
get
s-
of
is
ro-
8].
t
ign

us-
ai-
f
c-
-

e
s

ns
P
r-
ut

r-
-
p

-
ve
et

ial
s,

ects
e
m,
a-
r-

ath
g
lt
by
PSCP: A Scalable Parallel ASIP Architecture for Reactive Systems
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Abstract
We describe a Codesign approach based on a parallel

and scalable ASIP architecture, which is suitable for the
implementation of reactive systems. The specification lan-
guage of our approach is extended statecharts. Our ASIP
architecture is scalable with respect to the number of pro-
cessing elements as well as parameters such as bus widths
and register file sizes. Instruction sets are generated from
a library of components covering a spectrum of space/time
trade-off alternatives. Our approach features a heuristic
static timing analysis step for statecharts. An industrial ex-
ample requiring the real-time control of several stepper
motors illustrates the benefits of our approach.

1  Introduction

We present a novel approach for the codesign of
reactive systems. It employs a scalable ASIP architecture
called PSCP (Parallel StateChart Processor), and uses a
static timing validation method by exploiting timing con-
straints of statechart specifications. The PSCP is designed
to contain a variable number of process elements. The key
to our approach is to fine-tune the architectural parameters
and the instruction set generated for a particular applica-
tion to satisfy all timing constraints.

The essence of reactive systems design has always
been to find optimal specification languages, design
styles, and analysis methods to guarantee the desired tim-
ing properties of an application. In industrial applications,
the timing validation methods for reactive Hardware/Soft-
ware systems are almost always a combination of exten-
sive testing and simulation. Formal approaches to timing
and scheduling validation are mostly based on algebraic
notations such as Hoare’s CSP [17], Milner’s CCS [16], or
temporal logic. These notations usually require the use of
theorem provers. Other approaches include timed or sto-
chastic Petri nets [14], which – like Statecharts – are diffi-
cult to analyze, but are less suitable for the specification of
complex systems, because of their non-hierarchical nature.

Most hardware/software codesign approaches tar
the performance optimization of hardware/software sy
tems with additional constraints such as minimization
area or power dissipation [7]. Usually, a specification
partitioned into a set of system components such as p
cessors, code and special purpose hardware [1
Recently, the ASIP (Application Specific Instruction se
Processor) paradigm has opened new ways for the des
of reactive systems. ASIPs are microprocessors with c
tomized architectures and instruction sets, which are t
lored to the execution of only a certain class o
applications. ASIPs usually feature microcoded archite
tures [8][10], because of their added flexibility over hard
wired control. Being useful only for the execution of “a
few” programs, it becomes imperative to automate th
production of compilers for ASIPs, which are known a
retargetable compilers [8][15] (RCs). As most ASIP
research efforts are directed towards DSP applicatio
[9][10], RCs use pattern matching techniques or MIL
algorithms [6] to generate instruction sets and micro-ope
ations for pipelined data paths aiming at high throughp
rates.

Our approach is different in that we aim at the gene
ation of a custom microcontroller optimized for the han
dling of many simultaneous external events. We give u
the limited programmability of existing ASIPs, and opti
mize hardware and program for one particular reacti
application. This eliminates the need for an RC. Our targ
platform is based on FPGAs [12], which requires spec
consideration of the limited available hardware resource
and of the attainable system speeds. Our approach det
the critical paths of an application, and applies iterativ
improvements to the code pieces representing the
thereby altering the hardware architecture. Most optimiz
tions occur on the microinstruction level. The assemble
level instruction set is mostly used to analyze the data-p
requirements of an application, and to compute timin
estimates. Usually, performance optimizations will resu
in increased hardware resources, which is compensated
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removing unnecessary hardware elements, instructions,
and microoperations. In section 2, we describe the nota-
tions used in our Codesign system, and briefly review the
synthesis of extended statecharts. Section 3 contains a
description of our new ASIP architecture. In section 4, we
describe our proposed timing validation method, including
instruction and architecture selection. In section 5, we
present the results we obtained for an industrial applica-
tion. Section 6 summarizes, and gives an outlook on future
research.

2  Extended Statechart Synthesis

Statecharts have been one of the premier specifica-
tion formalisms for reactive systems for over ten years [2],
because of their concise, comprehensive graphical nota-
tion. The many features of statecharts include parallel and
hierarchical states, and transitions between complex
states. However, these unique features also make them dif-
ficult to analyze and implement in a hardware/software
system. The basic implementation approach, as described
in [1], extracts the state and transition information of a
chart, and generates a statechart Logic Array (SLA),
which implements the semantics of the chart, and acts as a
scheduler for the transitions. The SLA concept is illus-
trated in Fig. 1. The efficient state encoding of a chart
involves the generation of exclusivity sets, which was first
described in [5]. The state information, together with the
encoded events and conditions, forms the configuration
register (CR) of the chart (Fig. 1). Its content describes the
current state of an application. In [1], the statechart for-
malism was augmented by external ports for events, con-
ditions, and data. These additions are necessary for
hardware/software implementations of statecharts,

because a system must be able to react to external eve
The external ports (over which external events are del
ered) are connected to event and condition buses, which
turn are connected to the CR (Fig. 1). The SLA execut
transitions based on the contents of the CR. The SLA ge
erates four sets of outputs: It resets the event parts of
CR (events are only available during a single syste
cycle), it produces a set of signals for the Transitio
Address Table, and updates the state part of the CR un
the control of the guard signals G0..Gm (Fig. 1) The guard
signals are needed to ensure the correct execution
statecharts [1].

Our new ASIP design system not only uses th
graphical language of statecharts, but also introduces ad
tional notations. We define a textual representation f
statecharts, which is the starting point of the hardware a
software generation process. (Fig. 2a). It is straightfo
ward to generate the textual representation from statech
pictures. We also introduce C as notation for the actio
parts of transition labels. Thus, function calls are now po
sible during a transition. Functions can call other fun
tions, but recursion is not permitted. The syntax slight
deviates from C in allowing declarations of the form
“int:16” and constants such as “B:001011” to specify b
widths of data elements, events, or ports. Careful ran
specification helps the ASIP generator to select an optim
architecture. A second aspect of the C notation is its ro
as an intermediate format between the statechart nota
and the assembler-level representation. Fig. 2b shows p
of the C code generated for the example presented in s
tion 5. It contains part of a preamble of data types that a
always part of the generated C code, plus some port dec
rations. These code pieces are not actually executed,

Statechart
Logic Array

(SLA)

Cond. Events States

Transition
Address
Table

Condition
Ports

Event Bus

Condition Bus

T0:Tn

Cond. Bus
Interface

Ev. Bus
Interface

Event
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E0:Ek
S0:Sl

G0:GmS0:SlE0:EkC0:Cj

Configuration
Register
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Data Bus
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Execution
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Figure 1: PSCP Architecture Overview



s,
an
ig-
xe-
f a
on
the
er-
eir
n.

on-
re

re.
set
l-

n

gis-
it
e
sic
p
ad
u-

he
to
r,

m
d
a

used by the compiler to generate the hardware port archi-
tecture, and instruction sequences to access the ports. In
the final implementation, a port is represented by an
address. However, the C code also contains the action rou-
tines written by system designers, which become the exe-
cutable modules of the final implementation. The C code
is generated by a frontend called the Statechart Structural
Analyzer, which also generates a BLIF description of the
SLA. These two formats are the starting point for the
architecture and instruction selection process. The BLIF
description is converted to VHDL, and can be immedi-
ately synthesized. In total, our system contains two sys-
tem-level notations (graphical and textual statechart
representation), three levels of representation for software
(C code, assembler code, and microinstructions), and three
formats to represent hardware (PSCP macro blocks, sche-
matics, and VHDL).

3  The PSCP Architecture

3.1  Overview

The main blocks of the PSCP architecture are the
SLA and the CR, one or more Transition Execution Pro-
cessors (TEPs), the Transition Address Table, an overall
scheduler, TEP program memory, TEP local memory,
main memory, condition caches, and the event/condition
bus architecture. An overview of the architecture is given
in Fig. 1. The execution of the PSCP is controlled by the
scheduler, which enables the SLA at the beginning of a
configuration cycle. The SLA generates the addresses of
the transitions to be executed according to the statechart
description. The scheduler copies the contents of the con-
dition part of the CR into the local condition caches, and
assigns the execution of the individual transitions to the

available TEPs employing a round-robin protocol. Thu
depending on the number of TEPs, several transitions c
be executed in parallel. The TEP receives the trigger s
nal of the scheduler, picks up a transition address, and e
cutes the corresponding instruction stream. At the end o
transition execution, the scheduler copies the conditi
cache back to the CR. Transitions are scheduled until
Transition Address Table is empty. The TEPs may gen
ate new events in the CR, and alter the contents of th
condition caches, thus generating a new configuratio
The scheduler then enables the SLA to begin the next c
figuration cycle, at which time the new external events a
sampled into the CR.

3.2  TEP Architecture

The TEP has a modular and scalable architectu
The basis is a core of elements and a basic instruction
that are necessary for a minimal functional microcontro
ler. A top-level view of the TEP architecture is shown i
Fig. 3. It consists of on-chip RAM, a calculation unit with
two registers (an accumulator and a second operand re
ter) and an ALU. In the basic TEP, the databus is 8 b
wide and the instruction format has a width of 16 bit. Th
instruction set includes load and store instructions, ba
arithmetic and logic instructions, shift instructions, jum
instructions, and port instructions. Further operations re
the transition registers, perform calls to the transition ro
tines, and communicate with the SLA.

To support the execution of statechart models, t
TEP has ports for events and conditions, and operations
alter the condition and event registers of the SLA. Furthe
there are ports for external RAM and for the progra
memory. To increase flexibility, the TEP has a Harvar
architecture [11]. Data-port operations always move

basicstate Errstate {
  transition {
    target Idle1;
    label "INIT or ALLRESET/InitializeAll()"
  }
}
andstate Operation {
  contains DataPreparation, ReachPosition;
  transition {
    target Idle1;
    label "INIT or ALLRESET/InitializeAll()";
  }
  transition {
    target ErrState;
    label "ERROR/Stop()";
  }
}
orstate DataPreparation {
  contains OpcodeReady, EmptyBuf, Bounds, NoData;
  default OpcodeReady;
}

Figure 2a: Textual statechart format

enum ECD {Event, Condition, Data};
enum Encoding {Onehot,Binary};
enum PortDir {Input,Output,Bidirectional};
typedef struct port {
  ECD          Type;
  int:8        Width;
  int:8        Address;
  PortDir      Direction;
} Port;
typedef struct ec {
  ECD           Type;
  int:4         Size;
  int:8         Representation;
  int:4         PositionInPort;
  Port          p;
  int:32        TimeConstraint;
 } EventCondition;

Port PE0={Event,1,0700,Output};
Port CE0={Condition,1,0712,Bidirectional};
Port Buffer = {Data,8,0717,Bidirectional};
EventCondition X_PULSE={Event,1,B1,0,PE0,400};

Figure 2b: Intermediate C code
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complete data word. Conditions and Events vary in size,
and need not be uniform for a single application. Every
condition or event has a unique address. The implementa-
tion of the port architecture, and the port addresses, are
generated from the intermediate C description of the appli-
cation (Fig. 2b).

The control unit of the TEP is implemented in a
microprogrammed fashion [11]. Microprogrammed con-
trollers have certain advantages over hardwired control-
lers: They have a regular structure with medium
complexity, and facilitate changes and extensions to the
instruction set. On the negative side, a microprogrammed
design is slower compared to random logic. In the area of
ASIPs, where extensibility is more important than high
clock speeds, microprogramming is the technique of
choice to design control units [8][9].

Each instruction of the TEP is represented by a micropro-
gram containing a sequence of microinstructions. Every
microinstruction defines a set of datapath control signals
that are asserted in a single state. The required number of
control signals determines the bitwidth of the microin-
structions. To reduce the bitwidth, signals are encoded,

taking advantage of the fact that not all control signals a
used by every microinstruction. In the basic TEP, microin
structions are 16 bits wide. The first eight bits represe
the control signals, and the other eight bit indicate th
address of the next microinstruction. The eight control b
are further divided into 3 bits to denote the group of co
trol signals, and 5 bits to encode the control signals. Cu
rently, there are five groups, which distinguish th
different types of microinstructions: ALU instructions
address bus instructions, jump instructions, and a group
instructions that influence exactly one control signa
Table 1 summarizes the format of microinstructions.

3.3  PSCP Modularity

A primary design goal of the PSCP has been ea
extensibility and scalability. This holds for the statechar
related aspects as well as for the processor-related asp
of the architecture. The port architecture, the conditio
event buses, the SLA, the configuration register and t
transition address logic are all variable in size. The gene
tion of these entities does not depend on any special pr
erties of the chart a particular PSCP version was deriv
from, except for obvious hardware limits such as the num
ber of available pins.

The TEP of an application is derived from a library o
elements consisting of hardware building blocks and as
ciated microinstruction sequences. The main library e
ments are calculation units of varying size an
functionality. There are units with or without associate
register files, and units with or without shifting capabili
ties. Several styles of ALUs, which are a subblock of th
calculation unit, are available. The library also contain
several storage alternatives: Fast, but more expensive r
isters, moderately fast and moderately expensive inter
RAM, and slower, but cheaper external RAM. Simpl
components such as shifters and registers can be comb
to custom operations, which are derived from the asse
bler code. These instructions execute within one clo
cycle. Care must be taken that such instructions do n
become the critical paths inside the TEP. This puts a lim
on the size of the expressions for which custom instru
tions may be generated. Additional library elements a
available to optimize control structures. Finally, TEPs ca
be replicated to form PSCP versions with several proce
ing elements in the style of a MIMD machine. The pro
cessing elements share the event, condition, and d
buses, and the port architecture. Once a particular PS
version has been fixed, the associated microprogra
decoder can be synthesized from the combination of
microinstruction sequences involved.

Symbolic Encoding

arithmetic 001 01x00

logical 001 000xx

shift 010 0xxxx

single signals 011 xxxxx

address bus 100 0xxxx

jump, branch 101 0xxxx

Table 1: Microcode format

IN

OUT

RAM

µPrg
Mem

Dec

Address
Logic

PC Instruction
Memory

Reg

Acc M/D

ALU

DATABUS

Calculation Unit

Microprogrammed
Controller

Control
Signals

Figure 3: TEP Architecture
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4  Timing validation and instruction selection

Previous researchers have noted that the validation of
statecharts, which amounts to reachability analysis, is NP-
complete [4], even for basic statecharts. Extended state-
charts are at least as difficult to analyze as basic state-
charts, because of their additional data dependencies.
Although it is conceivable to extend existing state explora-
tion techniques for FSMs to statecharts, we are not aware
of any published results. Therefore, we have developed a
heuristic algorithm that only partially evaluates chart con-
figurations. Consider Fig. 4, which depicts a part of the
statecharts of the example presented in the next section
(Fig. 5, Fig. 6). The tree is augmented by the chart´s tran-
sitions, resulting in a directed graph. We add timing con-
straints in the form of arrival periods of external events, in
this case “DATA_VALID“, which occurs every 1500
cycles of a reference clock. A perfect algorithm would
have to make sure that a DATA_VALID event can be con-
sumed within that time frame from every possible config-
uration the chart may attain, thus requiring reachability
analysis. In practice, however, designers write charts in a
modular fashion instead of producing “spaghetti charts“.
Therefore, our algorithm localizes the problem by first
searching for every state that consumes the desired event
in the chart. From there, a depth-first search [13] is started
that tries to find event cycles in the graph. An event cycle
is a path between two states whose trigger sets both con-
tain the desired event. The result may either be a simple
path or a cycle in the graph. The length of an event cycle is
defined as the combined length of the transitions in the
path. The algorithm must take into account that some tran-
sitions that are explored will lead to parallel states. Fol-

lowing every parallel state would lead to combinatoria
explosion. Therefore, whenever a parallel substate must
explored, an upper bound is computed for its parallel si
lings. In Fig. 4, for every step the algorithm takes in th
“DataPreparation“ state, the upper bound of its paral
sibling, in that case 300 cycles, has to be added. The up
bound for a parallel sibling is computed recursively by tra
versing its associated subtree: At an OR-state, the ma
mum length transition of this node´s children is compute
At an AND-state, the result is the sum of the length of th
node´s children. If possible, the transition lengths a
derived from the assembler code of their associated ro
tines, otherwise explicit timing constraints must be spec
fied. The quality of the upper bounds can be improved b
careful specification of timing requirements. As a resu
the algorithm discovers a list of event cycles, which a
compared with the timing requirements of this event.

If a violation for an event cycle is detected, improve
ments are applied in increasing order of difficulty to th
transitions in question. The optimization steps are pe
formed on a dataflow representation of the micropr
grams. First, a peephole optimization step remov
redundant jumps from the microprogram sequences. Th
the type of storage elements and their associated Lo

DATA_VALID
(1500)

Maximum: 300

Maximum: 275DATA_VALID
(1500)

DATA_VALID
(1500)

Assembly
OR

Off Operating
AND

Idle Errstate

DataPreparation
OR

NoDataOpReady
Bounds
ANDEmpty

Figure 4: Partial statechart graph
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YEnd2
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Y_STEPS/
SetTrue(YFINISH)
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Figure 5: Motor control statechart
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GetByte()

ReachPosition

@GRAB_RELEASE

DataPreparation

not (X_PULSE or Y_PULSE)
/PhiParameters(PhiParams, NewPhi,OldPhi)

@Bounds

not (X_PULSE or
Y_PULSE)

NoData

EmptyBuf
[DATA_VALID]/
GetByte()

INIT or ALLRESET/
InitializeAll() ErrState

ERROR/Stop()

INIT or ALLRESET/
InitializeAll()

[MOVEMENT]
[XFINISH and YFINISH
 and PHIFINISH]

END_MOVE

@MoveX @MoveY

@MOVE_PHI

OpcodeReady

Idle2

[DATA_VALID]/
GetByte()

END_DATA

Figure 6: Top-level statechart



m/
ad
he
5.
lse

in a
ce
to
an
00
te

n
le

n
a

-
4.

s

Store instructions are changed from external to internal to
registers recomputing the timing values for each step.
After the simple optimizations, pattern matching is used:
If, e.g., a pattern of the form “if ( a == b ) ... else ...” is
detected, a calculation unit with an additional comparator
is inserted; if patterns of the form x = -x aredetected, an
ALU capable of performing two´s complement is inserted.
Thus, a number of expressions and control structures can
be optimized. The next level are custom instructions for
arithmetic expressions found in the transition routines.
Complex expressions are broken up into smaller ones not
to introduce long critical paths in the design. The last
resort is the addition of more TEPs, but this has repercus-
sions on the design of the SLA in the application, because
of possible bus contention. Therefore, designers must indi-
cate which transition routines should be mutually exclu-
sive. Then, additional decode logic can be generated so
that mutually exclusive routines are not scheduled in par-
allel. The final set of selected library elements for a PSCP
version determines the set of microinstructions needed for
the application. The specific microprogram decoder for
this application can therefore be easily synthesized.

5  Example and results

To demonstrate the benefits of our approach, we
modeled the controller of a pickup head for the placement
of SMD components on a PCB. The head is part of an
automatic SMD assembly systems. An assembly system
applies soldering paste to the PCB, places the components,
and then heats the board to create the desired electrical
connections. A typical assembly machine contains dozens
of microcontrollers. Many of them, such as the pickup
head controller, drive stepper motors. In our example, four
motors have to be controlled that move the head in the x,
y, z, andϕ coordinates (Fig. 7). The X and Y motors oper-
ate with a maximum step frequency of 50kHz, the Z andφ
motors with 9kHz. One step of the X, Y, and Z motors
corresponds to 0.025mm, one step of theφ motor leads to
an 0.1° rotation. The maximum velocity of the X and Y

motors are 1.25m/sec, their maximum acceleration is 10
sec2. The maximum x and y distance of an assembly he
movement is 1m in each direction. The statechart for t
head-positioning part of the application is shown in Fig.
The motors are set in motion by counters that issue a pu
on zero. The Z andφ motors move uniformly, while the X
and Y motors have to be accelerated and decelerated
precise way, because of inertia. For a 15MHz referen
clock, this leads to timing requirements of 300 cycles
update the X and Y counters. Further, the controller c
receive commands from a central controller every 15
cycles (Table 2). The top-level chart of the comple
application is shown in Fig. 6.

The event cycles detected by the timing validatio
algorithm are depicted in Table 3. They indicate a possib
timing violation for the first three timing constraints of
Table 2. Iterative improvement of this example led to a
architecture with two TEPs, calculation units with extr
multiply/division capability, a 16 bit wide data bus, and
additional registers. The solution fulfils all timing require
ments. Timing and area results are summarized in Table
The result fits on a single Xilinx® XC4025 FPGA, which
contains 1024 CLBs [12]. The floorplan of the result i
shown in Fig. 8.

Y ϕ

X

Z

Component
trays

Figure 7: SMD pickup-head

Event Cycles

DATA_VALID 1500

X_PULSE 300

Y_PULSE 300

PHI_PULSE 1600

Table 2: Timing Constraints

Cycle Length

{Idle1, ReachPosition, Idle1} 235

{OpReady, OpReady} 747

{Idle1, OpReady} 105

{OpReady, EmptyBuf, Idle1} 772

{OpReady, EmptyBuf,
Bounds, Idle1}

1414

{OpReady, EmptyBuf,
Bounds, NoData}

2041

{NoData, OpReady} 747

{NoData, Idle1} 130

{NoData, ErrState, Idle1} 180

{RunX, RunX} 878

{RunY, RunY} 878

{RunPhi, RunPhi} 878

Table 3: Event Cycles
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6  Conclusion and future work

In this paper, a flexible ASIP architecture was pre-
sented, which is suitable for the implementation of reac-
tive systems. The architecture contains special elements
for the efficient execution of statechart models. It is scal-
able with respect to the number of processing elements,
and allows the generation of MIMD style machines. A
heuristic algorithm for the static analysis of extended
statecharts was presented. The benefits of the timing anal-
ysis and instruction selection methods were demonstrated
with an industrial example.

Future work will include pipelined versions of the PSCP
architecture, as well as the addition of timers and interrupt
capabilities. Further, we will improve the code generation
and instruction set selection process by refining and
extending the patterns used by the code generator.
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Architecture Area
Crit. Path

X, Y
Crit. Path

DATA_VALID

1 minimal TEP 224 > 1000 > 3000
16bit M/D TEP,
unoptimized code

421 878 2041

16bit M/D TEP,
optimized code

421 524 1317

2 16bit M/D TEP,
unoptimized code

773 469 1081

2 16bit M/D TEP,
optimized code

773 282 699

Table 4: Area and Timing Results
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Figure 8: PSCP floorplan
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