
get
s-
of
is
ro-
8].
t
ign

us-
ai-
f
c-
-

e
s

ns
P
r-
ut

r-
-
p

-
ve
et

ial
s,

ects
e
m,
a-
r-

ath
g
lt
by
PSCP: A Scalable Parallel ASIP Architecture for Reactive Systems

Andreas Pyttel, Alexander Sedlmeier, Christian Veith
Siemens AG, Corporate Technology, ZT ME 5

D-81730 Munich, Germany
{Andreas.Pyttel|Alexander.Sedlmeier|Christian.Veith}@mchp.siemens.de

Abstract
We describe a Codesign approach based on a parallel

and scalable ASIP architecture, which is suitable for the
implementation of reactive systems. The specification lan-
guage of our approach is extended statecharts. Our ASIP
architecture is scalable with respect to the number of pro-
cessing elements as well as parameters such as bus widths
and register file sizes. Instruction sets are generated from
a library of components covering a spectrum of space/time
trade-off alternatives. Our approach features a heuristic
static timing analysis step for statecharts. An industrial ex-
ample requiring the real-time control of several stepper
motors illustrates the benefits of our approach.

1 Introduction

We present a novel approach for the codesign of
reactive systems. It employs a scalable ASIP architecture
called PSCP (Parallel StateChart Processor), and uses a
static timing validation method by exploiting timing con-
straints of statechart specifications. The PSCP is designed
to contain a variable number of process elements. The key
to our approach is to fine-tune the architectural parameters
and the instruction set generated for a particular applica-
tion to satisfy all timing constraints.

The essence of reactive systems design has always
been to find optimal specification languages, design
styles, and analysis methods to guarantee the desired tim-
ing properties of an application. In industrial applications,
the timing validation methods for reactive Hardware/Soft-
ware systems are almost always a combination of exten-
sive testing and simulation. Formal approaches to timing
and scheduling validation are mostly based on algebraic
notations such as Hoare’s CSP [17], Milner’s CCS [16], or
temporal logic. These notations usually require the use of
theorem provers. Other approaches include timed or sto-
chastic Petri nets [14], which – like Statecharts – are diffi-
cult to analyze, but are less suitable for the specification of
complex systems, because of their non-hierarchical nature.

Most hardware/software codesign approaches tar
the performance optimization of hardware/software sy
tems with additional constraints such as minimization
area or power dissipation [7]. Usually, a specification
partitioned into a set of system components such as p
cessors, code and special purpose hardware [1
Recently, the ASIP (Application Specific Instruction se
Processor) paradigm has opened new ways for the des
of reactive systems. ASIPs are microprocessors with c
tomized architectures and instruction sets, which are t
lored to the execution of only a certain class o
applications. ASIPs usually feature microcoded archite
tures [8][10], because of their added flexibility over hard
wired control. Being useful only for the execution of “a
few” programs, it becomes imperative to automate th
production of compilers for ASIPs, which are known a
retargetable compilers [8][15] (RCs). As most ASIP
research efforts are directed towards DSP applicatio
[9][10], RCs use pattern matching techniques or MIL
algorithms [6] to generate instruction sets and micro-ope
ations for pipelined data paths aiming at high throughp
rates.

Our approach is different in that we aim at the gene
ation of a custom microcontroller optimized for the han
dling of many simultaneous external events. We give u
the limited programmability of existing ASIPs, and opti
mize hardware and program for one particular reacti
application. This eliminates the need for an RC. Our targ
platform is based on FPGAs [12], which requires spec
consideration of the limited available hardware resource
and of the attainable system speeds. Our approach det
the critical paths of an application, and applies iterativ
improvements to the code pieces representing the
thereby altering the hardware architecture. Most optimiz
tions occur on the microinstruction level. The assemble
level instruction set is mostly used to analyze the data-p
requirements of an application, and to compute timin
estimates. Usually, performance optimizations will resu
in increased hardware resources, which is compensated

nts.
iv-

in
es
n-

the
m
n
der

of

e
di-

or
nd
r-
art
n
s-
c-
ly

it
ge
al
le

tion
art
ec-
re
la-
but
removing unnecessary hardware elements, instructions,
and microoperations. In section 2, we describe the nota-
tions used in our Codesign system, and briefly review the
synthesis of extended statecharts. Section 3 contains a
description of our new ASIP architecture. In section 4, we
describe our proposed timing validation method, including
instruction and architecture selection. In section 5, we
present the results we obtained for an industrial applica-
tion. Section 6 summarizes, and gives an outlook on future
research.

2 Extended Statechart Synthesis

Statecharts have been one of the premier specifica-
tion formalisms for reactive systems for over ten years [2],
because of their concise, comprehensive graphical nota-
tion. The many features of statecharts include parallel and
hierarchical states, and transitions between complex
states. However, these unique features also make them dif-
ficult to analyze and implement in a hardware/software
system. The basic implementation approach, as described
in [1], extracts the state and transition information of a
chart, and generates a statechart Logic Array (SLA),
which implements the semantics of the chart, and acts as a
scheduler for the transitions. The SLA concept is illus-
trated in Fig. 1. The efficient state encoding of a chart
involves the generation of exclusivity sets, which was first
described in [5]. The state information, together with the
encoded events and conditions, forms the configuration
register (CR) of the chart (Fig. 1). Its content describes the
current state of an application. In [1], the statechart for-
malism was augmented by external ports for events, con-
ditions, and data. These additions are necessary for
hardware/software implementations of statecharts,

because a system must be able to react to external eve
The external ports (over which external events are del
ered) are connected to event and condition buses, which
turn are connected to the CR (Fig. 1). The SLA execut
transitions based on the contents of the CR. The SLA ge
erates four sets of outputs: It resets the event parts of
CR (events are only available during a single syste
cycle), it produces a set of signals for the Transitio
Address Table, and updates the state part of the CR un
the control of the guard signals G0..Gm (Fig. 1) The guard
signals are needed to ensure the correct execution
statecharts [1].

Our new ASIP design system not only uses th
graphical language of statecharts, but also introduces ad
tional notations. We define a textual representation f
statecharts, which is the starting point of the hardware a
software generation process. (Fig. 2a). It is straightfo
ward to generate the textual representation from statech
pictures. We also introduce C as notation for the actio
parts of transition labels. Thus, function calls are now po
sible during a transition. Functions can call other fun
tions, but recursion is not permitted. The syntax slight
deviates from C in allowing declarations of the form
“int:16” and constants such as “B:001011” to specify b
widths of data elements, events, or ports. Careful ran
specification helps the ASIP generator to select an optim
architecture. A second aspect of the C notation is its ro
as an intermediate format between the statechart nota
and the assembler-level representation. Fig. 2b shows p
of the C code generated for the example presented in s
tion 5. It contains part of a preamble of data types that a
always part of the generated C code, plus some port dec
rations. These code pieces are not actually executed,

Statechart
Logic Array

(SLA)

Cond. Events States

Transition
Address
Table

Condition
Ports

Event Bus

Condition Bus

T0:Tn

Cond. Bus
Interface

Ev. Bus
Interface

Event
Ports

E0:Ek
S0:Sl

G0:GmS0:SlE0:EkC0:Cj

Configuration
Register

Data Bus

Data Bus
Interface

Data
Ports

Main Memory

Cond. Cache

Program
MemoryScheduling Unit

Local
Memory

Transition
Execution
Processor

(TEP)

Cond. Cache

Program
Memory

Local
Memory

Transition
Execution
Processor

(TEP)

Figure 1: PSCP Architecture Overview

s,
an
ig-
xe-
f a
on
the
er-
eir
n.

on-
re

re.
set
l-

n

gis-
it
e
sic
p
ad
u-

he
to
r,

m
d
a

used by the compiler to generate the hardware port archi-
tecture, and instruction sequences to access the ports. In
the final implementation, a port is represented by an
address. However, the C code also contains the action rou-
tines written by system designers, which become the exe-
cutable modules of the final implementation. The C code
is generated by a frontend called the Statechart Structural
Analyzer, which also generates a BLIF description of the
SLA. These two formats are the starting point for the
architecture and instruction selection process. The BLIF
description is converted to VHDL, and can be immedi-
ately synthesized. In total, our system contains two sys-
tem-level notations (graphical and textual statechart
representation), three levels of representation for software
(C code, assembler code, and microinstructions), and three
formats to represent hardware (PSCP macro blocks, sche-
matics, and VHDL).

3 The PSCP Architecture

3.1 Overview

The main blocks of the PSCP architecture are the
SLA and the CR, one or more Transition Execution Pro-
cessors (TEPs), the Transition Address Table, an overall
scheduler, TEP program memory, TEP local memory,
main memory, condition caches, and the event/condition
bus architecture. An overview of the architecture is given
in Fig. 1. The execution of the PSCP is controlled by the
scheduler, which enables the SLA at the beginning of a
configuration cycle. The SLA generates the addresses of
the transitions to be executed according to the statechart
description. The scheduler copies the contents of the con-
dition part of the CR into the local condition caches, and
assigns the execution of the individual transitions to the

available TEPs employing a round-robin protocol. Thu
depending on the number of TEPs, several transitions c
be executed in parallel. The TEP receives the trigger s
nal of the scheduler, picks up a transition address, and e
cutes the corresponding instruction stream. At the end o
transition execution, the scheduler copies the conditi
cache back to the CR. Transitions are scheduled until
Transition Address Table is empty. The TEPs may gen
ate new events in the CR, and alter the contents of th
condition caches, thus generating a new configuratio
The scheduler then enables the SLA to begin the next c
figuration cycle, at which time the new external events a
sampled into the CR.

3.2 TEP Architecture

The TEP has a modular and scalable architectu
The basis is a core of elements and a basic instruction
that are necessary for a minimal functional microcontro
ler. A top-level view of the TEP architecture is shown i
Fig. 3. It consists of on-chip RAM, a calculation unit with
two registers (an accumulator and a second operand re
ter) and an ALU. In the basic TEP, the databus is 8 b
wide and the instruction format has a width of 16 bit. Th
instruction set includes load and store instructions, ba
arithmetic and logic instructions, shift instructions, jum
instructions, and port instructions. Further operations re
the transition registers, perform calls to the transition ro
tines, and communicate with the SLA.

To support the execution of statechart models, t
TEP has ports for events and conditions, and operations
alter the condition and event registers of the SLA. Furthe
there are ports for external RAM and for the progra
memory. To increase flexibility, the TEP has a Harvar
architecture [11]. Data-port operations always move

basicstate Errstate {
 transition {
 target Idle1;
 label "INIT or ALLRESET/InitializeAll()"
 }
}
andstate Operation {
 contains DataPreparation, ReachPosition;
 transition {
 target Idle1;
 label "INIT or ALLRESET/InitializeAll()";
 }
 transition {
 target ErrState;
 label "ERROR/Stop()";
 }
}
orstate DataPreparation {
 contains OpcodeReady, EmptyBuf, Bounds, NoData;
 default OpcodeReady;
}

Figure 2a: Textual statechart format

enum ECD {Event, Condition, Data};
enum Encoding {Onehot,Binary};
enum PortDir {Input,Output,Bidirectional};
typedef struct port {
 ECD Type;
 int:8 Width;
 int:8 Address;
 PortDir Direction;
} Port;
typedef struct ec {
 ECD Type;
 int:4 Size;
 int:8 Representation;
 int:4 PositionInPort;
 Port p;
 int:32 TimeConstraint;
 } EventCondition;

Port PE0={Event,1,0700,Output};
Port CE0={Condition,1,0712,Bidirectional};
Port Buffer = {Data,8,0717,Bidirectional};
EventCondition X_PULSE={Event,1,B1,0,PE0,400};

Figure 2b: Intermediate C code

re
-

nt
e

its
n-
r-

e
,
of
l.

sy
t-
ects
n/
he
ra-
op-
ed
-

f
so-
le-
d
d
-
e
s
eg-
nal
e
ined
m-
ck
ot
it
c-
re
n

ss-
-
ata
CP
m

all
complete data word. Conditions and Events vary in size,
and need not be uniform for a single application. Every
condition or event has a unique address. The implementa-
tion of the port architecture, and the port addresses, are
generated from the intermediate C description of the appli-
cation (Fig. 2b).

The control unit of the TEP is implemented in a
microprogrammed fashion [11]. Microprogrammed con-
trollers have certain advantages over hardwired control-
lers: They have a regular structure with medium
complexity, and facilitate changes and extensions to the
instruction set. On the negative side, a microprogrammed
design is slower compared to random logic. In the area of
ASIPs, where extensibility is more important than high
clock speeds, microprogramming is the technique of
choice to design control units [8][9].

Each instruction of the TEP is represented by a micropro-
gram containing a sequence of microinstructions. Every
microinstruction defines a set of datapath control signals
that are asserted in a single state. The required number of
control signals determines the bitwidth of the microin-
structions. To reduce the bitwidth, signals are encoded,

taking advantage of the fact that not all control signals a
used by every microinstruction. In the basic TEP, microin
structions are 16 bits wide. The first eight bits represe
the control signals, and the other eight bit indicate th
address of the next microinstruction. The eight control b
are further divided into 3 bits to denote the group of co
trol signals, and 5 bits to encode the control signals. Cu
rently, there are five groups, which distinguish th
different types of microinstructions: ALU instructions
address bus instructions, jump instructions, and a group
instructions that influence exactly one control signa
Table 1 summarizes the format of microinstructions.

3.3 PSCP Modularity

A primary design goal of the PSCP has been ea
extensibility and scalability. This holds for the statechar
related aspects as well as for the processor-related asp
of the architecture. The port architecture, the conditio
event buses, the SLA, the configuration register and t
transition address logic are all variable in size. The gene
tion of these entities does not depend on any special pr
erties of the chart a particular PSCP version was deriv
from, except for obvious hardware limits such as the num
ber of available pins.

The TEP of an application is derived from a library o
elements consisting of hardware building blocks and as
ciated microinstruction sequences. The main library e
ments are calculation units of varying size an
functionality. There are units with or without associate
register files, and units with or without shifting capabili
ties. Several styles of ALUs, which are a subblock of th
calculation unit, are available. The library also contain
several storage alternatives: Fast, but more expensive r
isters, moderately fast and moderately expensive inter
RAM, and slower, but cheaper external RAM. Simpl
components such as shifters and registers can be comb
to custom operations, which are derived from the asse
bler code. These instructions execute within one clo
cycle. Care must be taken that such instructions do n
become the critical paths inside the TEP. This puts a lim
on the size of the expressions for which custom instru
tions may be generated. Additional library elements a
available to optimize control structures. Finally, TEPs ca
be replicated to form PSCP versions with several proce
ing elements in the style of a MIMD machine. The pro
cessing elements share the event, condition, and d
buses, and the port architecture. Once a particular PS
version has been fixed, the associated microprogra
decoder can be synthesized from the combination of
microinstruction sequences involved.

Symbolic Encoding

arithmetic 001 01x00

logical 001 000xx

shift 010 0xxxx

single signals 011 xxxxx

address bus 100 0xxxx

jump, branch 101 0xxxx

Table 1: Microcode format

IN

OUT

RAM

µPrg
Mem

Dec

Address
Logic

PC Instruction
Memory

Reg

Acc M/D

ALU

DATABUS

Calculation Unit

Microprogrammed
Controller

Control
Signals

Figure 3: TEP Architecture

l
be

b-
e
lel
per
-
xi-
d.
is
re
u-
i-
y

lt,
re

-
e
r-

o-
es
en,
ad/
4 Timing validation and instruction selection

Previous researchers have noted that the validation of
statecharts, which amounts to reachability analysis, is NP-
complete [4], even for basic statecharts. Extended state-
charts are at least as difficult to analyze as basic state-
charts, because of their additional data dependencies.
Although it is conceivable to extend existing state explora-
tion techniques for FSMs to statecharts, we are not aware
of any published results. Therefore, we have developed a
heuristic algorithm that only partially evaluates chart con-
figurations. Consider Fig. 4, which depicts a part of the
statecharts of the example presented in the next section
(Fig. 5, Fig. 6). The tree is augmented by the chart´s tran-
sitions, resulting in a directed graph. We add timing con-
straints in the form of arrival periods of external events, in
this case “DATA_VALID“, which occurs every 1500
cycles of a reference clock. A perfect algorithm would
have to make sure that a DATA_VALID event can be con-
sumed within that time frame from every possible config-
uration the chart may attain, thus requiring reachability
analysis. In practice, however, designers write charts in a
modular fashion instead of producing “spaghetti charts“.
Therefore, our algorithm localizes the problem by first
searching for every state that consumes the desired event
in the chart. From there, a depth-first search [13] is started
that tries to find event cycles in the graph. An event cycle
is a path between two states whose trigger sets both con-
tain the desired event. The result may either be a simple
path or a cycle in the graph. The length of an event cycle is
defined as the combined length of the transitions in the
path. The algorithm must take into account that some tran-
sitions that are explored will lead to parallel states. Fol-

lowing every parallel state would lead to combinatoria
explosion. Therefore, whenever a parallel substate must
explored, an upper bound is computed for its parallel si
lings. In Fig. 4, for every step the algorithm takes in th
“DataPreparation“ state, the upper bound of its paral
sibling, in that case 300 cycles, has to be added. The up
bound for a parallel sibling is computed recursively by tra
versing its associated subtree: At an OR-state, the ma
mum length transition of this node´s children is compute
At an AND-state, the result is the sum of the length of th
node´s children. If possible, the transition lengths a
derived from the assembler code of their associated ro
tines, otherwise explicit timing constraints must be spec
fied. The quality of the upper bounds can be improved b
careful specification of timing requirements. As a resu
the algorithm discovers a list of event cycles, which a
compared with the timing requirements of this event.

If a violation for an event cycle is detected, improve
ments are applied in increasing order of difficulty to th
transitions in question. The optimization steps are pe
formed on a dataflow representation of the micropr
grams. First, a peephole optimization step remov
redundant jumps from the microprogram sequences. Th
the type of storage elements and their associated Lo

DATA_VALID
(1500)

Maximum: 300

Maximum: 275DATA_VALID
(1500)

DATA_VALID
(1500)

Assembly
OR

Off Operating
AND

Idle Errstate

DataPreparation
OR

NoDataOpReady
Bounds
ANDEmpty

Figure 4: Partial statechart graph

C

@GRAB_RELEASE

/StartMotor(MX, XParams)

XStart2

XEnd2

[MOVEMENT]

RunX
X_PULSE/
DeltaT(MX)

X_STEPS/
SetTrue(XFINISH)

/StartMotor(MY, YParams)

YStart2

YEnd2

RunY

Y_STEPS/
SetTrue(YFINISH)

Y_PULSE/
DeltaT(MY)

PhiStart
RunPhi

/StartMotor(MPhi, PhiParams)
PhiEnd

PHI_STEPS/
SetTrue(PHIFINISH)

[XFINISH and YFINISH
 and PHIFINISH]

END_MOVE

MoveX MoveY

MOVE_PHI

Idle2

PHI_PULSE/
DeltaT(MPHI)

Figure 5: Motor control statechart

Idle1

OFF

POWER [DATA_VALID]/
GetByte()

ReachPosition

@GRAB_RELEASE

DataPreparation

not (X_PULSE or Y_PULSE)
/PhiParameters(PhiParams, NewPhi,OldPhi)

@Bounds

not (X_PULSE or
Y_PULSE)

NoData

EmptyBuf
[DATA_VALID]/
GetByte()

INIT or ALLRESET/
InitializeAll() ErrState

ERROR/Stop()

INIT or ALLRESET/
InitializeAll()

[MOVEMENT]
[XFINISH and YFINISH
 and PHIFINISH]

END_MOVE

@MoveX @MoveY

@MOVE_PHI

OpcodeReady

Idle2

[DATA_VALID]/
GetByte()

END_DATA

Figure 6: Top-level statechart

m/
ad
he
5.
lse

in a
ce
to
an
00
te

n
le

n
a

-
4.

s

Store instructions are changed from external to internal to
registers recomputing the timing values for each step.
After the simple optimizations, pattern matching is used:
If, e.g., a pattern of the form “if (a == b) ... else ...” is
detected, a calculation unit with an additional comparator
is inserted; if patterns of the form x = -x aredetected, an
ALU capable of performing two´s complement is inserted.
Thus, a number of expressions and control structures can
be optimized. The next level are custom instructions for
arithmetic expressions found in the transition routines.
Complex expressions are broken up into smaller ones not
to introduce long critical paths in the design. The last
resort is the addition of more TEPs, but this has repercus-
sions on the design of the SLA in the application, because
of possible bus contention. Therefore, designers must indi-
cate which transition routines should be mutually exclu-
sive. Then, additional decode logic can be generated so
that mutually exclusive routines are not scheduled in par-
allel. The final set of selected library elements for a PSCP
version determines the set of microinstructions needed for
the application. The specific microprogram decoder for
this application can therefore be easily synthesized.

5 Example and results

To demonstrate the benefits of our approach, we
modeled the controller of a pickup head for the placement
of SMD components on a PCB. The head is part of an
automatic SMD assembly systems. An assembly system
applies soldering paste to the PCB, places the components,
and then heats the board to create the desired electrical
connections. A typical assembly machine contains dozens
of microcontrollers. Many of them, such as the pickup
head controller, drive stepper motors. In our example, four
motors have to be controlled that move the head in the x,
y, z, andϕ coordinates (Fig. 7). The X and Y motors oper-
ate with a maximum step frequency of 50kHz, the Z andφ
motors with 9kHz. One step of the X, Y, and Z motors
corresponds to 0.025mm, one step of theφ motor leads to
an 0.1° rotation. The maximum velocity of the X and Y

motors are 1.25m/sec, their maximum acceleration is 10
sec2. The maximum x and y distance of an assembly he
movement is 1m in each direction. The statechart for t
head-positioning part of the application is shown in Fig.
The motors are set in motion by counters that issue a pu
on zero. The Z andφ motors move uniformly, while the X
and Y motors have to be accelerated and decelerated
precise way, because of inertia. For a 15MHz referen
clock, this leads to timing requirements of 300 cycles
update the X and Y counters. Further, the controller c
receive commands from a central controller every 15
cycles (Table 2). The top-level chart of the comple
application is shown in Fig. 6.

The event cycles detected by the timing validatio
algorithm are depicted in Table 3. They indicate a possib
timing violation for the first three timing constraints of
Table 2. Iterative improvement of this example led to a
architecture with two TEPs, calculation units with extr
multiply/division capability, a 16 bit wide data bus, and
additional registers. The solution fulfils all timing require
ments. Timing and area results are summarized in Table
The result fits on a single Xilinx® XC4025 FPGA, which
contains 1024 CLBs [12]. The floorplan of the result i
shown in Fig. 8.

Y ϕ

X

Z

Component
trays

Figure 7: SMD pickup-head

Event Cycles

DATA_VALID 1500

X_PULSE 300

Y_PULSE 300

PHI_PULSE 1600

Table 2: Timing Constraints

Cycle Length

{Idle1, ReachPosition, Idle1} 235

{OpReady, OpReady} 747

{Idle1, OpReady} 105

{OpReady, EmptyBuf, Idle1} 772

{OpReady, EmptyBuf,
Bounds, Idle1}

1414

{OpReady, EmptyBuf,
Bounds, NoData}

2041

{NoData, OpReady} 747

{NoData, Idle1} 130

{NoData, ErrState, Idle1} 180

{RunX, RunX} 878

{RunY, RunY} 878

{RunPhi, RunPhi} 878

Table 3: Event Cycles

t

-

,

.

i.

e

c-
.

.

s

l.

n-
6 Conclusion and future work

In this paper, a flexible ASIP architecture was pre-
sented, which is suitable for the implementation of reac-
tive systems. The architecture contains special elements
for the efficient execution of statechart models. It is scal-
able with respect to the number of processing elements,
and allows the generation of MIMD style machines. A
heuristic algorithm for the static analysis of extended
statecharts was presented. The benefits of the timing anal-
ysis and instruction selection methods were demonstrated
with an industrial example.

Future work will include pipelined versions of the PSCP
architecture, as well as the addition of timers and interrupt
capabilities. Further, we will improve the code generation
and instruction set selection process by refining and
extending the patterns used by the code generator.

7 References

[1] K. Buchenrieder, A. Pyttel, Ch. Veith: Mapping Statechar
Models onto an FPGA-Based ASIP Architecture, in pro-
ceedings of EURO-DAC'96, 1996.

[2] D. Harel: Statecharts: A Visual Formalism for Complex
Systems. Sci. Comp. Prog., vol. 8, pp 231-274, 1987.

[3] N. Binh, M. Imai, A. Shiomi, A New HW/SW Partitioning
Algorithm for Synthesizing the Highest Performance Pipe
lined ASIPs with Multiple Identical FUs, in proceedings of
EURO-DAC'96, 1996.

[4] D. Drusinsky: On Synchronized Statecharts. PhD Thesis
Dept. of Comp. Sci., The Weizmann Inst. of Sci., 1988.

[5] D. Drusinsky-Yoresh: A State Assignment Procedure for
Single-Block Implementation of State-charts. IEEE Trans
on CAD, vol. 10, No 12, December 1991.

[6] A.Y. Alomari, M. Imai, J. Sato, N. Hikichi: An integer pro-
gramming approach to the instruction set selection prob-
lem, IEICE Trans. Fundam. Electr. Commun. Comput. Sc
(Japan), vol. E76-A, no. 10, p. 1849-57, Oct. 1993.

[7] D. Gajski, F. Vahid, J. Gong: A Binary-Constraint Search
Algorithm for Minimizing Hardware During Hardware-
Software partitioning, Proc. Euro-DAC, 1994.

[8] R. Leupers, P. Marwedel: Instruction set extraction from
programmable Structures, in proceedings of EURO-DAC
'94 with EURO-VHDL '94, p. 156-6.

[9] C. Liem, T. May, P. Paulin: Instruction set matching and
selection for DSP and ASIP code generation, Proc. of th
EDAC-ETC-EUROASIC, Paris, France, 1994, p. 31-37.

[10] J. Van Praet, G. Goossens, D. Lanneer, H. De Man: Instru
tion set definition and instruction selection for ASIPs, Proc
of the Seventh International Symposium on High-Level
Synthesis, p. 11-16, 1994.

[11] D. A. Patterson, J. L. Hennessy: Computer Organization
and Design, The Hardware / Software Interface, Morgan
Kaufmann Publishers, Inc., San Francisco, CA.

[12] Xilinx, Inc.: The Programmable Logic Data Book, San
Jose, CA, 1994

[13] R. Sedgewick: Algorithms in C++, Addison-Wesley, 1992

[14] J. Tsai, S. Yang, Y.-H. Chang: Timing Constraint Petri Net
and Their Application to Schedulability Analysis of Real-
Time System Specifications, IEEE Trans. Softw. Eng., vo
21, no 1, pp. 32-49.

[15] R. Leupers, P. Marwedel: Instruction set modeling for ASIP
code generation, Proc. Ninth Int. Conf. on VLSI Design,
IEEE Comp. Soc. Press, pp. 77-80, 1995.

[16] R. Milner: A Calculus of Communicating Systems, Lecture
Notes in Comp. Sci. 92, Springer, 1980.

[17] C. A. R. Hoare: Communicating Sequential Processes,
Prentice Hall, 1985.

[18] R. Ernst, J. Henkel, T. Benner: Hardware/Software Cosy
thesis for Microcontrollers, IEEE Des. & Test of Comput-
ers, Dec. 1993, pp 64-75.

Architecture Area
Crit. Path

X, Y
Crit. Path

DATA_VALID

1 minimal TEP 224 > 1000 > 3000
16bit M/D TEP,
unoptimized code

421 878 2041

16bit M/D TEP,
optimized code

421 524 1317

2 16bit M/D TEP,
unoptimized code

773 469 1081

2 16bit M/D TEP,
optimized code

773 282 699

Table 4: Area and Timing Results

12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

1
1
1
1
1
1
1
1
1

12
12
12
12
12

12
12

12
12

12
12

12
12

12
12
12
12
12

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
112

12
12

12
12
12

12
12
12

1
1
1

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12

1
1
1
1
1
1
1
1
1

12
12
12

1
1
1
1
1

12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12

1
1
1
1
1
1
1
1
1

123
123
123

123
123
123
123
123
123
123
123
123

123
123
123
123
123

123
123
123
123
123
123
123
123
123
123
123

12
12

123
123
123
123
123
123

123
123
123

123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123

123
123
123
123
123

123
123
123
123
123

123
123
123
123
123
123
123
123
123
123
123
123
123

123
123
123
123
123

123
123
123
123
123

123
123
123
123
123

12
12
12
12
12
12
12

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1

1
1
1
1
1

1
1
1
1
1
1
1

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1
1
1
1

12
12
12
12

1
1
1
1
1

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12

12
12
12
12
12
12
12

12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

1
1
1

12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12

1
1
1

12
12
12
12
12
12
12
12

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

123
123
123

123
123
123

123
123
123

123
123
123

123
123
123
123
123
123
123
123
123

123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123

123
123
123
123
123

123
123
123
123
123
123

123
123
123

123
123
123

123
123
123

123
123
123

123
123
123

12
12

123
123
123
123
123
123
123
123
123

12
12
12
12
12

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1

1
1
1

1
1
1

1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1
1
1

1
1
1
1

1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12

12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

1
1

12
12
12
12
12

12
12
12
12
12
12
12

1
1

12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12

1
1
1
1
1
1
1

12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12

12
12
12
12
12
12
12
12

12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1

12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12

12
12
12

12
12

12
12
12

123
123
123
123
123
123
123

123
123
123
123
123

123
123
123
123
123

123
123
123
123
123

123
123
123

123
123
123
123
123
123
123

123
123
123

123
123
123

123
123
123

12
12

123
123
123

123
123
123

123
123
123
123

123
123
123

12
12

123
123
123

123
123
123
123
123

123
123
123
123
123
123
123

12
12

123
123
123

123
123
123

123
123
123

123
123
123
123
123
123
123
123
123
123
123
123

1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1

1
1
1
1
1
1
1
1
1

12
12
12

12
12
12

12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12

12
12
12
12

12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1

12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12

1
1
1
1
1

12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12

12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1

12
12
12
12
12

12
12
12
12
12

12
12
12
12

1
1
1

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12

12
12
12

12
12

12
12
12

12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12
12
12
12
12
12
12

12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1
1

12
12
12
12
12

1
1

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12

1
1

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1
1

1
1
1

1
1
1

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1

12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12

12
12
12

12
12
12

1
1
1

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12

12
12
12

12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12

12
12
12
12
12
12
12
12
12

123
123
123

123
123
123
123
123

123
123
123
123
123

123
123
123
123

1
1
1
1
1

1
1
1
1
1

1
1
1
1

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12

1
1
1

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12

12
12
12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12

12
12
12
12
12

12
12
12

12
12
12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12

12
12
12

12
12
12
12
12

1
1
1
1
1

12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12

1
1

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12

12
12
12
12
12

12
12
12

12
12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12

12
12
12

12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12

12
12
12

1
1
1
1
1

12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12

1
1
1
1
1
1
1

12
12
12
12
12

1
1
1

12
12
12
12
12

1
1
1

12
12
12
12
12

1
1
1

1
1
1

1
1
1

1
1
1

1
1

12
12
12

1
1

12
12
12

12
12
12

12
12
12
12
12

12
12
12

1
1
1

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

12
12
12

1
1
1
1
1

12
12
12
12
12

12
12
12

12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12

12
12

12
12
12
12
12

12
12
12

12
12
12

12
12
12

1
1

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

1
1
1

12
12
12

12
12
12

1
1
1
1
1
1
1

12
12
12

12
12
12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12

12
12
12

12
12

12
12
12

12
12
12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

1
1
1

12
12
12

12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12

12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12

12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12

12
12
12
12
12

12
12
12

12
12
12

1
1

12
12
12

12
12
12

1
1
1
1
1

12
12
12

12
12
12

1
1
1

12
12
12
12
12
12
12
12
12

12
12
12

12
12

12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12
12
12

1
1
1

12
12
12

1
1

12
12
12

12
12
12
12
12

12
12
12

12
12

1
1

12
12
12
12
12
12
12
12
12
12
12

12
12
12

1
1

12
12
12

12
12
12
12
12

12
12
12

12
12
12

1
1
1

12
12

12
12
12

12
12
12

12
12
12

1
1

12
12
12

1
1
1

12
12
12
12
12

12
12
12

12
12
12
12

12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12

12
12
12

12
12
12
12

12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

123
123
123

123
123
123

12
12
12
12
12
12
12
12
12
12
12
12
12

12
12

123
123
123

123
123
123

123
123
123

12
12

12
12

123
123
123

12
12

123
123
123
123
123

123
123
123

123
123

123
123
123

12
12

123
123
123

123
123
123

123
123
123

123
123
123

123
123
123

12
12

123
123
123
123
123
123
123
123

123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

12
12
12

12
12
12

12
12

12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12

12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1
1

1
1
1

12
12
12
12

1
1
1
1
1
1
1

12
12
12
12
12

1
1
1

12
12
12
12
12
12
12
12

12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12

12
12

12
12

12
12

12
12
12
12
12
12
12
12

12
12
12
12
12
12
12

12
12
12
12

12
12
12

12
12
12

12
12
12
12

12
12
12

12
12
12
12
12
12
12

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1

12
12
12
12
12

12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

123
123
123

123
123
123

12
12
12

12
12

12
12
12
12

12
12

12
12

12
12

12
12

12
12
12
12
12
12
12
12

123
123
123
123

12
12
12
12
12

123
123
123
123
123

12
12
12

123
123
123
123
123

12
12
12
12
12
12
12
12
12
12
12
12

1
1
1

1
1
1

1
1
1
1
1
1
1

1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

12
12
12

12
12
12

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

12
12
12

12
12
12

1
1
1

12
12
12
12
12

12
12
12

12
12
12

1
1
1
1
1

12
12
12
12
12

1
1
1
1
1
1
1
1
1
1
1
1

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1

12
12
12
12
12

1
1
1
1
1

12
12
12

12
12
12

12
12
12
12
12

1
1
1

12
12
12
12
12

12
12
12

1
1
1
1
1

12
12
12
12
12

1
1
1

12
12
12
12
12

12
12
12

1
1
1
1
1
1
1
1
1
1
1
1
1
1

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12

12
12
12
12
12

12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12
12
12

12
12
12

12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12

123
123
123

123
123
123

12
12
12
12

12
12

123
123
123
123
123
123
123
123
123
123
123
123
123

12
12
12
12
12
12

123
123
123

123
123
123
123
123

12
12

12
12
12

123
123
123
123
123

12
12
12

123
123
123

12
12
12
12
12
12
12
12

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1

1
1
1
1
1

1
1
1

1
1
1
1
1
1
1
1

12
12
12

12
12
12

12
12
12
12
12
12
12
12
12

12
12

12
12
12

12
12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

1
1

1
1

1
1

1
1

1
1
1

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12

12
12

12
12
12

12
12

12
12
12
12
12

12
12

12
12
12

12
12

12
12

12
12
12
12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12
12
12
12
12

12
12
12
12
12
12
12
12
12
12
12
12
12

1
1
1

1
1
1
1
1

1
1
1

1

1
1

1
1

1
1

1
1

123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123

123
123
123
123
123

123
123
123
123
123

12
12

12
12
12
12
12

12
12

12
12
12
12
12

12
12
12

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1

12
12
12
12

12
12
12
12

12
12

123
123
123
123

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

123
123
123
123

123
123
123
123

123
123
123
123

12
12
12
12

123
123
123
123

123
123
123
123

12
12
12

12
12
12

12
12
12

12
12
12

123
123
123
123

12
12
12

12
12
12

123
123
123
123

1
1
1

12
12
12

123
123
123
123

12
12
12

12
12
12

12
12
12

123
123
123
123

12
12
12

12
12
12
12

12
12
12

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

123
123
123

123
123
123

1234
1234
1234

123
123
123

1234
1234
1234

1234
1234
1234

1234
1234
1234
1234
1234

1234
1234
1234

1234
1234
1234
1234
1234

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

123
123

1234
1234
1234
1234
1234
1234
1234

1234
1234
1234

1234
1234
1234

1234
1234
1234

1234
1234
1234

12
12
12

1234
1234
1234

1234
1234
1234
1234
1234
1234
1234
1234
1234

12
12
12
12
12
12

1234
1234
1234

1234
1234
1234
1234

12
12

1234
1234
1234
1234
1234

1234
1234
1234

1234
1234
1234
1234
1234
1234
1234
1234

12
12

1234
1234
1234
1234
1234

12
12

1234
1234
1234

12
12

12345
12345
12345

11 11
22 22
33 33
44 44
55 55
66 66
77 77
88 88
99 99

1010 1010
1111 1111
1212 1212
1313 1313
1414 1414
1515 1515
1616 1616

1717 1717
1818 1818
1919 1919
2020 2020
2121 2121
2222 2222
2323 2323
2424 2424
2525 2525
2626 2626
2727 2727
2828 2828
2929 2929
3030 3030
3131 3131
3232 3232

11

11

22

22

33

33

44

44

55

55

66

66

77

77

88

88

99

99

1010

1010

1111

1111

1212

1212

1313

1313

1414

1414

1515

1515

1616

1616

1717

1717

1818

1818

1919

1919

2020

2020

2121

2121

2222

2222

2323

2323

2424

2424

2525

2525

2626

2626

2727

2727

2828

2828

2929

2929

3030

3030

3131

3131

3232

3232

D4D4

B2B2

X1X1

V4V4

B3B3

E6E6

U5U5

T6T6

D5D5

C4C4

W3W3

W4W4

A3A3

D6D6

V5V5

U6U6

E7E7

B4B4

X3X3

T7T7

C5C5

A4A4

V6V6

W5W5

D7D7

C6C6

U7U7

X4X4

E8E8

B5B5

V7V7

T8T8

B6B6

D8D8

W6W6

U8U8

C7C7

B7B7

W7W7

V8V8

C8C8

E9E9

X7X7

W8W8

A7A7

D9D9

T9T9

U9U9

B8B8

A8A8

V9V9

X8X8

C9C9

B9B9

W9W9

X9X9

E10E10

A9A9

U10U10

T10T10

D10D10

C10C10

V10V10

W10W10

B10B10

B11B11

W11W11

V11V11

C11C11

E11E11

U11U11

X12X12

D11D11

A12A12

T11T11

W12W12

B12B12

A13A13

V12V12

X13X13

C12C12

D12D12

W13W13

U12U12

E12E12

B13B13

X14X14

T12T12

A14A14

C13C13

V13V13

W14W14

B14B14

D13D13

V14V14

U13U13

B15B15

E13E13

W15W15

W16W16

C14C14

A17A17

T13T13

V15V15

D14D14

B16B16

U14U14

X17X17

C15C15

E14E14

V16V16

W17W17

A18A18

D15D15

T14T14

U15U15

C16C16

B17B17

X18X18

V17V17

B18B18

E15E15

U16U16

T15T15

D16D16

C17C17

W18W18

W19W19

C3C3
D3D3

B19B19
C19C19

E4E4
F5F5

F16F16
E17E17

C2C2
D2D2

D18D18
C20C20

E3E3
F4F4

F17F17
G16G16

C1C1
G5G5

D19D19
E18E18

F3F3
E2E2

D20D20
G17G17

G4G4
D1D1

F18F18
H16H16

G3G3
H5H5

E19E19
F19F19

F2F2
H4H4

H17H17
G18G18

G2G2
H3H3

G19G19
H18H18

G1G1
H2H2

J16J16
G20G20

J5J5
J4J4

J17J17
H19H19

J3J3
H1H1

H20H20
J18J18

J2J2
J1J1

J19J19
K16K16

K4K4
K5K5

J20J20
K17K17

K3K3
K2K2

K18K18
K19K19

L2L2
L3L3

L19L19
L18L18

L4L4
M1M1

L16L16
L17L17

L5L5
M2M2

M20M20
M19M19

M3M3
N1N1

N20N20
M18M18

N2N2
M4M4

M17M17
M16M16

P1P1
M5M5

N19N19
P20P20

N3N3
P2P2

N18N18
P19P19

P3P3
N4N4

N17N17
R19R19

R2R2
T2T2

N16N16
P18P18

N5N5
R3R3

U20U20
P17P17

P4P4
U1U1

T19T19
R18R18

T3T3
U2U2

P16P16
V20V20

P5P5
R4R4

R17R17
T18T18

V1V1
U3U3

U19U19
V19V19

T4T4
R5R5

R16R16
T17T17

V2V2
W2W2

U18U18
X20X20

Figure 8: PSCP floorplan

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

