
Algorithms for Detailed Placement of Standard Cells

Jens Vygen

Research Institute for Discrete Mathematics

University of Bonn

Lenn�estr. 2, 53113 Bonn, Germany

Abstract

The state{of{the{art methods for the placement of
large{scale standard cell designs work in a top{down
fashion. After some iterations, where more and more
detailed placement information is obtained, a �nal
procedure for �nding a legal placement is needed. This
paper presents a new method for this �nal task, based
on e�cient algorithms from combinatorial optimiza-
tion.

1 Introduction

The
at design of today's high performance proces-
sor chips requires a program for placing several hun-
dred thousand objects with respect to wiring and tim-
ing constraints. In this paper, the objects to be placed
will be called circuits (other authors speak of modules,
cells or components). We assume that most of them
are standard cell circuits; those have some standard
height H and an integral width between 1 and W . A
legal placement arranges the standard cell circuits in
cell rowswhich can be assumed to be given in advance.
From the placement point of view, gate{array designs
also �t into this model.

All successful placement algorithms for the most
complex designs work in a top{down fashion (see e.g.
[1], [4], [5]). The global structure is always similar:
Iteratively the set of circuits is partitioned into smaller
and smaller subsets, each corresponding to a region of
the chip area. These regions are induced by a �ner and
�ner grid. A more detailed description will be found
in Section 2.

After some iterations the regions are quite small;
each of them contains only few circuits. When the re-
gions' sizes become comparable to the size of the larger
circuits the partitioning process is stopped. Now some
�nal legalization procedure is needed. Most circuits
can usually be placed within the region they are as-
signed to, but in some cases modi�cations will be ne-
cessary. This �nal phase is called detailed placement
and is the subject of this paper.

We propose a new algorithm for the detailed place-
ment. This new method naturally partitions the de-
tailed placement task into several subtasks. Each of
the subproblems can be formulated as a well{known
combinatorial optimization problem and is solved op-
timally.

The detailed placement algorithm presented here

consists of three phases: Balancing the regions (Sec-
tion 3), balancing the zones (Section 4) and zone{
based placement (Section 5). Some concluding re-
marks make up the �nal section.

2 Top{down placement

In this section we brie
y review the global struc-
ture of top{down placement algorithms like [1], [4], [5].
This is necessary since the output of the global place-
ment procedure is the input for the detailed place-
ment.

Let [xmin; xmax]� [ymin; ymax] be the chip area. At
each stage of the global placement we have two lists
of coordinates xmin = x0 < x1 < x2 < � � � < xp�1 <
xp = xmax and ymin = y0 < y1 < y2 < � � � < yq�1 <
yq = ymax which de�ne a grid, partitioning the chip
area into p � q regions. By the region (i; j) we mean
[xi�1; xi]� [yi�1; yi].

Let C denote the set of movable circuits. At any
stage of the global placement, the set of circuits is
distributed to the regions, i.e. we have an assignment
f : C ! f1; : : : ; pg � f1; : : : ; qg. Initially we of course
have p = q = 1 and f(c) = (1; 1) for all c 2 C.

Now each iteration consists of the following steps.
First of all, the grid is re�ned. That is, new cut co-
ordinates (either horizontal or vertical or both) are
generated and thereby each old region (i; j) is parti-
tioned into two or four new regions. (In late stages,
some of the regions might not be partitioned anymore
if the �nal number of regions is not a power of 2.)

When a region (i; j) is partitioned, the set of cir-
cuits c with f(c) = (i; j) has to be partitioned, too.
Each of these circuits has to be assigned to one of the
two or four subregions. After this one proceeds with
the next iteration.

The assigment of the circuits to subregions is ob-
viously the crucial step. The idea is that if a circuit
is assigned to region (i; j), it will (later) probably be
placed within this region. So a constraint to be ob-
served is that the total size of the circuits assigned to
one region does not exceed the region's capacity.

By capacity we mean the total usable area of the
region. For example, if some circuits are �xed in ad-
vance, the area occupied by them cannot be used any-
more. Furthermore, it is often desirable that a certain
percentage of each region remains free, either for later
use or for wirability reasons. This may also reduce
capacity of a region.

At a late stage, each region contains only few cir-
cuits. Then an assignment of the circuits to the subre-
gions meeting the capacity constraints might not ex-
ist. For example, if a region contains three circuits
of size 10 and each of the two subregions has capac-
ity 15, there is no feasible assignment. At this point
it is recommendable to stop the iterative partitioning
process.

What follows is the detailed placement phase. We
assume that the rows of the �nal grid are exactly the
cell rows. The columns of the �nal grid should have
some reasonable size, depending on the distribution of
the sizes of the standard cell circuits.

For example, Table 1 shows the distribution of the
widths of the 198226 movable standard cell circuits of
the MBA chip described in [2]. Here a column width
of 50 is appropriate, as more than 99% of the circuits
are smaller.

Table 1: Widths of standard cell circuits of a chip

width #circuits

1 2655

2 27700

3 27822

4 23065

5 21562

6 20299

7 10789

8 26881

9 2897

10 1549

11 2888

12 1848

13 2160

14 172

15 274

16 222

17 12428

18 7661

19 1228

20 973

21-30 1112

31-50 1098

51-100 798

100-123 145

All circuits which do not �t into one region (in par-
ticular all circuits whose height exceeds the height of
a cell row) are assumed to be �xed before the detailed
placement starts.

3 Balancing the regions

Although the partitioning is stopped when the re-
gions reach a certain size, it will typically happen
that some capacity constraints are violated. However,
if one region's capacity is exceeded there should be
an adjacent region (or at least one not too far away)
whose capacity is not used up. Thus a balancing of the
regions should be possible without moving circuits too
far. This is the goal of the �rst phase of the detailed
placement algorithm.

First, a directed graph G is computed. The vertices
of G are the regions; adjacent regions are joined by a
pair of oppositely directed edges. The cost c(r; r0) of
a directed edge (r; r0) is a rough estimation of the cost
of moving one unit, i.e. a circuit of width one, from
region r to region r0. This does not mean that region
r actually contains a circuit of width one: Rather we
shall measure the cost of moving circuits of total width
w from r to r0 by w � c(r; r0). We implemented the
easiest possible estimation, namely a uniform cost for
all horizontal edges and another one for all vertical
edges (the ratio depends on the ratio of row height to
column width). In any case, the edge costs should be
nonnegative.

Let w(r) be the width of region r, and let C(r)
be the set of the circuits currently assigned to region
r. For any subset of circuits C0 we write w(C0) for
their total width. Moreover, suppose that the desired
density is d; e.g. d = :8 means that preferably only
80% of a region should be used. Then the region's
capacity is computed as H � w(r) � d. If all capacity
constraints during the partitioning would have been
met, we would have H �w(C(r)) � H �w(r) � d for all
regions r.

Now we compute a number b(r) for each region r,
indicating how much free capacity is left or otherwise
how far the capacity is exceeded. We set

b(r) :=

(
w(r) � d�w(C(r)) if w(r) � d > w(C(r))
w(r)� w(C(r)) if w(r) < w(C(r))
0 otherwise

In the �rst case we call r a sink, in the second case r
is a source. The above de�nition of b means that, as
long as their total width does not exceed the width of
the region, we don't force circuits to move, even if the
local density is higher than d. This re
ects that the
density constraint is soft, it is not necessary to satisfy
it for every single region.

Now a minimum{cost
ow problem is set up. We
introduce a super{source s, a super{sink t, edges (s; r)
for all sources r, and edges (r; t) for all sinks r. The
new edges have zero cost. The capacity of an edge
(s; r) is �b(r), the capacity of an edge (r; t) is b(t), all
other edges have in�nite capacity. Then a maximum
s{t{
ow of minimum cost is determined. This can
be done e.g. with Orlin's algorithm [3] in O(n2 log2 n)
time, where n is the number of regions.

Now that an optimum
ow f has been determined,
it has to be realized by actually moving circuits. Let
G0 be the subgraph of G containing only the edges
carrying positive
ow. Since the edge costs are non-
negative, G0 is an acyclic graph. We scan the vertices

in topological order with respect to G0, i.e. for any
edge (r; r0) with f(r; r0) > 0 we examine r before r0.
Such a topological ordering can be determined easily
in linear time.

When examining a vertex r, we check if w(C(r)) �
w(r). In this case we do nothing. Otherwise it will be
guaranteed that the total
ow on the edges leaving r
will be at least w(C(r))�w(r). Let (r; r1); : : : ; (r; rk)
be the outgoing edges with positive
ow. We look for
a partition C(r) = C0 [C1 [� � � [Ck into disjoint
subsets such that

(i) w(Ci) � f(r; ri) for i = 1; : : : ; k;

(ii) maxf0; w(C(0))� w(r)g is minimum;

(iii) in case of a tie, the total cost

kX
i=1

X
c2Ck

cost(c; r; rk)

is minimum.

If the partition is found, we move Ci to ri (i =
1; : : : ; k) and leave the circuits of C0 in region r.

Objective (ii) re
ects the fact that one cannot al-
ways guarantee w(C(0)) � w(r). In such a case the
capacity violation should be kept as small as possible.
In (iii), cost(c; r; rk) is the cost of moving circuit c from
r to r0. As a natural cost measure we take the increase
of the (weighted) bounding{box netlength. Moreover,
it is reasonable to add an extra cost if the circuit c has
already been been moved quite far by previous steps.

It remains to show how to �nd an optimum parti-
tion. This problem turns out to be a kind of knapsack
problem and can be solved e�ciently by dynamic pro-
gramming techniques:

Let C(r) = fc1; : : : ; cmg. For j = 1; : : : ;m
and 0 � xi � f(r; ri), i = 1; : : : ; k, we de�ne
Pj(x1; : : : ; xk) := (C1; : : : ; Ck), where w(Ci) = xi,
Ci � fc1; : : : ; cjg (i = 1; : : : ; k) and Ci \ Cj = ;

(i 6= j), and among the k{tuples satis�ying these con-

ditions

kX
i=1

X
c2Ck

cost(c; r; rk) is minimum. If no such

k{tuple exist, Pj(x1; : : : ; xk) is unde�ned.
By subsequently scanning the circuits in the order

c1; : : : ; cm we can, for each j = 1; : : : ;m, compute
Pj(x1; : : : ; xk) for all 0 � xi � f(r; ri). This takes
kY

i=1

f(r; ri) comparisons. Therefore the total running

time is O

�
w(C(r))k+1

kk

�
, which is acceptable since

w(C(r)) is not too big (less than 100) and k is very
small (typically one or two, never more than four).

In practice the overall time for solving all these
problems has proven to be neglectable compared to the
time the minimum{cost
ow computation requires.
Note that in the special case k = 1 the above reduces
to a standard knapsack problem.

4 Balancing the zones

The second phase of the detailed placement algo-
rithm considers the so{called zones. By a zone we
mean a maximal part of a cell row which is not in-
tersected by any preplaced object or blockage. The
goal of the second step is to guarantee that no zone
contains more circuits than �t into it. In contrast to
the previous region balancing, even slight capacity vi-
olations cannot be tolerated.

Basically the same framework as in the �rst phase is
used, with the di�erence that the regions are no longer
the ones induced by the grid. Another di�erence is
that subsequent zones in the same cell row are called
adjacent, although they have a positive distance. The
cost of the edges of course re
ects this distance.

An initial assignment of the circuits to the zones is
obtained in a straightforward way, based on the �nal
assignment to the regions (after the region balancing)
and on the locations of the circuits.

Since now a zone can be adjacent to more than
four other zones, the k in the dynamic programming
algorithm for realizing the
ow may now be too big.
In such a (rare) case simple knapsack problems are
solved for one outgoing edge after the other.

If, after �nding an optimum
ow and realizing it,
there are still zones r for which w(C(r)) > w(r), the
procedure is iterated. We included two additional
heuristics to ensure that after a few iterations (usually
after the �rst one) the process terminates: First, for a
source r, we increase �b(r). Namely, we choose �b(r)
to be the smallest integer t greater thanw(C(r))�w(r)
such that a subset C0 � C(r) with w(C0) = t exists.
Second, for all sinks r for which b(r) is smaller than the
largest jb(r0)j of a source r0 we rede�ne b(r) := 0. The
meaning of these two heuristics is easy to understand.

One may ask whether phase one (Section 3) is nec-
essary at all. It isn't. However, experiments showed
that the total movement of circuits is smaller if phase
one is included. Also the netlength is usually better.
A reason is that, due to very wide zones, realizing even
a small
ow in phase two can result in moving some
circuits quite far.

5 Zone{based placement

After phase two it is guaranteed that w(C(r)) �
w(r) for all zones r, i.e. no zone contains more circuits
than �t into it. Now all the circuits will be placed dis-
jointly within their zones. Furthermore, the horizon-
tal ordering of the circuits within each zone is �xed
according to the locations of their centers. Observ-
ing these constraints, the optimum placement with re-
spect to the (weighted) bounding{box netlength can
be found.

Namely, the problem can be formulated as a linear
program (LP). To do this, we need some notations.
For each zone i we denote by ximin and ximax its left
and right boundary. Let ci1; : : : ; c

i
mi

be the circuits
in zone i, in this horizontal order. For each circuit
c, we introduce a variable x(c) representing the x{
coordinate of the center of the circuit. (Note that the

y{coordinate is �xed at this stage.)
Let N be the set of nets. Each net n is a set of pins.

Each pin p belongs to a circuit c(p) and has a �xed
o�set (xoffs(p); yoffs(p)) to the center of the circuit.
Furthermore, each net n has a weight w(n), re
ecting
its timing criticality. For each net n, we introduce
two variables x(n); x(n) representing the left and right
boundary of the bounding box of n.

Using these notations, the LP formulation is:

min
X
n2N

w(n) (x(n) � x(n))

s.t. x(n) � x(c(p)) + xoffs(p) � x(n)

(for all p 2 n)

ximin � x(ci1) (for all i)

x(cij) +
w(fcij ; c

i
j+1g)

2
� x(cij+1)

(for all i; j)

x(cimi
) � ximax (for all i)

This LP is the dual of a minimum{cost
ow prob-
lem. To see this, we introduce an auxiliary variable
v0 with the value zero. Then every constraint has the
form vi � vj � aij, where aij is a constant and vi and
vj are variables. Each of these constraints corresponds
to a directed edge in a graph and to a dual variable
fij . As the dual LP we then obtain

max
X
i;j

aijfij

s.t.
X
i

fij �
X
k

fjk =

(
{w(n) if vj is x(n)
w(n) if vj is x(n)
0 otherwise

(for all j)

fij � 0 (for all i; j)

This is obviously a maximum{cost
ow problem with
in�nite capacities. With the fastest known algorithm
for uncapacitated minimum{cost
ow problems [3] we
can thus solve both the primal and the dual LP in
O((n logn)(m + n logn) time, where n = jCj + jN j
and m is the total number of pins.

For very large chips, this superquadratic running
time is unacceptable. Therefore one may compute the
optimum placement for each zone separately. As a
consequence, one does not achieve the global optimum;
the netlength is typically one or two percent higher.

We �nally address the question how the density
constraints can be taken into account in the zone{
based placement. This is easy: By adding constraints
of the type

x(cij) +
w(fcij; c

i
kg)

2
+

k�1X
l=j+1

w(fcilg) + � � x(cik);

where j < k and � > 0, it is ensured that at least
� units of free space will be somewhere between the

circuits cj and ck. It should be clear how the den-
sity constraints can be translated into constraints of
the above type. Of course, the e�cient solvability is
una�ected.

In certain circumstances it might be preferable to
�nd a detailed placement with minimum total move-
ment instead of minimum netlength. By considering
arti�cial nets connecting a circuit's old x{coordinate
to its center, this objective function can be viewed as a
special case of the above. Moreover, it can be achieved
that no single circuit is moved too far.

6 Concluding remarks

An additional postoptimization routine has been
implemented. This procedure tries to �nd favourable
exchanges of groups of circuits placed in adjacent
zones. However, we found that the netlength gain
of this local improvement heuristic is very small and
usually not worth the computation time. This ob-
servation may also be viewed as an indication of the
quality of the placement. All experiments are based
on the placement program described in [5].

The detailed placement algorithm presented here
has been used very successfully, e.g. for the design of
the chips of the IBM S/390 Parallel Enterprise Server
{ Generation 3 (see [2]) and its successors. The run-
ning time for the MBA chip with 198226 movable stan-
dard cell circuits is about half an hour on an IBM
RS/6000 595, depending on the density constraints
imposed. As could be expected, the minimum{cost

ow computations in phase one and three dominate
the running time.

I thank Christoph Albrecht, Ursula B�unnagel, Mar-
tina Fuhrmann and Mathias Hauptmann for imple-
menting the algorithms described here.

References

[1] J. M. Kleinhans, G. Sigl, F. M. Johannes,
K. J. Antreich : GORDIAN: VLSI Placement by
Quadratic Programmingand Slicing Optimization,
IEEE Transactions on Computer{Aided Design of
Integrated Circuits and Systems 10 (1991), 356-365

[2] J. Koehl, U. Baur, B. Kick, T. Ludwig,
T. P
ueger : A Flat, Timing{Driven Design Sys-
tem for a High{Performance CMOS Processor
Chipset, this volume

[3] J. B. Orlin : A Faster Strongly Polynomial Min-
imum Cost Flow Algorithm, Operations Research
41 (1993), 338-350

[4] R.-S. Tsay, E. Kuh, C.-P. Hsu : Proud: A Sea{
Of{Gate Placement Algorithm, IEEE Design and
Test of Computers, 1988, 44-56

[5] J. Vygen : Algorithms for Large{Scale Flat Place-
ment, Proceedings of the 34th Design Automation
Conference, 1997, 746-751

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

