE Trans. on VLSI Sys.,
Vol 2., No. 4, Dec. 1994, pp. 489-501.

[12] S. Mallela, et al., “Clustering based simulated annealing for
standard cell placement,” 25™ DAC., 1988, pp.312-317.

[13] B. Preas and M. Lorenzetti, Ed., Physical Design
Automation of VLSI Systems, The Benjamin/Cummings
Pub. Co., Inc., 1988.

[14] R. Rajaraman and D.F. Wong, “Optimal clustering for
delay minimization,” 30" DAC, 1993, pp.309-314.

[15] Y. Saab, “Post-analysis-based clustering dramatically
improves the Fiduccia-Mattheyses algorithm,” 1993
European Design Automation Conference, pp.22-27.

[16] D.M. Schuler and E.G. Ulrich, “Clustering and linear
placement,” 1972 DAC, pp50-56.

[17] C. Sechen, et al., “An improved simulated annealing
algorithm for tow-based placement,” IEEE ICCAD, 1987,
pp-478.

[18] H. Shin and C.H. Kim, “A simple yet effective technique
for partitioning,” IEEE Trans. On VLSI Systems, Vol. 1,
No. 3, September ‘93, pp.380-386.

[19] 1.J. Song, H.K. Choo, and W.J. Zhuang, “A new model for
general connectivity and its application to placement,” The
6th Great Lakes Symposium on VLSI, March 22-23, 96,
pp.60-63.

[20] W. Sun and C. Sechen, “Efficient and effective placement
for very large circuits,” IEEE Trans. on CAD, Vol. 14, No.
3. 1995, pp.349-359.

[21] W. Swartz and C. Sechen, “Timing driven placement for
large standard cell circuits,” 32 DAC, 1995, pp.211-215.

[22] N. Yan, H.X. Xia and W.]. Zhuang, “A discussion about
connectivity ~with 3-depth,” Chinese National 6"
Conference on Computer Aided Design and Computer
Graphics, 1990.

[23] C.W. Yeh, C.K. Cheng and T.T. Y. Lin, “A probabilistic
multicommodity-flow solution to circuit clustering
problems,” 1992 IEEE ICCAD, pp.422-427.

[24] M.Y. Yu and W.J. Zhuang, “The optimal construction of
clusters,” Int. Conf. on Computer Aided Tech., ‘88, pp.456-
460.

[25] M.G. Yu, Z.C. Ma, and W.J. Zhuang, “Cluster method and
its application to LSI/VLSI layout,” Chinese Journal of
Semiconductors, Vol. 10, No. 4, 1989, pp.432-444.

[26] M.Y. Yu, X.L. Hong, Y.E. Lien, Z.Z. Ma, J.G. Bo, and
W.J. Zhuang, “A new clustering approach and its
application to BBL placement,” European DAC, 1990,
pp.665-669.

[27] W.J. Zhuang, K.X. Cheng, et al., “LISI-II automated layout
system,” Chinese Journal of Semiconductors, Vol. 8, No. 5,
1987, pp.270-276.

[28] W.J. Zhuang, Y.C. Lim, G. Samudra, and N. Yan, “A new
clustering method based on general connectivity,” VLSI
Design, Vol. 2, No. 2, 1994, pp. 131-141.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

