
Multiple Behavior Module Synthesis
Based on Selective Groupings

Ju-Hwan Yi, Hoon Choi, In-Cheol Park, Seung Ho Hwang and Chong-Min Kyung
Department of Electrical Engineering

Korea Advanced Institute of Science and Technology
373-1, Kusong-dong, Yusong-gu, Taejon, 305-701, Korea
{yjh, hchoi}@snoopy.kaist.ac.kr, icpark@ee.kaist.ac.kr

Abstract
In this paper, we present an approach to synthesize multiple

behavior modules. Given n DFGs to be implemented, the previ-
ous methods scheduled each of them sequentially, and imple-
mented them as a single module. Though the method is appro-
priate for sharing the functional units, it ignored the following
two aspects: 1) different interconnection patterns among DFGs
can increase the interconnection area and delay of the critical
path, 2) the sequential scheduling of DFGs has a difficulty in
considering the effects on the other DFGs not scheduled yet. We
show an efficient way to solve the problems using a selective
grouping method and the extensions of the traditional schedul-
ing methods. The experimentation reveals that the result ob-
tained by the proposed method is better to reduce interconnec-
tion area and to meet the timing constraints than those obtained
by the previous methods.

1. Introduction
Due to the advance of VLSI technology, a lot of ASICs

(Application Specific Integrated Circuit) are being used in vari-
ous systems. Compared to the general purpose processors, an
ASIC can satisfy various constraints such as performance, area,
and power, with low cost by finding an optimal architecture for
a given application. However, as the complexity of applications
is increased, more flexibility is required to accommodate design
errors and specification changes which may happen later. Since
ASICs are specially designed for one behavior, it is difficult to
adopt any changes at the later design stage. In contrast, a pro-
grammable processor can be easily adapted to different applica-
tions by changing only the programs. This is the reason why
ASIPs(Application Specific Instruction set Processor) are
widely accepted in a number of systems.

Generally an ASIP has a programmable architecture which is
tuned to a number of different behaviors. Choosing an optimal
instruction set proper for specific applications under constraints
such as chip area and power consumption is crucial in maxi-
mizing the performance of the ASIP. This leads to several re-
searches to look for tools which analyze several input behaviors
and synthesize a single programmable architecture that is good
for the throughput of the behaviors.

An integrated ASIP design system was proposed in [1][2][3].
Given example programs written in C and typical data as inputs,
the system profiles the programs with the given data set, and
decides an instruction set and a hardware architecture based on

the profiles. It also automatically generates software develop-
ment tools for the ASIP such as compiler and simulator. How-
ever, the architecture of an ASIP generated is based on the
GCC’s abstract machine model, and only the subset of GNU
intermediate language is taken as the instructions of the ASIP.
In other words, the supported instruction set is restricted by the
intermediate language of GCC.

An evolution programming approach is applied for the be-
havior-level area efficient design of ASIP[4]. The method, based
on a given behavioral-level kernel, randomly transforms each of
the given DFGs, and then the behavioral kernel is used in the
evolution process to guide the survival of DFGs. Finally instead
of the given DFGs, the surviving DFGs are used to synthesize a
programmable architecture. Though it could lead to an area-
efficient design which can support all the input behaviors, it did
not consider the connection cost and performance constraints.
We may not combine all the DFGs into one due to the intercon-
nection cost and delay. Hence, we have to selectively partition
the DFGs into several groups, and each group is implemented
into a single hardware module that can perform all the opera-
tions in the group. The previous method ignored the necessity of
grouping. The area and delay of interconnection can not be
ignored as the chip becomes complex.

The recent work presented in [7] considered the grouping
problem where n control-data flow graphs are bundled into at
most m groups. It is different from our work in that its target
architecture is the application specific programmable processor
(ASPP) not the ASIP, our target architecture. Therefore, it has
almost no consideration on the relation between the synthesized
hardware and the corresponding instruction. In addition, it has
the following two problems. First, in application grouping proc-
ess, a probabilistic framework based on the incompatibility be-
tween an application and a group was used. This means that the
grouping result is highly dependent on the incompatible meas-
ure. Furthermore, the applied measure for the incompatibility
was based on a simple comparison between the area of each
application and that of the predicted group area. In our method,
a more accurate measure, grouping gain, is used in deciding the
group of each application. Second, following the application
grouping, each group is synthesized into a separate hardware. As
the synthesis of an ASIP has a difficulty in considering all the
applications and their respective constraints is simultaneously,
the work synthesized the ASPP by considering one application
at a time. Thus, ordering of applications impacts the synthesized

results. In contrast, we use a new method that considers all the
applications and their respective constraints simultaneously.

This paper deals with the grouping of several DFGs, which is
used in our ASIP synthesis system, Partita. After we describe
the overview of Partita in section 2, the proposed grouping
method is described in section 3. Experimental results and con-
clusions are described in section 4 and 5.

2. Overview of Partita
The target architecture of Partita is a highly programmable

ASIP for DSP applications. The application program is located
in the external program memory as shown in Fig. 1. Simple
instructions are executed with the assistance of hardwired con-
trollers, and complex instructions are controlled by a µ-ROM.
The decoded result of a complex instruction includes the start
address of the corresponding µ-routine in the µ-ROM.

DSP-ASIP

External memory

Program
&

Data

F D µ-ROM

EXUI/O

System Bus

F: fetch unit
D: decode unit
EXU: execution unit
I/O: I/O unit

Fig. 1: Target architecture of Partita
Partita supports three classes of instructions according to the

complexity. First, P class contains instructions that are not only
primitive but also essential in all applications, i.e., simple arith-
metic instructions and control instructions like branch and call.
The P class instructions are always supported in all the gener-
ated ASIPs by a simple execution kernel and a hardwired con-
troller. Second, B class is composed of instructions that are
more complex than P class instructions but not time critical. The
B class instructions are implemented by a combination of in-
structions of P class and controlled by a µ-ROM. B class is pro-
vided to minimize the external memory required. Lastly, S class
is a set of instructions that are time critical as well as complex.
Hence S class instructions are implemented by special hardware
units called S-HWs.

The reason behind this classification is as follows. As appli-
cations are changed, the instructions in B and S class are
changed for optimal performance in the given constraints. In
addition, as instructions in B and S class are generally complex,
it is not easy for the application programmers to use such in-
structions in order to modify the automatically generated pro-
grams for the purpose of algorithm changing or debugging.
Fortunately, what to be changed at the late stage of design or
after the fabrication is generally not the data path part but the
control part. Since the frequent operations of data path are
mapped into S and B class and the control operations are
mapped into P class, we can accommodate the needed changes
only using P class instructions. The simplicity of the operations
makes P class instructions easily understood and used by the
application programmers. There is no predefined set of S and B
class instructions. Thus the selecting time-critical parts of the
given algorithm as S class instructions offers more freedom than
the previous methods.

The inputs of Partita are an application written in silage and
typical input data for the application. We sample-run the appli-

cation with the given typical input data to know the running
frequency of each line in the silage description. The system se-
lects parts of description which run frequently as candidates for
B and S class instructions. Then, instructions of S class are par-
titioned into several groups with considering similarity among
instructions. A hardware module to implement each group of S
class, S-HW, is synthesized and µ-codes for B class instructions
are generated. All instructions are encoded and other necessary
hardware modules such as decoding unit and fetch unit are pro-
duced. The µ-ROM containing all µ-codes are then optimized.
The program is also synthesized by covering the DFG of the
given application with the generated instructions. Fig. 2 shows
the flow diagram of Partita.

Applications
 in Silage

Typical
Data

Sample Run

Profile

Inst. Class Selection

S class B class P class

Grouping

Synthesizer

S-HW

µ-code gen.

µ-ROM gen.

Inst. encoding

Module gen.

D unit

Exe-Kernel

ASIP

P&R

F unit

I/O unit

µ-ROM

Fig. 2: Flow diagram of Partita

3. Grouping Method for S-HW Generation

3.1 Motivation of Grouping
After the sample running, parts of DFG descriptions which

run frequently are selected as candidates for B and S class in-
structions. We select time-critical parts of them as S class if they
meet the various constraints, i.e., area and power, and then we
have several sub-DFGs to be implemented in S-HWs. There are
three possible ways to implement them. First, the simplest way
is to implement each graph into a separate S-HW. Though the
method is simple and straightforward, it often results in an im-
plementation of the largest area because the resources in the
different S-HWs are not shared at all. Second, we can merge all
the sharable DFGs, i.e., DFGs in the mutually exclusive
branches, into one, and build a single S-HW for the merged
DFGs. This maximizes the resource sharing, especially func-
tional units. However, the more DFGs are merged, the more the
interconnections among functional units become complex. Thus
the interconnection cost, i.e., area of wires and MUXs, can be
increased. In addition, the delay is increased because of the
raised wiring load and MUX depth. This problem becomes se-
vere as the throughput requirements are significant. Lastly, we
can use a hybrid approach between the first and the second

method; selectively merge the DFGs only if the merging does
not violate the timing constraints and the increased interconnec-
tion cost is acceptable. For example, let’s assume the three
DFGs shown in Fig. 3 are to be mapped into S-HWs under the
timing constraints 4, 3 and 3 steps respectively. We also assume
they are mutually exclusive to one another. If we use the first
method, one to one mapping, three S-HWs shown in Fig. 4 are
obtained. The three S-HWs use three adders, three multipliers
and no MUXs. In the second method, the three DFGs are
merged into one, and as a result we obtain a S-HW in Fig. 5,
where an adder, a multiplier and six MUXs are used. Two of the
six MUXs are serially connected. Compared with the first
method, the S-HW uses much less functional resources, but has
much more interconnections and MUXs. Furthermore the two
MUXs which are serially connected may violate the timing con-
straints. The possible groupings of the third method are 1) DFG-
A and DFG-B, 2) DFG-B and DFG-C, and 3) DFG-A and DFG-
C. The datapaths each of which implements a group are shown
in Fig. 6. To cover all the three DFGs, we should select one
from Fig. 6 and one from Fig. 4. We select the first one from
Fig. 6, i.e., a datapath for DFG-A and DFG-B, and the last one
from Fig. 4, i.e., a datapath for DFG-C, because it results in the
minimal area implementation satisfying the timing constraints.
To find the best solution, therefore, we should selectively group
the DFGs that are similar to one another.

+ +

X

+

X

X

+
DFG-A DFG-B DFG-C

Fig. 3: Three example DFGs

IO IO

O U T

IO IO

O U T

IO IO

O U T

Dataptah for DFG-A Dataptah for DFG-B Dataptah for DFG-C

Fig. 4: Results of the first method

IO IO

O U T

M U X

M U X M U XM U X M U X

M U X

Datapath for DFG-A, B, and C

Fig. 5: Result of the second method

IO IO

O U T

IO IO

O U T

M U X

M U X

M U X M U X

IO IO

O U T

M U X

M U X M U X M U X M U XM U X

Datapath for DFG-A and B Datapath for DFG-B and C Datapath for DFG-A and C

Fig. 6: Three possible groups of the third method

3.2 Grouping Gain
Suppose that the minimum area implementation of DFG A

and B is IA and IB, respectively. And assume that the minimum
area implementation of merged DFGs is IAB. The grouping gain
between DFG A and B is defined as:

G =
Area(I) + Area(I) - Area(I) I

AB

A B AB AB, if meets constraints

 , otherwise0

However, since the implementation procedures take much
time, we approximate the gain by using the number of functional
units and the number of interconnections after the scheduling
and allocation procedures. We can further reduce the time con-
sumption by using the estimations like the one proposed in [5].

3.3 Grouping
Given n sub-DFGs, there are around 2n groups to be consid-

ered. As it is difficult to take into account all the possible
groups, we selectively merge two sub-DFGs at one time to re-
duce the grouping time required. Starting with the given DFGs
and their area estimates, we calculate the gains between each
pair of DFGs to build a gain graph. The gain graph consists of
N and E. N is a set of nodes where each node denotes a DFG. E
is a set of weighted edges between two nodes of N, and the edge
weight represents the grouping gain of the two nodes. Fig. 7
shows the gain graph for three DFGs in the Fig. 3, where node
A, B, and C represent DFG-A, DFG-B, and DFG-C, respec-
tively, and the value on a edge is the grouping gain between
nodes.

A B

C

Ca+Cm-Cmx

Ca: adder cost
Cm: multiplier cost
Cmx: MUX cost

Ca+Cm-5Cmx
Ca+Cm-4Cmx

Fig. 7: Gain graph of Fig. 3
Two nodes connected by an edge whose weight is the largest

are merged into a single node. We update the weight of edges
that are connected to the merged node. This procedure is re-
peated until there are not positive weighted edges any more. In
Fig. 7, at the first step the edge between node A and B is selected
because its weight is the largest. After merging node A and B,
the gain graph is re-constructed to update edge weights. Since
there are no more positive weighted edges in the graph, we stop
the procedure. In this way, we get two groups, AB and C, for the
hardware blocks. The timing complexity of the proposed method
is O(n3) where n is the number of DFGs.

3.4 Scheduling of merged DFGs
The previous method in [6, 7] synthesized a HW of merged

DFGs as follows: First, it schedules each DFG separately. Sec-
ond, it performs the allocation of the first DFG. Third, the sec-
ond DFG is allocated with considering the first time step of the
second DFG as the next time step of the first DFG's last time
step. The third procedure is repeated until all the DFGs are allo-
cated. However, the scheduling of a DFG has an influence on
the schedulings of other DFGs to be merged with. Therefore, the
scheduling of a DFG should consider the effects on the sched-
ulings of other DFGs. Fig. 8 illustrates the problem.

+ + + + + +
X+ +

X +
X

+

+ + +
+ + +

X

+ +
X

+
X

+

X X

+

(a) (b) (c)

Fig. 8: Problems of merged DFGs scheduling
Fig. 8-(a) and (b) show the scheduling results of two DFGs

without considering the effects between them. The scheduling in
Fig.8-(a) requires one multiplier and six adders, while two mul-
tipliers and one adder are necessary for Fig. 8-(b). Thus, the
merged DFG without considering the effects between them re-
quires six adders and two multipliers. However, in fact the
scheduling of the merged DFGs can be satisfied by using only
two multipliers and three adders as shown in Fig. 8-(c) if the
effects between them are considered. The followings deal with
how to take into account scheduling effects between DFGs in a
group.

3.4.1 ILP formulation
An ILP formulation for an optimal scheduling of merged

DFGs is presented in this section. We extend the ILP formula-
tion in [8] to schedule the merged DFGs. The objective is to
meet the timing constraints with minimum hardware resources.
We assume the propagation delay of every operation is one cy-
cle for the sake of convenience.

First, we apply ASAP and ALAP schedulings to each DFG to
know the start time and the require time of each operation. Sup-
pose there are p DFGs, and each DFG l contains Nl operations,
where 1 ≤l≤ p. Each of the operations is labeled as Oli, where 1≤
i≤Nl. In DFG l, a precedence relation between two operations is
denoted by OliÆOlj, where Oli is the immediate predecessor of
Olj in DFG l. The start time and required time of each operation
Oli is denoted as Sli and Lli, respectively. And there are m types
of function units each of whose cost is Cti , 1≤i≤m. The variables
used in formulation are as follows:

• Mti are integer variables that denote the number of functional
units of type ti needed.
• xlij are 0, 1 integer variables associated with Oli

• xlij = 1 if Oli is scheduled into step j, otherwise 0.

The objective function is C Mti ti
i

m

⋅
=
∑

1

, and subject to

x M l p j s k ml i j tk
i

FU

N

tk

l

, , − ≤ ≤ ≤ ≤ ≤ ≤ ≤
=

∈

∑ 0 1 1 1
1

 for , , and

Oli

x l p i Nl i j l
j S

Ll

li

i

, , = ≤ ≤ ≤ ≤
=
∑ 1 1 1 for ,

j x j x l p O Ol i j l k j
j S

L

li lk
j S

L

lk

lk

li

li

⋅ − ⋅ ≤ − ≤ ≤ →
==
∑∑ , , , , 1 1 for all ,

3.4.2 Force Directed scheduling
The force directed scheduling [9] is extended to schedule

merged DFGs by inserting a pseudo node(PN) between two
DFGs. The pseudo node does not perform any operation, and
has a fixed time step. An operation of a sub-DFG can not move
across the pseudo-node.

X X

X

-
-

X

X X

+
+
<

+ -
X X

P N

X X

X

-
-

X

X

X

+
+
<

+ -
X X

P N

ASAP scheduling ALAP scheduling

Diff. Eq. solver

Butterfly

Fig. 9: ASAP and ALAP schedulings of merged DFGs
with pseudo node

To illustrate the method, we show an example in Fig. 9 where
a merged DFGs containing two DFGs, namely a differential
equation solver and a butterfly calculation, is scheduled by
ASAP and ALAP, respectively. Timing constraint of the differ-
ential equation solver is 4 and that of the butterfly calculation is
3. The pseudo node in Fig. 9 is used to fix the boundary be-
tween two DFGs. We apply ASAP and ALAP schedulings to the
two behaviors with fixing the time step of PN. After the ASAP
and ALAP schedulings, we can get time frames of all the opera-
tions as shown in Fig. 10.

C-step 1.1

C-step 1.2

C-step 1.3

C-step 1.4

C-step 2.1

C-step 2.2

C-step 2.3

* *

*

-

-

*

-

*

-

*

*
*

+

+

<

Fig. 10: Time frames of all the operations in Fig. 9
With the time frames, we do the remaining procedures of the

force directed scheduling like the conventional case of one
DFG. With the scheduling result, it is not hard to estimate the
area of implementation and check whether the result can meet
the given timing constraints.

4. Experimental Results
We have incorporated our grouping method in HYPER sys-

tem [10]. Five benchmark circuits are used to see the grouping
effects. The minimum area implementation of each benchmark
circuit is summarized in Table 1.

Table 2 shows the grouping results; we measured the area of
functional units and interconnections, and the maximum depth
of serially connected MUXs for three different groupings. The
first grouping entitled Imp1 in Table 2 merged all the five DFGs
into a single S-HW. In the row entitled Imp2, we show the result
obtained by partitioning them into two groups; the iir filter and
the noise canceller are merged into one and the others are
merged into the other one. The row entitled Imp3 shows the
result obtained by a different grouping which was selected by
the proposed grouping gain. The wdc filter, iir filter, and fir
filter are merged into one and the others are merged into the
other one. Table 2 shows the followings: 1) Imp1 shows the best
result in terms of the area of functional units. This is due to the
fact that as all the DFGs are merged into one, the functional
units are shared as much as possible. 2) Imp2 and Imp3 show
the importance of proper grouping. Imp2 shows the larger MUX

area than that of others, while that of Imp3 is the smallest. This
is caused by the fact that the DFGs in each group of Imp3 have
similar interconnection patterns, but those of Imp2 have not.
Therefore, the grouping of DFGs having the similar intercon-
nection patterns reduces the interconnection costs. 3) The
maximum depth of MUXs in Imp3 is two, which is less than that
of Imp1 and Imp2. This is important to meet the timing con-
straints. Thus, though the Imp3 uses more area for functional
units than the imp1, Imp3 has more chance to meet the required
timing constraints. The experiments indicate that the proposed
grouping is effective in reducing the interconnection costs.

5. Conclusion
An approach to synthesize multiple behavior modules using a

selective grouping is presented in this paper. Given n DFGs to
be implemented, we selectively partition them into several
groups with considering not only the hardware resources such as
functional units and interconnections but also the given timing
constraints. To consider the effect to the other DFGs, the DFGs
in a group are scheduled simultaneously using an ILP formula-
tion or an extended version of the force directed scheduling. The
experimental results showed that the implementation obtained
by the proposed grouping is better in reducing interconnection
cost and meeting the timing constraints than that obtained by
merging all the DFGs into a single group.

References
[1] J. Sato, M. Imai, T. Hakata, A.Y. Alomary and N. Hikichi,

“An Integrated Design Environment for Application Spe-
cific Integrated Processor,” Proc. of ICCD, pp. 414-417,
1991.

[2] M. Imai, A. Alomary, J. Sato and N. Hikichi, “An Integer
Programming Approach to Instruction Implementation
Method Selection Problem,” Proc. of Euro-DAC, pp. 106-
111, 1992.

[3] A. Alomary, T. Nakata, Y. Honma, M. Imai and N. Hikichi,
“An ASIP Instruction Set Optimization Algorithm with
Functional Module Sharing Constraint,” Proc. of ICCAD,
pp. 526-532, 1993.

[4] W. Zhao and C.A. Papachristou, “An Evolution Program-
ming Approach on Multiple Behaviors for the Design of
Application Specific Programmable Processors,” Proc. of
ED&TC, pp. 144-150, 1996.

[5] A. Sharma and Rajiv Jain, “Estimating Architectural Re-
sources and Performance for High-Level Synthesis Appli-
cations,” Proc. of DAC, pp. 355-360, 1993.

[6] W. Zhao and C.A. Papachristou, “Synthesis of Reusable
DSP Cores Based on Multiple Behaviors,” Proc. of IC-
CAD, pp. 103-108, 1996.

[7] K. Kim, R. Karri and M. Potkonjak, “Synthesis of Appli-
cation Specific Programmable Processors,” Proc. of DAC,
pp. 353-358, 1997.

[8] J.H. Lee, Y.C. Hsu, and Y.L. Lin, “A New Integer Linear
Programming Formulation for the Scheduling Problem in
Data path synthesis,” Proc. of ICCAD, pp. 20-23, 1989.

[9] P.G. Paulin and J.P. Knight, “Force-Directed Scheduling
for the Behavioral Synthesis of ASIC's,” IEEE Transac-
tions on Computer-Aided Design, vol. 8, pp. 661-678, June
1989.

[10] C. Chu, M. Potkonjak, M. Thaler, and J. Rabaey, “HYPER:
An Interactive Synthesis Environment for High Perform-
ance Real Time Applications,” Proc. of ICCD, pp. 432-
435, 1989.

Table 1: Benchmark circuits
FU MUX buf bus reg

+ - * no inputs depth no no no
fir filter 1 0 1 3 6 1 8 7 27
iir filter 1 1 1 5 12 1 15 15 34

wdc filter 1 1 1 7 17 1 18 17 48
noise

canceller
1 1 1 6 15 2 15 12 45

wavelet 1 1 1 4 9 1 13 12 51

Table 2: Grouping results
FU MUX buf bus reg

+ - * no inputs depth no no no
Imp1 total 1 1 1 31 118 3 27 24 105

g1 1 1 1 18 58 3 24 21 59
Imp2 g2 1 1 1 18 62 3 21 20 84

total 2 2 2 36 120 3 45 41 143
g1 1 1 1 13 44 2 22 21 76

Imp3 g2 1 1 1 9 22 2 19 16 67
total 2 2 2 22 66 2 41 37 143

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

