
A Sequential Detailed Router for Huge Grid Graphs

Asmus Hetzel

Research Institute for Discrete Mathematics

University of Bonn

Lenn�estrasse 2, 53113 Bonn, Germany

Abstract

Sequential routing algorithms using maze-running
are very suitable for general Over-the-Cell-Routing
but su�er often from the high memory or runtime re-
quirements of the underlying path search routine. A
new algorithm for this subproblem is presented that
computes shortest paths in a rectangular grid with re-
spect to euclidean distance. It achieves performance
and memory requirements similar to fast line-search
algorithmswhile still being optimal. An additional ap-
plication for the computation of minimal rip-up sets
will be presented. Computational results are shown
for a detailed router based on these algorithms that is
used for the design of high performance CMOS pro-
cessors at IBM.

1 Introduction

As the complexity of high performance designs
grows rapidly, routing is often regarded as one of the
�rst tasks to become critical with respect to mem-
ory requirements and runtime. Especially in
at de-
sign styles there is typically no superimposed structure
which makes it possible to reduce the routing task to a
sequence of channel or switchbox routing problems for
which very e�cient algorithms are available. Instead
a so called Over-the-Cell-Routing problem arises. For
this, more general routing algorithms must be used
which are often much more sensitive to the overall
complexity of the design.

The probably most common algorithms for Over-
the-Cell-Routing are sequential ones. They try to re-
alize one connection after the other according to a
priority queue, each time calling some search routine
connecting given source and target areas. Previously
routed connections are handled as obstacles for later
ones. Rip-up and reroute or shove-aside methods are
typically used for �nal wiring completion.

These algorithms have the great advantage to be
very general but su�er from two main drawbacks: One
is the sequential process which implies some greedy be-
haviour probably causing problems for the later routed
connections. The other are memory and runtime re-
quirements of the underlying path search routine.

In the following sections we focus on both prob-
lems. First a new exact algorithm for �nding short-
est paths within a threedimensional grid is presented
that in practice achieves the performance and mem-
ory requirements of fast but suboptimal line search
algorithms.

The problem of �nding a suitable set of connec-
tions to be ripped-out and rerouted in order to pro-
vide routes to blocked components is discussed in sec-
tion 3. It is shown that this problem can be tackled
with a slight modi�cation of the new path search algo-
rithm. As a result, the problem of �nding a minimum
weighted rip-up set is shown to be practically feasible
even for huge problem instances.

Both algorithms are incorporated in a program
package called XRouter which was developed in co-
operation with IBM-Boeblingen at the Research Insti-
tute for Discrete Mathematics in Bonn. XRouter has
been used successfully for many designs at IBM as for
example the IBM S/390 Parallel Enterprise Server -
Generation 3 (see [8]). A brief overview of the detailed
routing part of XRouter is given in section 4. Com-
putational results concerning the detailed routing of
several chips are listed in section 5.

2 Shortest Euclidean Length Paths in

a Grid

Path search is potentially the most important sub-
problem to be solved in the type of detailed routers
discussed here. More formally, a threedimensional grid
G = (V;E) with nodeset V and edgeset E is given as
well as source and target areas S � V , T � V . The
grid describes the still unused parts of the wiring area
only. The goal is to �nd a minimum cost path be-
tween S and T according to some cost function on the
nodes and/or edges.

This problem has been extensively investigated in
the last decades in many di�erent variations. But al-
most any algorithm belongs to one of the three follow-
ing categories:

� Node-oriented Dijkstra-like labeling algo-
rithms [4, 7, 9]. These can be implemented for
very general cost functions. Their great disad-
vantage is that even for very restrictive special
cases like uniform edge costs the running time
and memory requirement is at least linear in jV j.
Therefore it may be necessary to break up path
search problems in huge designs arti�cially.

� Line search, line expansion or area search algo-
rithms [5, 6]. They have been developed pri-
marily for �nding shortest rectilinear paths with
respect to euclidean length in the plane which
avoid a given set of rectangular obstacles. Most

of them can be adopted easily to threedimen-
sional grid problems. Their advantage is the
smaller memory requirement and the fast run-
ning time at least for \simple" paths with a small
number of bends. The drawback is that none of
the approaches guarantees to �nd an optimal so-
lution.

� Instead of using a grid model for the wiring area
it can be tried to route only based on geometrical
information like the shape of the blockages and
the spacing requirements for the current con-
nection. There are very e�cient optimal algo-
rithms for the twodimensional case but unfor-
tunately the generalizations to three dimensions
are theoretically and practically not better than
node oriented algorithms on a full wiring grid
(see [1, 3, 2]).

In the following, a new algorithm will be presented to
overcome these di�culties. It computes shortest paths
with respect to euclidean length within a rectangular
grid achieving the performance and memory require-
ments of fast (but suboptimal) line search algorithms.
It is less
exible than general node-oriented labeling
algorithms because only euclidean length can be mini-
mized instead of abitrary cost functions. On the other
hand it is able to do exact path length optimization
even on huge grids.

The algorithm works directly on a description of
the grid as a collection of intervals. It is basically a
labeling algorithm of Dijkstra-type where node labels
d(v), v 2 V , denoting the length of the shortest path
from s to v, are replaced by so-called potential lengths
�(v). This approach was �rst described by Rubin [11].
Because our algorithm can be interpreted as an adop-
tion of Rubin's one to interval labeling, we will refer
often to it. For clarity, we sketch Rubin's algorithm
�rst:

The instance is a path search from s 2 V to t 2 V
in G. We assume that positive edge lengths l(e), e 2
E, are given and that a lower bound b(v) of the length
of a path from v to t is known for all v 2 V .

0) Set F := fsg, �(s) := b(s), and �(v) := 1 for
all v 2 V n fsg.

1) Choose a v 2 F with �(v) minimal. Set F :=
F n fvg.

2) For all v0 2 V with e = fv; v0g 2 E and
�(v0) > �(v)+l(e)�b(v)+b(v0) set F := F[fv0g
and �(v0) := �(v) + l(e) � b(v) + b(v0)

3) Stop, if v = t or F = ;. Otherwise goto 1).

Finally, the shortest path is constructed as usual by
backtracking according to the labels.

This algorithm is not better than a standard
Dijkstra-algorithm in the worst case. But due to the
more directed search, it performs much faster in prac-
tice if the bounds b(v) are good.

We will now use the above algorithm as a basis to
derive more e�cient labeling techniques on intervals.

Figure 1: A plane grid and its description with hori-
zontal intervals.

2.1 Notations

Before going into detail, we need to clarify some
notations. As before let G = (V;E) denote a three-
dimensional incomplete grid. G describes the parts of
the whole routing area that are usable for the current
search. For simplicity we will assume that G is an
induced grid, i. e. for each edge e = fv; v0g of the
complete grid with v; v0 2 V there is also e 2 E.

Each v 2 V will also be identi�ed with integer co-

ordinates (x; y; z) 2 IN3 in threedimensional space. So
the L1-distance of two nodes vi = (xi; yi; zi), i = 1; 2,
is well de�ned as

kv1 � v2k1 := jx1 � x2j+ jy1 � y2j+ jz1 � z2j:

It should be clear from the description of the algorithm
wether we refer to v as a grid node or as a point in

IN3. Note that these coordinates are not derived from
a numbering of the gridlines. They re
ect the real
position of a node on the chip area with the restriction
that they must be integral.

Let z1 < z2 < : : : < zd be all possible z-coordinates
of nodes v 2 V and Gn, n = 1; : : : ; d, the subgrids of
G that are induced by all nodes (x; y; zn) 2 V . We
will refer to Gn as a plane in the following.

Furthermore we will assume that G is already or-
ganized as a special data structure: For each plane
Gn there is a prefered routing direction Dn which is
either horizontal (x) or vertical (y). Moreover Dn and
Dn+1 are orthogonal for all n = 1; : : : ; d � 1. Each
plane Gn is described as a set of intervals I(Gn) ex-
tending within preference direction only. An inter-
val I 2 I(Gn) represents the grid nodes it covers
(which will be denoted as V (I)) and all nodes cov-
ered by a single interval are connected by edges (see
�gure 1). Note that this is su�cient to represent the
gridG because edges between nodes in an induced grid
are implicitely given between any pair of nodes which
are adjacent in the complete grid. The set of all such
intervals is denoted by I.

Storing the grid as such a collection of intervals is
typically very e�cient. It holds for most design styles,
that a single plane is mainly used either horizontally or
vertically. So for one direction, the number of intervals
representing the whole plane is much smaller than the
number of grid nodes (see section 5). Additionally,
this representation is easy to update during the local
routing process.

We want to �nd a shortest path P between nodes
s; t 2 V in G with respect to edge lengths l(e), e =

tδ

I

Figure 2: The function �(v) on I. Non-redundant
labels are drawn as dots. t is assumed to be left of I.

fv; v0g 2 E, as follows:

l(e) :=

(
kv � v0k1 + cn if v; v0 2 V (Gn) and

e orthogonal to Dn

kv � v0k1 otherwise

where cn, n = 1; : : : ; d, are nonnegative integers. So
we are looking for a shortest path with respect to eu-
clidean distance and additional extra costs for wrong-
way jogs within a plane.

Looking at Rubin's algorithm, we can therefore use
b(v) = kv � tk1 as a lower bound for the length of a
path from v to t for all v 2 V .

For simplicity, we assume that the function f(v) :=
kv � tk1 is monotone upon each interval. This can be
achieved by splitting some intervals into at most two
parts.

We discuss the algorithm bottom-up beginning
with the basic labeling operation:

2.2 Interval Labeling

Throughout the algorithm, there is a set �(I) �
V (I) � IN associated with each I 2 I. �(I) is the set
of labels on I and will be initialized with �(I) := ;.
A label (v; �) 2 �(I) indicates that there is a path
from s to v in G of potential length �. This implies
that by walking from v to v0 2 V (I) upon I, a path of
potential length

� + kv � v0k1 � kv � tk1 + kv0 � tk1

to any v0 2 V (I) exists. We call this the induced paths

by (v; �). A label (v0; �0) 2 �(I) is said to be redundant
if

�0 � � + kv � v0k1 � kv � tk1 + kv0 � tk1

for some (v; �) 2 �(I) n f(v0; �0)g. A redundant label
induces no path from s to a v 2 I which is shorter
than all paths induced by the other labels in �(I).

A labeling of I with (v; �) 2 V (I)� IN is the follow-
ing operation:

Set �(I) := �(I) [f(v; �)g. Then remove all
redundant labels from �(I).

This operation takes O(j�(I)j) amortized time: Sup-
pose �(I) = f(v1; �1); : : : ; (vk; �k)g is non-redundant
and �1 < : : : < �k. Then for the function �(v), v 2 I,
which gives the minimal length of all paths from s to
v that are induced by elements of �(I) the follow-
ing holds: �() is monotone and consists of alternating

Figure 3: Change of �(v) when adding a
non-redundant label.

Figure 4: The horizontal intervals I(Gn) and the ver-
tical intervals J . t is assumed to be left of any interval
shown. Non-redundant labeling operations are drawn
as dots.

segments with slope 0 and 2 (or �2 if the target is
on the other side, see �gure 2). So either the new
label (v; �) itself is redundant or there is a possibly
empty range of indices 1 � m � n � k such that
(vi; �i), m � i < n, becomes redundant when adding
(v; �) to �(I) (see �gure 3). Additionally we have
�m�1 � � � �m, where �0 := 0 if m = 1. So assume
that �(I) is already non-redundant and organized as
a tree with keys �i. Then the whole operation can be
performed in time O((l + 1) log j�(I)j) if there are l
labels in the initial �(I) which are redundant to (v; �).

Because this is the only label generating step of the
algorithm, the amortized running time is O(log j�(I)j)
if we keep �(I) permanently as an appropriate tree.

2.3 Labeling of Orthogonal Interval Sets

Let � 2 IN0, Gn a plane, and J a set of intervals on
grid lines orthogonal to Dn. (J will be generated by
projecting some parts of the intervals in planes Gn�1

and Gn+1 onto Gn). A labeling from J to Gn with
value � is de�ned by:

For all (I; v), I 2 I(Gn), v 2 V (I) \ V (J) for a
J 2 J do: Label I with (v; �).

More informally: J describes a set of grid points on
Gn that should be labeled with � if there is an I 2
I(Gn) that covers that point.

Suppose Dn is horizontal and y1 < : : : < yl are the
y-coordinates of all v 2 V . We use standard sweep-line
techniques to process all yi where at least one J 2 J
intersects the horizontal line through yi. Then for each
such yi we get the set Ji � J of intervals that intersect
the current horizontal line sorted by x-coordinates.
Maintaining the sweepline takes O(jJ j log jJ j) time
overall.

For each I 2 I(Gn) on the horizontal line
through yi we determine the leftmost and rightmost
nodes vl and vr where any J 2 Ji intersects I. If they
exist, we label I with (vl; �) and (vr ; �) as described
in the previous section. It is easy to see that all labels
generated by other J 2 J which intersect I are redun-
dant. In fact, even only one of both labels considered
is not redundant (see �gure 4).

Let us assume that all intervals within I(Gn) on
the same y-coordinate have been presorted by x-
coordinates. Then the overall running time of this
step is

O(jJ j log jJ j+ jI(Gn)j(log jJ j+ log
)) (1)

where

 := max

I2I(Gn)
j�(I)j: (2)

2.4 Labeling a Plane

Let � 2 IN0 and Gn be a plane. For each v 2 I 2 I
with �(I) 6= ; let �(v) be de�ned with respect to �(I)
as in section 2.2. De�ne �(v) := 1 for all other v 2 V .

Labeling on Gn with value � is the following oper-
ation:

1) Mark all v 2 V (Gn) with �(v) = � as unpro-
cessed.

2) As long as there is an unprocessed v: Label all
intervals I0 2 I with v0 2 I0 such that fv; v0g 2
E and �(v0) > �(v) with the label (v0; �0), where

�0 := � + l(fv; v0g) � kv � tk1 + kv0 � tk1: (3)

Set v0 unprocessed if �0 = � and v0 2 V (Gn). Set
v processed.

This is logically the standard labeling step of Rubin's
algorithm. But avoiding redundant labeling opera-
tions results in a di�erent time bound:

For all I 2 I(Gn), �(I) 6= ;, let JI � I be the
subinterval that covers exactly all v 2 I with �(v) =
�. It follows from the monotonicity of �(v) (�gure 2)
that there is either no such node (where we de�ne
JI := ;) or a single interval covering all of them. We
now rewrite the above algorithm as follows:

0) Set F := fI 2 I(Gn) j JI 6= ;g.

1) Get I 2 F such that

max
v2JI

kv � tk1 = maxfkv0 � tk1 j v
0 2 JI0 ; I0 2 Fg

and set
F := F n fIg:

2) For all I0 2 I(Gn) with fv; v
0g 2 E for a v 2 JI ,

v0 2 I0: Choose such a v with kv � tk1 maximum
and label I0 with (v0; �0) where �0 is de�ned ac-
cording to (3). Set F := F [fI0g if �0 = �.

3) If F 6= ; then goto step 1).

Figure 5: All non-redundant labeling operations from
an interval (fat line) to neighboured intervals within
the same plane. t is assumed to be left of any interval
shown.

4) Let L := fJI j I 2 I(Gn); JI 6= ;g. If Gn�1 ex-
ists, then compute �0 as in (3) for an arbitrary
pair of adjacent nodes v 2 Gn, v0 2 Gn�1.
Project all intervals in L onto Gn�1 and label
from L to Gn�1 with value �

0 as described in the
previous section. Perform analogously if Gn+1

exists.

The equivalence of both algorithms in terms of result-
ing (induced) labels on the nodes can be seen as fol-
lows: For any two neighboured intervals I, I0 on the
same plane there is only one non-redundant labeling
from I to I0 (see �gure 5). This is the labeling between
nodes with maximum distance to t. We simply avoid
doing all other useless labelings. Additionally we label
nodes on other planes with the sweepline algorithm of
the previous section rather than doing it nodewise.

The running time is bounded as follows: Determin-
ing JI for an interval I is done in time O(log j�(I)j), if
�(I) is always organized as a tree. An interval I will
be inserted at most once into F because of step 1) and
the fact that new labels with same value � can be cre-
ated only by labeling towards the target node. There-
fore the total number of labelings in step 2) is bounded
by the number of interval pairs sharing neighboured
nodes, namelyO(jI(Gn)j). Organizing the intervals in
a suitable data structure enables us to access all neigh-
bours of a given interval in logarithmic time. Thus the
steps 0) - 3) can be performed in

O(jI(Gn)j(log jI(Gn)j+ log
)) (4)

with
 de�ned as in (2). The running time of step 4)
follows from the previous section.

2.5 Overall Algorithm

Based on the operations de�ned in the previous sec-
tions, the complete algorithm can be formulated as
follows:

0) Let Is; It 2 I be the intervals with s 2 Is, t 2 It.
Set �(Is) := f(s; ks � tk1)g, �(I) := ; for all
I 2 I n fIsg, and � := 0.

1) Label all planes Gn with value � as described
in section 2.4. Do this according to decreasing
distance to the plane containing t.

2) If �(It) = f(t; �)g then stop and return path by
backtracking from t to s. If �(v) � � for all v 2 V
(�(v) as de�ned in section 2.2) then stop unsuc-
cessfully. Otherwise compute the next minimal
unprocessed label �0 with

�0 := minf�(v) j v 2 V; �(v) > �g;

set � := �0 and goto 1).

The ordering of the planes in step 1) guarantees, that
processing a plane cannot create labels with value �
on an already processed one. So each plane has to be
considered only once.

The correctness of the algorithm follows immedi-
ately from the fact that it can be interpreted as Ru-
bin's one with an e�cient check for redundant labels
on intervals.

The complexity of a single execution of steps 1) and
2) is bounded according to (1) and (4) by

O(jIj(log jIj+
))

and
 can be bounded roughly by

 � maxfjV (I)j j I 2 Ig � jIj:

The second inequality holds because otherwise a whole
gridline could be removed in a preprocessing step.

If there is a path P of length L from s to t, then
at most detour(P) := L � ks� tk1 + 1 iterations of
steps 1) and 2) will be performed. With another type
of analysis it can be shown that the algorithm al-
ways performs as least as good as a standard Dijkstra-
implementation. This requires only that the intervals
in I are organized in advance as a suitable data struc-
ture providing logarithmic query time for the interval
covering a given gridpoint. So alltogether we get a
running time of

O(minf(detour(P) + 1)jIj log jIj; jV j log jV jg) (5)

and similary a memory requirement of

O(minf(detour(P) + 1)jIj; jV jg):

The term detour(P) is mainly of theoretical interest,
the current implementation behaves in practice like
having detour(P) bounded by a very small constant.
This holds even in cases where no path exists at all.

Like line-search algorithms this one is theoretically
fast for simple paths, i. e. paths with a small detour.
But in contrast to them it guarantees optimality.

Of course this algorithm can (and must) be signi�-
cantly speeded up in practice. The current implemen-
tation in XRouter uses among others: Fast look-up
data structures for intervals, additional labeling avoid-
ance heuristics and buckets for getting the next label �
that should be processed. Moreover it is able to cope
with source and target areas covering more than a sin-
gle gridnode.

3 Rip-Up and Reroute

In almost every sequential router, some strategies
to overcome blockages caused by already realized con-
nections are implemented. A common approach is rip-
up and reroute. This determines a set of wires to be
removed from the design such that previously blocked
components can now be joined using the additional
free space. Afterwards the ripped-out connections are
rerouted on alternate routes if possible.

A crucial step in this approach is to determine the
set of connections that should be ripped-out. If each
connection is associated with a positive weight, re-

ecting for example criticality or reroutability, then
it is natural to look for a minimum weighted set of
connections which must be removed to unblock a cer-
tain component. But beside pure heuristics there is
mainly one exact algorithm for computing such a min-
imum weighted rip-up set (MRS) [10]. This paper
introduces a hypergraph in which connected unused
regions (islands) of the grid form the nodes. Already
wired connections form the hyperedges of the graph.
A hyperedge joins all nodes such that the boundary of
the corresponding island is touched by the connection
corresponding to the edge.

There is a serious drawback of this model on large
threedimensional grids: An arti�cial island for each
pair of nets crossing each other in adjacent planes must
be added. So the hypergraph easily has a size compa-
rable to the number of grid nodes.

Instead it is possible to compute a MRS by using
a path search algorithm with a special cost function.
Let G = (V;E) denote the whole routing grid includ-
ing already used areas but without permanent block-
ages. For each v 2 V let c(v) denote the electrical
component currently using v, where c(v) = ;, if v is
unused. Let w(c(v)) � 0 the weight of c(v), where
w(;) = 0. For each edge e = fv; v0g let

l(e) := kv�v0k1+

�
w(c(v))+w(c(v0)); c(v) 6= c(v0)
0; otherwise

Let w(c), c 6= ;, be greater than the euclidean length of
any path to be considered during the search. Then it is
easily proved, that any shortest path inG between two
blocked components according to the cost function l
intersects exactly with a MRS.

Moreover the search can be done with a slight mod-
i�cation of the algorithm given in the previous section.
We simply add the additional term w(c(v))+w(c(v0))
to the new label whenever we perform a labeling from
a node v to a node v0 with c(v) 6= c(v0). All techniques
for non-redundant labeling apply as before with a sin-
gle exception: The labeling between sets of orthogonal
intervals can only be performed as described in sec-
tion 2.3, if all intervals of the set J are projections of
lines used by the same component. Therefore we have
to switch to a pointwise labeling from used intervals I
(i. e. c(v) 6= ; for all v 2 I(v)) to nodes in adjacent
planes while still doing the special orthogonal labeling
for all other intervals. This causes a moderate increase
of running time. It turned out to be small in practice
because only few alternate routes using nodes belong-

Table 1: Problem Sizes

Chip Nodes Intervals Nets Pins

C1 83,666,883 1,005,296 35,022 115,238

C2 107,847,621 308,038 9,369 29,126

C3 48,795,267 1,367,530 51,167 192,279

C4 107,847,621 1,145,565 40,898 141,141

C5 107,847,621 2,210,793 81,395 296,225

C6 107,847,621 1,852,115 63,004 221,856

C7 107,847,621 2,367,050 82,763 256,242

C8 84,203,346 2,472,458 67,311 283,511

C9 260,564,164 4,287,534 157,440 546,512

C10 371,822,850 2,445,697 199,579 691,345

ing to existing connections are considered until a MRS
is found.

This shows that the exact computation of a MRS
can be done e�ciently without a memory requirement
in the order of the grid size.

4 Local Routing Algorithm

As mentioned before, we have incorporated these
algorithms into the detailed routing program of
XRouter package. This program is invoked after a
global routing step in which subareas of the chip for
the �nal layout of each net are computed. Detailed
routing then tries to assign �nal routes within these
areas sequentially to all connections. Here a connec-
tion is a wire joining two already electrically connected
components of a net. For multiterminal nets the dif-
ferent connections may be realized at arbitrary times.

The ordering of the connections is dynamically de-
termined according to several criteria: Timing criti-
cality of the net, width and minimal spacing of the
wires to be used for the connection, accessibility es-
timation for the component, estimated length of the
connection, etc.

The search for a single connection is done with the
shortest path algorithm as described in section 2.

If the program fails to do a connection, then a rip-
up and reroute subroutine is invoked immediately. For
rip-up, a MRS of connections blocking the path from
source to target is determined with the algorithm de-
scribed in the previous section. Then rerouting the
ripped-out connections is tried immediately, which
again may cause subsequent rip-ups. Several criteria
ensure the termination of this recursive process after
a limited number of steps. The initial state before the
�rst rip-up is reconstructed whenever rerouting of any
connection fails.

5 Computational Results

XRouter has been run successfully for a large num-
ber of designs at IBM. Performance statistics for sev-
eral ones are listed in tables 1, 2, and 3. The par-
ticular chips are mostly components of multiprocessor
systems in di�erent CMOS-technologies.

Table 1 shows the complexity of the problem in-
stances. Column 3 illustrates the improvement of an

Table 2: Local Routing Statistics

Searched Search Area (Nodes)
Chip Paths
= Max. Rip-Ups

C1 80,216 449,673 39,674,500 165

C2 19,757 406,753 23,740,480 73

C3 141,675 268,255 38,364,285 1135

C4 100,865 383,408 34,144,588 736

C5 215,808 286,565 29,922,132 346

C6 158,852 416,646 44,636,072 398

C7 177,064 292,129 26,558,764 387

C8 217,054 419,872 38,566,256 1562

C9 389,074 469,889 84,391,520 1845

C10 460,695 231,332 38,813,610 6727

Table 3: CPU-Time(Seconds)

Chip Path Search MRS Computation Total

C1 8226 38 9804

C2 1897 17 2254

C3 7894 91 10034

C4 8938 96 10792

C5 12407 67 16253

C6 16582 552 20142

C7 12042 57 15180

C8 13402 243 18982

C9 37754 691 46818

C10 31059 947 41688

interval description of the grid compared to a nodewise
one.

Tables 2 and 3 show performance characteristics
of the entire local router and important subroutines.
Average and maximum sizes of the areas that have to
be considered during a single path search are given in
column 3 and 4 of table 2. CPU-times are measured
on a RISC/6000 Model 590. The maximum memory
requirement of the entire detailed router was at most
220MB for the biggest designs.

6 Summary and Conclusions

We have presented a new path search algorithm
that combines the advantages of maze-running as well
as line-search algorithms: It is optimal and theoreti-
cally fast for simple paths with a small detour. More-
over does the memory requirement mainly depend on
the size of an interval representation of the grid which
is usually much more compact than nodewise ones.

An additional application to the computation of
minimal rip-up sets has been given.

Because of the small memory requirements and fast
runtime this has been made a core routine of the de-
tailed routing part of XRouter package. With that,
even very large processor chips at IBM have been
routed within hours using not more than 250 MB
memory.

Next generation processors will have approximately

four times the complexity of the chips today. Concern-
ing memory requirements, the program is able to han-
dle them without major changes due to the compact
interval description of the routing grid. Additional im-
provements of the labeling process will be investigated
in order to improve the runtime on such chips.

References

[1] K. L. Clarkson, S. Kapoor, and P. M. Vaidya. Rec-
tilinear shortest paths through polygonal obsta-
cles in O(n(logn)2) time. Proceedings of the 3rd
Annual Symposium on Computational Geometry,
pages 251{257, 1987.

[2] M. de Berg, M. van Kreveld, and B. J. Nilsson.
Shortest path queries in rectilinear worlds of higher
dimension. Proceedings of the 7th Annual Sym-
posium on Computational Geometry, pages 51{60,
1991.

[3] P. J. de Rezende, D. T. Lee, and Y. F. Wu. Recti-
linear shortest paths in the presence of rectangu-
lar barriers. Discrete & Computational Geometry,
4:41{53, 1989.

[4] M. L. Fredman and R. E. Tarjan. Fibonacci heaps
and their uses in improved network optimization
algorithms. Proceedings of the 25th Annual IEEE
Symposium on Foundations of Computer Science,
pages 338{346, 1984.

[5] W. Heyns, W. Sansen, and H. Beke. A line-
expansion algorithm for the general routing prob-
lem with a guaranteed solution. Proceedings of the
17th Design Automation Conference, pages 243{
249, 1980.

[6] D. W. Hightower. A solution to line-routing prob-
lemon the continuous plane. Proceedings of the 6th
Design Automation Workshop, pages 1{24, 1969.

[7] J. H. Hoel. Some variations of Lee's algorithm.
IEEE Transactions on Computers, C-25:19{24,
1976.

[8] J. Koehl, U. Baur, B. Kick, T. Ludwig, and
T. P
ueger. A
at, timing-driven design system
for a high-performance CMOS processor chipset.
this volume.

[9] C. Y. Lee. An algorithm for path connection and
its applications. IRE Transactions on Electronic
Computers, EC-10:346{365, 1961.

[10] M. Raith and M. Bartholomeus. A new hyper-
graph based rip-up and reroute strategy. Proceed-
ings of the 28th Design Automation Conference,
pages 54{59, 1991.

[11] F. Rubin. The Lee path connection algorithm.
IEEE Transactions on Computers, C-23:907{914,
1974.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

