
Abstract

Despite its importance, we find that a rigorous theoretical
foundation for performing timing analysis has been lacking
so far. As a result, we have initiated a research project that
aims to provide such a foundation for functional timing
analysis. As part of this work we have developed an
abstract automaton based delay model that accounts for
the various analog factors affecting delay, such as signals
slopes, near simultaneous switching, etc., while at the same
time accounting for circuit functionality. This paper pre-
sents this delay model.

1. Introduction

With the advent of deep submicron technologies, digi-
tal abstraction, which has served as an efficient means for
doing synthesis and analysis, is widely perceived to be fall-
ing apart. Consequently, the notion of delay, which is at the
core of timing analysis, is being questioned [15]. We
believe that this is the result of the lack of a rigorous foun-
dation for timing. Traditionally, both delay modeling and
timing analysis algorithms have been developed by differ-
ent schools of thought. Delay modeling has usually been
dealt with by electrical engineers where the emphasis has
been on accurate delay valuecalculation [9, 13, 16] rather
than aformalization of the notion of delay. On the other
hand, on the timing analysis front, computer scientists have
used simplistic delay models like transport delay (with suit-
able “add-ons” like rise-fall, inertial, etc. for improved
accuracy) with graph-based algorithms. Most initial
approaches ignored circuit functionality and important
“analog” effects like signal slopes and near-simultaneous
switching of inputs (proximity effect) altogether leading to
incorrect estimates of delay. In an attempt to account for
circuit function, many different local sensitization condi-
tions ([2, 6, 10, 12) have been proposed recently, none of
which have been met with universal acceptance. Moreover,
these approaches still do not account for effects like signal
slopes. Thus, the field of timing modeling and analysis is
marked by confusion.

To alleviate this problem, we are developing a rigorous
theoretical framework at the University of Michigan for
performing functional timing analysis that retains the effect
of analog factors like signal slopes for accuracy. This the-
ory has two components: 1) Waveform calculus [14], which
links circuit function with timing, and 2) AFTA, which is

the formal model of delay. This paper focuses on the latter,
with the former being discussed elsewhere. This paper is
organized in 5 sections as follows. In the next section, we
very briefly review the relevant concepts of the waveform
calculus. In Section 3, we present the semantics of AFTA
and show how it differs from other models that bear a
superficial similarity to AFTA. In Section 4, we describe
the operation of AFTA with a couple of examples. Finally,
we conclude the paper in Section 5.

2. The Waveform Calculus: A Resumè

The waveform calculus is a symbolic model of digital
circuits that was proposed in [14] to link circuit timing and
function. Symbolic waveforms are used in the calculus to
model logic waveforms. Therefore, the waveform values
are Boolean functions defined over an appropriate basis
variable set rather than the Boolean constants 0 or 1. As an
example, we show the symbolic simulation of the XOR cir-
cuit under the state-dependent delay model [17] shown in
Fig. 1(a). BDDs [4] were used to manipulate the waveforms
at the internal nodes. The waveforms at the primary inputs
are typically represented by Boolean variables (in this
case, ) which are called the basis variables.
Symbolic waveforms thus represent a family of waveforms.
For example, in Fig. 1(a), for different assignments of 0s
and 1s to the basis variables, a variety of logical waveforms
at  can be generated.

In most realistic circuits, the number of basis variables
will be large. Therefore, in order to deal with complexity,
we introduce the notion offunctional abstraction, where
one or more of the basis variables can be abstracted away.
In Fig. 1(b), we show the same simulation run with variable

 abstracted away. The resulting waveforms are now
called partially-specified waveforms and the waveform val-
ues are now Booleanfunction intervals[3]. An additional
mechanism in our calculus to cope with complexity istem-
poral abstraction, where transition instants that are not of
interest are abstracted away. This is of particular impor-
tance for timing analysis where we are often concerned
with the first and last event times. For example, in Fig. 1(c),
the instant  has been abstracted away from the wave-
form  giving rise to the partially-specified waveform .
Partially-specified waveforms are also convenient to repre-
sent signal slopes. For example, referring to Fig. 1(c), for
the assignment , one inter-
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pretation can be that the signal is falling from  to
.

The notion of waveformderivatives is central to the
calculus since it captures the conditions under which a sig-
nal will change. The (C)hange derivative of a waveform

 is given by:

(3)

Note that this itself is a symbolic waveform as shown in
Fig. 1(d). A non-zero value of theC derivative indicates the
signal could potentially change. The(R)isingderivative is
given by:

(4)

Similarly, the other three derivatives, (F)alling, (H)igh, and
(L)ow, can be defined. For lack of space and ease of presen-
tation, in the rest of the paper we will consider non-sym-
bolic waveforms only and therefore drop the explicit
dependence of the waveforms onX.

The relationship between the derivatives and delay is
explained in Fig. 2. We associate a zero delay output,
with each gate1. It is simply the instantaneous Boolean
function of the input waveforms. From the waveform calcu-

1. We use the word “gate” to denote both the usual AND-OR-INV
gates as well as channel connected components (CCC).

lus machinery, we derive the conditions under which
will rise or fall (Fig. 2). Since delay is state dependent, we
associate different delays with each of the six conditions. It
is now the task of the delay model, AFTA, to produce the
true output  from  using a delay value appropriate
for the current input conditions. Referring to Fig. 2, if both
inputs were falling, AFTA would make  risingafter a
delay of 2 units as shown.

The notion of delay value computation is an orthogo-
nal issue. We use the generic term “delay macromodel” to
denote the entity that computes the delay value. The gate
could be precharacterized and the delay macromodel
implemented as a lookup-table; however, if such a prechar-
acterization is not possible, the delay macromodel could be
a simplified timing simulation for the specific input config-
uration. We assume that these delay values are available on
demand through a suitable function call. The semantics of
AFTA are now discussed in the following section.
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3. AFTA Semantics

An analog signal can be abstracted into the digital
domain as shown in Fig. 3(a). It has been shown that, for
timing purposes, the unity differential gain points of a
gate’s DC voltage transfer curve,  and , are the
appropriate candidates for the logic thresholds,  and
[5]. Thus, the output of a logic gate can be any one of

, where U is interpreted to mean any voltage
value lying between the  and  values. When sufficient
input information is not available to compute the output,
the guiding principle in AFTA is that ofconservative
bounding (see Fig. 3(b)): AFTA output should begin chang-
ing no later than the true output and should end changing
no earlier than the true output.

AFTA has threediscrete states corresponding to the
three logic values of a signal . In addition to
these, AFTA has two continuous real-valued timers,
and .  denotes the time remaining before the output
changes to its next scheduled value in response to the input
change.  denotes the time elapsed since the first input
event that “activated” (to be made clear later) AFTA.
Whenever the inputs to the gate change, a new value for
is computed using the delay macromodels. The total state,
or simply the state, in AFTA consists of both the discrete
and continuous states: . State transitions in
AFTA occur in response to:

1.  input events, or

2.  time-outs indicated by .

A state transition involves a change in the output logic
value or a change in the values of  and . The changes
in the output logic value obey the transition diagram in Fig.
4(a), and occur only when  expires (i.e. ). The
labels on the arcs are the derivatives of . As will become
evident later on, this transition diagram models theeventual
logic value that the gate output attains, and is able to
account for inertia in the gate response. Input events, on the
other hand, affect the elapsed and remaining time compo-
nents of AFTA state. As is evident from the self-loops in

states  and , when the  derivative is  with all inputs
to the gate stable and not changing and AFTA is in state
(or  derivative is  with all inputs stable and AFTA is in
state ), AFTA is said to be in astable configuration. All
other situations are considered unstable and AFTA is said
to be activated.The self-loop for stateU when the
derivative is  or  (i.e. changing) is in keeping with con-
servative bounding, since if  is changing the output
should also be changing and should remain changing till at
least  becomes stable.

Initially, before any input event occurs, AFTA is
assumed to be in a stable configuration with .
When an input event occurs at time ,  becomes a free
running variable and starts to increase linearly with time if
it happens to be thefirst activating transition. An activating
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LOOP: while (  >0)
{

if  (an input event at t = )
 {
  if  (first activating event){ ;}

else { ;}
= M(current output, inputs, );

} /* end of if  */
else {

if  (AFTA is stable ){ ; }
  else  { ; }

;
} /* end of else  */

} /* end while  */
 = M(current output, inputs, );

if  ( ==0)
{
  change output logic value according to
diagram in Fig.4(a);

 = M(current output, inputs, );
;

} /* end of if  */
goto  LOOP;
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transition is the one that takes AFTA from a stable to an
unstable configuration. It continues to increase, modeling
elapsed time, till AFTA reaches a stable configuration once
again. Thus,  defines a window on the inputs, and all
input events within this window are used by the delay mac-
romodels to compute delay. Note that by resetting  to
when AFTA is in a stable configuration, we are ignoring the
effect of all previous input events while computing delay.
When an input event occurs,  is set to , a value
determined by an appropriate delay macromodel. Subse-
quently,  becomes a free running variable decreasing
with time. A logic change inz occurs when  becomes 0
and is determined by the current  derivative and the state
transition diagram in Fig. 4(a). The operation of the two
timers is further illustrated in Fig. 4(b). An input event at
time , assumed to be the first activating one, sets  to

, which is computed by calling an appropriate delay
macromodel, and enables . From then on these two tim-
ers become free running, with their trajectories as shown.
At  another input event occurs, causing a re-evaluation of
the delay to  (proximity effect, for instance). However,
we must subtract the amount of time that AFTA has been in
the current state which results in the value  being loaded
into . Note that this event does not affect  since it is
not the first activating one. Subsequently,  becomes free
running once again and when  finally expires at
(assuming no further input event has occurred), the output
will change depending on the current  derivative accord-
ing to Fig. 4(a).

We can summarize the operation of AFTA in the
pseudo-code of Fig. 4(c). A couple of observations can be
made from the pseudo-code. First, the function that com-
putes the value for , , depends on the current output
logic value and the various delay macromodels which in
turn depend on the inputs within the window specified by

. Second, when  expires, a new value of  is com-
puted using the most recent knowledge of the inputs. It is
only if this second computation also yields 0 that the output
logic value is changed according to Fig. 4(a). This is
because since the time when  was originally set, addi-
tional information about the inputs may have become avail-
able and this must be accounted for, else AFTA may change
the output at an incorrect instant. This point will be made
clear in the examples of the next section.

Automaton based delay models have been proposed
before in the literature, although for different purposes. In
[8], a logic automaton was proposed using the discrete-
event system specification (DEVS) formalism introduced
by Ziegler [18]. However, the emphasis was on event-
driven simulation rather than functional timing analysis.
Moreover, a simplified transistor level model based on the

charging and discharging of load capacitance through a
resistor was used to compute actual delay values. Such a
simplified model is clearly inadequate for deep submicron
designs. More recently, in [7], the functional and timing
models of a gate were linked using timed-transition tables
to enable efficient VHDL simulation. However, the low-
level modeling suffered from inaccuracies since the transis-
tors were replaced by equivalentRC networks. Sufficient
examples showing the efficacy of their model in accounting
for state dependent effects were not presented. In addition,
both these approaches lacked a theoretical framework that
clearly linked circuit function with timing, and did not
show how to compute the early and late signal arrival times,
the central task in timing analysis. Another work that uses
an automaton for timing, albeit not for computing gate out-
puts, is presented in [1]. A timed-automaton formalism to
model real-time systems is introduced and the focus is on
analyzing asynchronous sequential circuits. While AFTA
may bear a superficial similarity to the timed-automaton or
the logic automaton, what sets it apart is its specific role to
facilitate accurate functional timing analysis.

We now show how AFTA can handle the signal slopes
and the proximity effect by presenting different input situa-
tions that could occur in practice. These examples have a
timing simulation flavor since we will be using fully speci-
fied waveforms (i.e. there is no uncertainty as to when the
signals will transition). While AFTA will be eventually
used with the more general partially specified waveforms
which arise in timing analysis, these examples nevertheless
show both the power of the AFTA model in accounting for
analog effects as well as the inherent limitations of doing
timing simulation at the gate level using a discrete system.

4. Explaining AFTA Through Examples

The examples in this section have been constructed by
simulating actual circuits with HSPICE [11] using a

 CMOS technology and performing a suitable digi-
tal abstraction of the analog waveforms used in the simula-
tion. In general, the errors in doing timing analysis with
AFTA would be from two sources: 1) Delay macromodel
errors and 2) AFTA errors. In the following examples, we
used HSPICE as the delay macromodel for delay while
doing the simulation to remove the effect of macromodel-
ing errors. This enabled us to concentrate on errors (if any)
induced by AFTA alone. In the examples, since an AFTA
state involves a discrete component and two continuous
real-valued components, we explain AFTA’s operation by
appropriate snapshots in time that capture the evolution of
the two continuous components of state. The active state is
shown inbold font in all the figures.
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Example 1: Slope and proximity in AFTA Con-
sider two falling inputs to the NAND gate as shown in Fig.
5(a). The delay is now a function of both the transition
times and the temporal separation between the two inputs.
The delay macromodel, , is also plotted in
the figure, as a function of , parametrized by , for a
fixed separation of . The initial state of
AFTA is shown in Fig. 5(b). At ,a starts to fall
(causing  derivative to beR) which activates  and sets

 to  (delay when no transition on
b) as shown in Fig. 5(c). At ,b starts to fall
(note that the  derivative is stillR) causing  to be set
to  (see Fig.
5(d)). Note how the value of  defines the proximity win-
dow. At ,  expires and a recomputation with
the most recent input information sets  to

 as shown
in Fig. 5(e). Before  expires, however, at ,a
becomes low (  derivative is nowH) and this sets  to

 as shown
in Fig. 5(f). Skipping a few intermediate steps, eventually,
at b becomes low (  derivative remainsH)
and now we have the complete information to set  to

 (see Fig.

5(g)). 1ps later, at ,  expires and subsequent
recomputation still yields a value of 0 since the inputs
haven’t changed. Therefore, AFTA makes the output logic
U since the  derivative at this instant isH, as shown in
Fig. 5(h).  is set to  using
the output transition time macromodel (not shown here).
Finally, at ,  expires and subsequent recom-
putation still yields a value of 0. Therefore, AFTA makes
the output logic 1 since  derivative isH.  is set to
since the output will remain 1 unless the inputs change and

 is reset to 0. The actual output and the predicted output
in this case are the same and thus we see that AFTA can
successfully handle, in addition to the input slope effects,
the proximity effect too.

Example 2: Anomalous response of AFTA Sup-
pose input  rises and input  falls as shown in Fig. 6(a).
Both the true and AFTA outputs are also shown. As can be
seen, AFTA underestimates the end of the first transition
and overestimates the onset of the second transition on the
output. When input  has finished rising, though input
has not yet crossed the  threshold, it starts affecting the
output, slowing it down. AFTA, however cannot detect this
since it assumes a signal to be changing only if it crosses
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the appropriate threshold. This causes AFTA to underesti-
mate the end of the first transition. In computing the
response to , AFTA ignores the effect of  since it
assumes transition on  occurred sufficiently in the past to
affect the output. This is so because AFTA enters a stable
configuration (which resets ) before the transition on
activates AFTA again. It thus assumes the output to be at
0V while computing the delay for the output to rise which
is not the case. The output has not yet quite reached 0V
before the transition on  makes it rise again. Conse-
quently, the true output finishes its transition sooner than
predicted by AFTA. For a correct computation, effects of
both  and  together should be considered. This example
shows some of the difficulties in performing timing simula-
tion with an AFTA like approach.

It is important to note that AFTA does over estimate
the final stable time which is fine since it is still conserva-
tive. It is the intermediate points that are not conservative.
However, in timing analysis, these intermediate time
instants would be abstracted away in which case AFTA
response would conservatively bound the true response.

5. Conclusions

We have presented a new automaton based delay
model, called AFTA, that is intended for use in a functional
timing analyzer. Unlike previous approaches in developing
an abstract delay model, AFTA accounts for analog effects
like signal slope and proximity, at the gate level. Lack of
space prevents us from describing our recent extensions of
AFTA to work with symbolic waveforms using bothtempo-
ral and functional abstraction [14] which forms the basis
for functional timing analysis.
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