Advanced Optimistic Approaches in Logic Simulation

St. Schmerler, Y. Tanurhan, K.D. Miiller-Glaser

F Z 1 - Research Center for Information Technology Karlsruhe
Dept. of Electronic Systems and Microsystems (ESM)
Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany
http://www.fzi.de/esm/esm.html, email: esm@fzi.de

Abstract

This paper presents the optimistic synchronization mecha-
nism Predictive Time Warp (PTW) based on the imple-
mentation Time Warp of the Virtual Time paradigma for
use in the simulation of electronic systems and high level
system simulation. In comparison to most existing
approaches extending and improving classical Time
Warp, the aim of this development was to reduce the roll-
back frequency of optimistic logical processes without
imposing waiting periods. Part of PTW is the introduction
of forecast events predicting a certain period in the future
and thus reduce the rollback probability. On the example
of a distributed logic simulation the benefit of the PTW
synchronization approach is shown.

1 Introduction

The Time Warp (TW) mechanism as defined by Jefferson
and Sowizral [11], [12] uses the sending of messages for
synchronization. To keep the local causality constraint lcc
between all participating logical processes fulfilled, a syn-
chronization mechanism is used employing rollbacks in
the local simulation time. The receipt of external events
with timestamps in the local past (straggler events) cause
a logical process to roll back to the most recently saved
state consistent with the timestamp of the straggler event
and then to restart the simulation from this point with the
aim to correct the Icc violation with this procedure. How-
ever, rollbacks require a periodical state saving with
respect to internal and external events of the logical pro-
cess. In addition, an input queue IQ for received messages
and output queue OQ for sent messages have to be admin-
istrated. The registration of the communication history of
a logical process is performed in chronological order.
Since the arrival of event messages in increasing time
stamp order cannot be guaranteed, TW introduces two dif-
ferent kinds of messages for the implementation of the
synchronization protocol:

* The usual external events ee exchanged between logi-
cal processes are marked with a positive sign
(m,=<ee@t, +>). The time ¢ is a copy the local virtual
time of the sender at sending time.

* Besides positive messages, antimessages with nega-
tive sign m_=<ee@t, -> have been introduced. Anti-
messages have the ability to annihilate formerly and
prematurely sent positive messages for the same event
ee after being received by the same logical process.

Annihilation has to be performed after the receipt of
a straggler message. It has to be applied to all events in the
local event queue with timestamps greater than the stragg-
ler’s timestamp because all of those events have (possibly)
been based on an erroneous computation. Of course, new
external events may be the result of this erroneous system
state which have already been sent to other logical pro-
cesses. In order to be able to cancel all of those messages,
each logical process keeps records of all sent external
events (positive messages) up to as certain time stamp and
then resends them for a second time with a negative sign
to achieve annihilation. An important issue on the area of
memory consumption in Time Warp is to apply fossil col-
lection as a technique to reclaim memory consumed by
history recording that will definitely not be used any more
due to an assured lower bound on the timestamp of any
possible future rollback. This lower bound is referred to as
the Global Virtual Time GVT of the whole system. Exter-
nal events from a logical process LPj, are received from
the communication system by communication interfaces.

Any logical process LPj, is connected to the regarded LP,

by the two directed data channels ch ; and chy ;. In Time

Warp, messages are not required to arrive in the same

order as they were sent. It is not necessary to separate the

incoming data channels, furthermore they all lead to one
input queue IQ or are coming from one output queue OQ,
where the communication history of any logical process is
stored. The state history is kept in the state stack SS. All
those data structures together build the Communication

Interface CI of the logical process, the event-driven Simu-

lation Engine is the central location for the execution of



1 e
e; &y

LP, I—Q—!-

1.1
%1232 §12 12

© scheduled internal event
l processed global event

1 2 3
Dyq  Dpy D3 4

00— 0,

I—i—o-i-o—o—o—if\ml 0 DOOFFHZ

prediction
J secondary event

VODOFO V—C0 O

1

D, 5 q)1 2 (I) simulation time

@ processed internal event

forecast event

Figure 1: Forecasting Process

the simulation process. Recent developments in the opti-
mization of the classical TW approach have been con-
cerned with the reduction of the rollback frequency by
limiting the optimism of TW. These efforts address the
fact, that optimistic synchronization protocols like TW
tend towards overoptimism, i.e. optimism lacking rational
justification. Optimistic logical processes process their
local event queue regardless to future external events of
other processes (potential stragglers). This is on the one
hand a main advantage compared to conservative synchro-
nization approaches using waiting cycles as synchroniza-
tion means and having to struggle with deadlock
avoidance [5], [6]. On the other side, optimistic LPs act
totally independent and thus may exploit inherent model
parallelism. However, future external events will very
probably cause a rollback in the receiving process when
the LVT of sender and receiver differ to a certain amount
(LVT,,q< LVT,,.). The rollback probability is a rising
function of this time increment and - if both receiver and
sender make differently good progress in the simulation
time - also a rising function of time.

In the past years this problem has been addressed by
limiting the optimism of TW processes for instance in the
approach of Time Windows [15], the Breathing Time Buc-
ket Protocol BTB [8], Breathing Time Warp BTW [16],
probabilistic, distributed DES protocols [9] or analytical
methods [1].

2 Predictive Time Warp
2.1 Motivation

Common to all described approaches is the mean to block
running logical processes (or delay certain classes of
events which results in the same) in order to reduce the
risk of a future causality violation and subsequent rollback
chains. Predictive Time Warp (PTW), which is presented
in this paper, addresses the same problem in another way.

PTW uses predictions for the estimation of the timestamps
of external events. Those predictions, however, are not
performed to decide whether or not to process an event
currently in execution [9]. Instead, the predicted behavior
of a communication channel is used to create forecast
events, i.e. estimations about arriving external events in
the future. In its optimistic simulation, the LP will con-
sider such forecast events in the same way as if they were
real events. Forecast events are also maintained in the EQ,
IQ and OQ of the LP’s communication interface. The
main idea behind this approach can be described as fol-
lows: When a Time Warp process at a certain instant
t=LVT progresses in time, it executes its events currently
available in the EQ and cannot consider external events
arriving in the future. Consequently, a TW process
assumes that in the future (later than t) no external event
of any process will ever arrive (in any other case the com-
puted state would be wrong). This assumption, of course,
is not correct in most cases and leads to causality viola-
tions and rollbacks. However, by integrating forecast
events in the EQ and considering them in the progressing
simulation, the process does not assume that from now on
no external events will be sent by the foreign LPs but it
makes the assumption that the foreign processes will in
the future behave as they did in the past, which is a much
more reasonable hypothesis.

2.2  Extensions to Time Warp

As already described, the classical TW uses two kinds of
messages: those with a positive sign m,=<ee@t, +> and
antimessages with a negative sign m_=<ee@t, ->. PTW
extends this protocol by one further event type: forecast
events d=(ee@t). Forecast events @;; are treated as if
they were sent by a logical process LP; to LP;, if a commu-
nication channel ch; ; exists between LP; and LP;. How-
ever, forecast events are generated by the (virtual) receiver
itself for each input communication channel ch; . Flg 1

shows the forecasting process for two LPs 1 and 2. @} o in



Fig. 1 is the first (upper index) forecast event for the future
behavior of LP - it is treated like an external event sent
from LP; to LP,, however, is the result of a prediction of
LP, for communication channel ch ;. Forecast events
always are positive, external (global) events for the pre-
dicting process and in the local future of it. Once exe-
cuted, they remain in the event queue in the same way as
normal events do.

Based on several constraints which will be discussed
later in this paper, a certain number of predictions will
always be active in the local future of any LP; at any
instant LVT; and for each channel ch; ;. Together with the
logical processes on the x-axis, the forecast horizons FH; ;.
of LP;, i=1..N of all processes form a prediction space,
where FH; . are the respective upper time limits for pre-
dictions in the local future of each virtual sender LP;. for
all input communication channels ch; ;. The calculation of
the prediction space will be dealt with later on in this doc-
ument. Besides the introduction of new message types,
PTW provides for an extension of the TW protocol. Fore-
cast events are treated as external events in classical Time
Warp, i.e. they have influence on the state variables S; of
an LP;. and the execution of forecast events @7, may also
result in the generation of secondary events ¢” iV of
degree d (second upper index) on their target processes A
secondary event of first degree (d=1) is defined as an event
directly generated by the simulation engine when execut-
ing the primary event, i.e. secondary events of degree 1
are causal to their primary events and a secondary event of
degree d to the secondary event with degree d-1 (see
Fig. 1). All secondary events with degree d of a forecast
event @] are defined as its secondary event set

DXy d =U, ¢" 4V This set is important for handling predic-
thl’l errors, whlch are dealt with later in this paper.

An extension to TW is the use of an integrated pre-
diction engine PE; of any LP; to generate forecast events
@, . for each input communication channel c#; ;. Based on
the current confidence of a prediction for the maintained
channels, the PE calculates the respective current forecast
horizon FH;(ch;;) for each channel and integrates the
resulting forecast events in the event queue EQ.

2.3  Prediction Machine

The Prediction Machine (PM) is the functional unit in the
PTW system responsible for the determination of forecast
horizon and performing the predictions. Together with the
CI, forecast events are generated. The rest of this chapter
gives an introduction to the prediction algorithm used in
PTW and other related algorithms.

Common to all prediction algorithms is the use of a
current value x, and previous values x,_;, X,, ... (memory
depth) of a variable x = (xy, xj, ..., x,) to predict a certain

number of variable values up to a prediction horizon or
lead time | in the future. Thus, predictions are performed
up to %,,,; = %,(I). Constraints to the prediction process
are accuracy, computation time and memory consump-
tion.

ARMA Predictors: Predictors based on stochastic pro-
cesses like ARMA (autoregressive-moving-average),
although being subject to recent research [9], have not
been considered in this work for two reasons. First, an
ARMA predictor requires a high amount of computation
time and thus had to be executed on a processor of its own
in real implementations [9]. The benefit of the predictor,
i.e. the proven decrease of the rollback frequency in a TW
system, and thus the gain of performance, has to be seen
in the light that the resources allocated by the predictor
could also have been used by a simulation process
increasing the performance in this way. The second reason
for not choosing autoregressive approaches was the nature
of most signals in technical systems (only those are
regarded in this approach) which is not stochastic but
often regular and pattern-oriented. The chosen prediction
mechanism consequently is pattern-oriented and requires
significantly less computation resources than ARMA pre-
dictors.

Pattern-Oriented Predictors: Pattern-Oriented Predic-
tors (POP) recognize already "learned" value sequences
and try to predict the future behavior based on a pattern
dictionary [3], [4].

Lempel-Ziv (LZ78)-based algorithms are a sub group
within POP based on Lempel-Ziv algorithms [17], [18],
[2] which had been developed mainly for the application
of data compression. LZ78 creates a dictionary with dif-
ferent phrases. A read sequence will be included in the
dictionary as a new phrase when it is the smallest,
unknown sequence, which is not yet part of the dictionary.
Thus, a tree of patterns is built and based on the traversal
frequency of each leaf, the predictions are performed.
LZ78 algorithms possess a constant computation time but
the memory consumption is a linear function of the num-
ber of already learned patterns and thus rises logarithmi-
cally with the length of the input sequence.

Prediction by Partial Matching (PPM) algorithms
register the appearance frequency for each token of the
input token stream with respect to the fact, how often this
token had followed certain patterns of different lengths in
the past (the contexts). Probability density functions are
used to predict a new token for a given context [7].

Greedy Parsing Predictors (GPP), based on LZ78,
use a heuristic algorithm computing sub-optimal solutions
in a short time. The predictions are sub-optimal because it
cannot be guaranteed that in every case the (based on his-



€ & En1 =
€ €,
@ internal, executed event IT
O internal, scheduled n 1
I global, exec. "
forecast

O

FH

O—0O0— OO FO
simulation time

O-O

Figure 2: Prediction Confidence Function I1

tory) most probable token will be chosen, i.e. the choice
will fulfill the Maximum-Likelihood-criterion [10].

Compared to the already presented predictors, GPP
achieves a high prediction reliability after a longer learn-
ing phase. In GPP, the input token stream is partitioned
into subsequent token patterns which are enrolled in a dic-
tionary. In this process, beginning with the current (latest)
token, the longest pattern being not yet part of the dictio-
nary pattern is determined and registered as new entry in
the dictionary. The dictionary usually is implemented as a
search tree encoding token patterns as the sequences of
"visited" nodes in the tree traversal.

The Partial Matching Predictor (PMP) algorithm is
very similar to GPP, however, works with a fixed context
length and computes optimal predictions with respect to
the Maximum-Likelihood-criterion.

In PTW, a PMP-based approach has been chosen and
extended to support the prediction process by introducing
Backtracking Search Trees, special transformations of the
computed dictionary tree. The PTW predictor also uses an
exponential smoothing effect to give recent changes in the
pattern flow more influence on the prediction process.

Experimental results on the area of distributed logic
simulation using ISCAS circuits with up to 100k gates
show an excellent prediction confidence (success rate) of
at least 90% in the running PTW-based simulation.

24  Forecast Horizons

Forecast horizons FH; represent an upper limit for the
timestamps of forecast events in a certain input communi-
cation channel ch; ; of a logical process LP;. Per defini-
tion, a forecast horizon is the highest timestamp of all
currently pending (index n) forecast events for an input
channel ch; ; of an LP;:

FH;, = FH(ch;;) = max(ts(@flk>>, n=1..v,

’

The forecast number v;; of a channel is defined as the
number of allowed predictions (pending forecast events)
at an instant and therefore, also a function of time. It
strongly depends on the accuracy of the past prediction
processes. Clearly, the accuracy of a prediction will

decrease with a rising number of forecasts or an increas-
ing distance between LVT and the timestamp of the pre-
dicted event. This prediction confidence for a forecast
event will be called IT in the following. As shown in
Fig. 2, IT can be described as a step function over the sim-

ulation time:
n+1

n
0, (1) = 71,5 ts((Di k) <tim <ts<(1')'

), lsn<v
Ly
It can be derived by the introduction of local relative
n . .
error 1, for each forecast event @, , . This error is defined

as ts(®,) — ts(ee(®,))|

n = TH(@,) (D, )

A4 ch;

where ee( (15:-’,,() denotes the (matched) partner event
to @, which is the external event with the nearest
timestamp to the regarded forecast event arrived via ch; ;.
The local error is a function of time according to

Y(t) =y, fort( @, )= t<ts(P,) Vchl-’k

The prediction confidence function can be derived by
this local error function with the relation Il(r) = 1 - y(¢).

The forecast number v of a communication channel
ch;; can now be calculated by the local error function.
The following equation assumes LVT = ts( <D Pk

ts(D,)

v,= |V exp

ts((D )

{1-w()}dt| Vehy,

£

This function uses exponential smoothing for consid-
ering recent prediction results to a higher degree than
those in the further past. The time € denotes the depth of
the memory for the forecasting history.

2.5  Forecast Event Shifts

A prediction fault occurs when the timestamp of a fore-
cast event @?’k gets no correspondence ee( @?’k) in the set
of the via input communication channel ch;; arriving
external events. Such a pair [®, ee(D)] has been found
when the timestamps of both events are equal. The fre-
quency of prediction faults highly depends on the used
algorithm for finding the forecast timestamps and on the



nature of the simulated model. Most technical systems
such as VHDL-, logic- or high level systems - even cou-
pled differential equations1 - show a periodical behavior
in the event generation or can easily be partitioned to sub-
systems with a high prediction confidence for the commu-
nication channels between them (for instance when using
flip flop states as interface signals). Nevertheless, finding
no partner event ee(®;;) with identical timestamp does
not necessarily result in an uncorrectable error for an
event prediction. An error would mean that the correct
simulation behavior in means of the system state time
function differs from the correct time behavior. When the
system state S is causal and time-invariant, it is a function
of the last system state and of the next event e in the EVL
with ts(e) = LVT, but not a function of time. This means,
that the state function at simulation step n will always
change in the same way for a given event ¢, ;, indepen-
dently from the time of the event execution: sz o
(8",e,,4 1)- Consequently, it is allowed (with respect to cor-
rect further simulation) to change the execution time of a
given event as long as it is not moved on the simulation
time axis over the timestamp of another event affecting the
same state variables. Events fulfilling this condition will
be called causally independent from each other in the fol-
lowing. Of course, in the time span between those event
shifts, the system state change (if any) appears either too
early or too late. This fact will be considered separately in
a later chapter. The important fact in this context is, that
after a legal event shift, the system state function will be
identical with the original function. This fact offers a

I global, exec. event r> VT
forecast event
executed forecast event

Figure 3: Event Shift

degree of freedom which is exploited in the PTW algo-
rithm to eliminate correctable prediction faults. Fig. 3
shows a legal shift operation. The first picture shows an
already executed primary and its secondary forecast event

1. Using threshold interfaces for event conversion

(solid gray). Picture two shows the receipt of an external
event with timestamp #; causing a shift operation. As no
valid partner event can be found, both neighbor events to
the forecast event are considered as shift targets (picture
3). Chosen is the earlier event at ¢;. Both primary and sec-
ondary event are shifted by exactly that virtual time span
which is necessary to move the primary forecast event (at
t,) to t;(picture 4). The reason, why the set of secondary
events Z has to be shifted with their primary event is, that
we assume a deterministic, time-invariant system. This
means: if an event in reality is executed to (for example) a
later instant, its secondary events will have to be executed
to a later time point because the delay between both event
executions is assumed constant and the evaluation of the
state function is time-independent. The shifting of second-
ary events, however, requires a consideration of the legacy
for the respective secondary events to be shifted. The
same rules have to be applied on secondary events as on
primary forecast events, which means, that on the one
hand the causality constraint lcc has to be fulfilled for
shifted secondary forecast events and on the other hand,
no event shift may be performed over another event in the
past or the future affecting the same state variables (i.e. a
causally dependent event) because the order of event eval-
uation might be relevant to the resulting state:
§1 = 6(0(S", €1), €3) = O(O(S™, e,), ) = ™1

Hence, each primary and secondary forecast event
has a certain time range it can legally be moved by in the
future (6f) or in the past (8p). To keep the system deter-
ministic and time-invariant, the whole set of secondary
events (@) has to be shifted by the same virtual time dis-
tance as their primary forecast event @. The actual shifting
distance ¢ is influenced by both primary and secondary
events and bounded by 6, and dyaccording to 6, < 6 < &
(6, <0, 8¢ > 0). To find the legal shifting span for a pri-
mary or secondary event, the term of event classes is
introduced. All events contained in the same event class
affect the same state variables (and may consequently not
be moved in a way which would change the execution
order). An example for the definition of event classes in a
real application will be given later in this paper. An event
will additionally be called dynamic, if it belongs to the
current set of shift events and static in the other case.
Fig. 4 shows the determination process of the legal shift-
ing distances &y, and 6z The forecast (primary) event and
its secondary events belong to the dynamic event classes
0, O and O and are subject to the current shift operation.
All three events are now moved towards future and past
until an event of a static class with the same class number
(@, @ or ®) is reached. As shown in the upper picture, the
event of class @ determines the past boundary (finding 6;,)
and the event of class @ defines the future-side boundary.



B simulation time

primary @ class of

event static event
D secondary @ class of

event dyn. event

Figure 4: Shifting Process of Primary and Secondary Events

The remaining secondary event does not affect the solu-
tion as the static events of corresponding classes are too
distant. The legal shifting area of the regarded event set
{®, 3(P)} is shown in the lower picture of Fig. 4.

Event shift operations also result in a state function
which may be delayed or advanced in the time span of the
shifting area, however, afterwards is correct again. In case
of event shift operations the state function bears some
intervals within which the system state might be wrong
(changes appear either too early or too late compared to
the unshifted case). Fig. 5 shows the time behavior of the
state function for three logical processes. Process m got a
forecast event from process ® which has to be shifted
together with the secondary event (®). This results in tem-
porarily incorrect state function (data status). A forecast
event becomes a confirmed event (solid color) when the
LP, the prediction has been performed for, has sent at least
one external event which could successfully be matched to
the regarded forecast event. Thus, for each LP a local fore-
cast time LFT can be defined behind (i.e. before) which no
pending unmatched forecast event exists. With this defini-
tion, no more shift operations are possible for < LFT and
the system state is safe. A lower limit for each LFT of
course is the global virtual time GVT of the system. Dur-
ing simulation, each LP registers time spans of incorrect
state resulting from shift operations. As PTW does not
shift secondary external events, the behavior of any LP is
identical to the behavior it had without shift operations.

The difference between causality violations and
event shifts is that shift operations do not change the order
of event occurrences in relevant cases and accordingly,
any LP continues processing its EVL without having to
roll back. In shifted intervals, the state function shows a
delayed or premature behavior but the respective time
spans are well-known and always are located before GVT,
so they are correctable (see below). In no case, the
delayed or premature behavior can cause erroneous simu-

lation results for the future simulation, which supports the
optimistic character of PTW. However, as mentioned
before, the wrong timing of the system function - even if it
is well-known - has to be considered. As described above,
this is not relevant for the ongoing system state calcula-
tion or for the event traffic on interfaces between LPs but
tools directly accessing the internal state of the LP, such
as graphical user front ends also would show the wrong
timing of the system function (in the simulation of a logic
circuit this might be a monitor on a certain pin). To solve
this problem, the state calculation function and the output
function (writing simulation results in output buffers) are
separated. Each LP; writes its output information at ¢ =
LFT; - after the timing has been corrected, i.e. after a re-
shift has been performed (see intervals valid data and cor-
rected data in Fig. 5).

corrected valid invalid
data data data

. data status

forecasts from
process @

>

LFT, VT,

simulation time

Figure 5: Event Shifting and State Function

3 Implementation

PTW is as synchronization mechanism in a cosimulation
environment based on a Simulation Backplane concept as
part of a design and specification environment for hetero-
geneous electronic systems and microsystems [13], [14].



PTW has been implemented on a Sun SPARC 10 worksta-
tion cluster using up to 6 machines for the distributed sim-
ulation via ethernet running one process of a logic
simulator on each host. Among others, ISCAS circuits had
been simulated with a varying size of 10k gates up to 100k
gates. The partitions were chosen with respect to a similar
number of gates. The number of interpartition connections
did not have any obvious influence on the comparison
between TW and PTW. For a distributed simulation with
partition size of 100k gates, a typical channel size of 50-
100 interface signals had been assumed, however, was not
restricted to this. The partitioning rules preferred flip flop
states as boundary signals on the output side of a design.

The first result to be mentioned here is the relation
between the time resources spent for the computation pro-
cess and for message handing (sending, receiving via
TCP/IP and general message management) which was
bounded by few percents, further decreasing with a rising
partition size.

In the comparison of Time Warp (using fossil collec-
tion and lazy cancellation) and Predictive Time Warp
under similar conditions, an average prediction confidence
between 0.8 and 0.95 on each data flow could be observed
which mandates for pattern-oriented prediction algo-
rithms. The needed computation resources used by the
predictor allowed for the integration of the PE in the com-
munication interface of any LP without obviously affect-
ing the overall simulation performance. The reduced
rollback frequency, however, turned out to be model-
dependent. It varied between ca. 20% and 60% compared
to the classical TW approach.

4 Conclusions and Future Work

PTW as a special optimistic synchronization approach has
proven to be well-suited for cases of distributed discrete
event simulation where binary events can be used for the
communication between logical processes. In logic simu-
lation it reduced the rollback frequency in the optimistic
protocol up to 60% compared to classical Time Warp.

Future work will examine, how the requirement of
binary events can be weakened to multi-valued events by
also predicting the value space. Especially in the area of
mixed-mode simulation with threshold event triggers on
interface signals between analog and digital circuit parti-
tions, PTW seems to be successfully applicable.

5 Literature

[1] BALL, D., AND HOYT, S.: The Adaptive Time Warp Con-
currency Control Algorithm, Proceedings of the SCS Mul-
ticonference on Distributed Simulation, 22(1): 174-177,
1990.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

BELL, T.C., CLEARY, J.G., AND WITTEN, L.H.: Text Com-
pression, Prentice-Hall, Englewood Cliffs, NJ, USA,
1990.

Box, G.E.P., AND JENKINS, G.M.: Time Series Analysis:
Forecasting and Control, Holden Day, San Francisco, CA,
USA, 1970.

BoXx, G.E.P., JENKINS, G.M., AND REINSEL, G.C.: Time
Series Analysis: Forecasting and Control, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1994.

BRYANT, R.E.: Simulation on a Distributed System, Pro-
ceedings of the Conference on Distributed Computing
Systems,: 544-552, 1979.

CHANDY, K., AND MISRA, J.: Distributed Simulation:
Asynchronous Distributed Simulation via a Sequence of
Parallel Computations, Communications of the ACM,
24(11): 198-206, 1981.

CLEARY, J.G., AND WITTEN, LH.: Data Compression
Using Adaptive Coding and Partial String Matching, I[EEE
Transactions on Communications, 32(4), 396-402, 1984.

DICKENS, P.M., AND REYNOLDS, P.F.: SRADS with Local
Rollback, Proceedings of the SCS Multiconference on Dis-
tributed Simulation, 22(1): 161-164, 1990.

FERSCHA, A.: Probabilistic Adaptive Direct Optimism
Control in Time Warp, Proceedings of the 9th Workshop
on Parallel and Distributed Simulation: 120-129, 1995.

HAMILTON, J.D.: Time Series Analysis, Princeton Univer-
sity Press, Princeton, NJ, USA, 1994.

JEFFERSON, D.R.: Virtual Time, ACM Transactions on
Programming Languages and Systems, 7(3): 404-425,
1985.

JEFFERSON, D.R., AND SOWIZRAL, H.: Fast Concurrent
Simulation Using the Time Warp Mechanism, Proceed-
ings of the Conference on Distributed Simulation, 63-69,
1985.

SCHMERLER, S., TANURHAN, Y., AND MULLER-GLASER,
K.D.: A Backplane Approach for Cosimulation in High-
Level System Specification Environments, Proceedings of
the European Design Automation Conference EURO-DAC
’95: 262-267, 1995.

SCHMERLER, S., TANURHAN, Y., AND MULLER-GLASER,
K.D.: Predictive Time Warp, In: Proceedings of the 11th
European Simulation Multiconference ESM’97, SCS,
p-40-47, 1997.

Sokol, L.M., Briskoe, D.P., and Wieland, A.P., MTW: A
Strategy for Scheduling Discrete Simulation Events for
Concurrent Execution, Proceedings of the SCS Multicon-
ference on Distributed Simulation, 34-42, 1988.

STEINMANN, J.: Breathing Time Warp, Proceedings of the
9th Workshop on Parallell and Distributed Simulation,
109-118, 1993.

Z1v, J., AND LEMPEL, A.: A Universal Algorithm for
Sequential Data Compression, [EEE Transactions on
Information Theory, 23(3): 337-343, 1977.

Z1v, J., AND LEMPEL, A.: Compression of Individual
Sequences via Variable-Rate Coding, IEEE Transactions
on Information Theory, 24(5): 530-536, 1978.



	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


