
An Object–Oriented Model for
Specification, Prototyping, Implementation and Reuse

Jörg Böttger, Karlheinz Agsteiner, Dieter Monjau, Sören Schulze

Department of Computer Science
Chemnitz University of Technology

09107 Chemnitz, Germany
Email: Joerg.Boettger@informatik.tu-chemnitz.de

Abstract

This paper presents a hierarchical, object–oriented model
as a basis for reuse of components in the design process of
digital systems.

The model forms a uniform knowledge base which con-
sists of formal descriptions about functional, qualitative,
and quantitative properties of systems and components. It
supports the synthesis of systems from the described com-
ponents. Starting at a system specification different models
and descriptions are generated for simulation, prototyping,
analysis and high level synthesis.

1 Introduction
The reuse of components at different design levels is an
important basis for a rapid, inexpensive, and correct design
of complex systems.

The works [3][4][5] deal with methods to reuse VHDL
component descriptions for simulation and high level syn-
thesis. They use the concept of generics to parameter-
ize VHDL descriptions. The actual parameters are set by
type declarations and conditional, loop, and generate state-
ments. Via these parameters data width, functionality or
component structure are controlled. But the exclusive use
of the parameter concepts causes the number of parameters
for larger systems to increase. The results are very complex
and unreadable VHDL descriptions.

[1] presents a Module Manager as an approach to assist the
designer in specification of hardware systems. This flexi-
ble expert system proposes behavioral solutions at a high
level of abstraction. The Module Manager allows reusing
them. It aims at assisting the designer with a knowledge
base to generate a set of behavioral models (e. g. speed-
CHARTS, VHDL) corresponding to the requirements defi-
nition. For representing knowledge a semantic net consist-
ing of patterns of interconnected nodes (classes) and arcs
(relationships) is used. There are four types of association

to represent all possible configurations for modeling de-
signs: generalization (is-a), aggregation (has-a), restriction
(can-be) and possibility (may-have).

In a case study [7] a simplified model of a MC68000 micro-
processor has been developed by applying the Object Mod-
eling Technique OMT by Rumbaugh ([6]) in combination
with an object–oriented language extension of VHDL. The
system is modeled by three different views: object model,
dynamic model and functional model. The object model
shows the static structure of the system. It consists of en-
tities (e. g. execution unit, internal memory, interface) and
their relations to each other. These entities are the classes
of the system and its objects, respectively which are de-
scribed by their attributes and operations. Relations can
be aggregation, association, or generalization. The dy-
namic model describes changes of objects as a result of
responses to interactions between objects. Finally, opera-
tions are described by the functional model (data flow di-
agrams, pseudo–code or code in the implementation lan-
guage, an object–oriented extension of VHDL).

In [2] a generic processor model including a generic load
description for performance analysis purposes is described.
A processor model is specified by an instruction set and ad-
dress modes. Its structure is described by a generic, hierar-
chical CPU tree that bases on hardware modules connected
by “specialization/implementation” relations (inheritance
hierarchy) and “consists of” relations (collection of models
from function blocks of the layer beneath).

In [8] a methodology based on a hierarchical model of in-
terpreters is presented for formalizing RISCs in general.
The purpose of this work is the development of a generic
methodology for the hierarchical specification of a large
number of cores of realistic RISC processors. The abstrac-
tion levels used by a designer when implementing RISCs
are mirrored by this hierarchical model. The informal spec-
ifications given by the user at each level of abstraction can



easily be converted into a formal specification in higher or-
der logic. The model is of great use in formal verification.

Some of the literature [3][4][5] deals with generic, parame-
terizable component descriptions. This concept is suitable
for systems with a complexity of e. g. multiplier, register
files, or simple microcontrollers. The exclusive use of the
parameter concept for designing complex systems implies
large and hardly manageable parameter lists and unread-
able component descriptions. Other works [1][2][8] are
limited to a specific processor or specific views of proces-
sor descriptions. Object–oriented and knowledge–based
techniques are applied in these cases.

Our model is suitable for designing complex components
and subsystems at system level (e. g. for the domains
of RISC processors or robotics control). All possible
components and system architectures of a given domain
are formally described in an object–oriented class hier-
archy (knowledge base). The classes represent compre-
hensive information and views of components, i. e. inter-
faces, behavior descriptions for different purposes (simu-
lation, high–level synthesis, verification) in different lan-
guages (VHDL, C++, temporal logic), attributes for param-
eters (data width, memory size), qualitative and quantita-
tive properties (area, power consumption) and additional
design constraints. The selection of components and the
integration into subsystems is performed by methods of
knowledge–based configuring. Model descriptions of the
designed system in a specific language, e. g. VHDL, are
assembled by model generators from the behavioral de-
scriptions of the classes participating in the model. The
configured systems are estimated by analysis methods and
compared to the given specification requirements. An in-
cremental extension of the knowledge base can be realized
very easily by the object–oriented nature (encapsulation,
inheritance) of our class hierarchy.

In section 2 our object–oriented model is described more
in detail. Section 3 introduces the design methodology and
the developed tool WISYRA, an example follows in sec-
tion 4.

2 Model
2.1 General model structure

The model consists of an object–oriented conceptual class
hierarchy and conceptual constraints. The class concept is
similar to the classes known from object–oriented analysis
and design but include special features for hardware de-
sign. Each class represents a pattern for constructing new
objects (instances) of this class. A class defines at least a
set of attributes that characterize quantitative or qualitative
properties of the class as well as optional descriptions of
interface, behavior, architecture or implementation of the

class (figure 1). The different descriptions of a class repre-
sent different views upon this class. Accordingly different
kinds of descriptions (e. g. for simulation, synthesis, verifi-
cation) are used.

class <identifier>
isa <identifier> -- link to superclass
attributes ... -- set of attributes
constraints ... -- set of constraints
parts ... -- link to subclasses
view -- one view, e.g. VHDL

interface
method in ...
method out ...
port in ...
port out ...

end interface ...
source ... -- link to source code

end view
view ... -- another view, e.g. C++

end class

Figure 1: Structure of a class

The conceptual hierarchy is partitioned into three layers:
a specification layer, a function layer and an architectural
layer.

The specification layer captures knowledge about
specifying a target system to be constructed in terms
of functional, quantitative, qualitative and structural
(architectural) requirements.

The function layer contains knowledge about the
functional properties the domain can consist of. Es-
sential parts of classes in this layer are executable be-
havior descriptions including their interfaces.

The architectural layer represents knowledge about
possible implementations of system functions by ar-
chitectures (consisting of software and hardware com-
ponents and connections between them). These im-
plementations can be regarded as different realiza-
tions of subsystems or whole systems at different de-
sign levels (e. g. synthesizeable VHDL code, compil-
able C++code, test benches, input descriptions of layout
generators).

Prototypes are represented by class instances connected
by an aggregation or implementation relation. They are
constructed by applying the knowledge about dependen-
cies between the specification and function layer to a given
specification. Correspondingly system architectures can be
constructed by exploiting in– or between–layer relations of
the function and architectural layers.



2.2 Classes, objects and relations

Each concept representing knowledge about the domain is
modeled as a class. Classes are distinguished by unique
identifiers. A class represents a pattern for constructing
concrete objects (instances). Every object belongs to ex-
actly one class.

A class defines a set of attributes that characterize its quan-
titative or qualitative properties. Instances inherit the types
as well as the default values of these attributes but may
overload the default values. Typical properties represented
by attributes are generic parameters (e. g. the width of a
register or the number of registers in a register file) and
other quantitative (e. g. maximal area or costs, reaction
time) as well as qualitative data (e. g. fairness requirements
in dealing with non determinism).

In addition to attributes, a class may define generic descrip-
tions of interface and behavior in algorithmic or descriptive
form by different views, e. g. by VHDL, C++ or temporal
logic (hybrid modeling depending on the intended usage).
When a certain type of descriptions is needed by the de-
signer or the configuration system the respective view is
requested from the knowledge base. A typical example:
the configuration system has to evaluate the utilization of a
certain subsystem. The respective analysis method will ini-
tiate a simulation of the corresponding object substructure.
After reading the VHDL views of all instances participat-
ing in the substructure a model is built and simulate.

function class SYSTOLIC ARRAY isa MAT MULT UNIT is
comment ("Systolic Array for Matrix Mult.");
attribute (
DIM : generic integer := 4;
OVL : generic integer := 2 * IVL + log(DIM,2) );

view vhdl
source ("SYSTOLIC ARRAY.vhd" simulation);
interface (
LEFT : in std log vec(DIM*IVL-1 downto 0);
RIGHT : in std log vec((2*DIM-1)*IVL-1 downto 0);
OUTPUT : out std log vec(DIM*OVL-1 downto 0) );

parts (
MULT ARRAY : DIM * (2 * DIM - 1) SYSTOLIC CELL );

end SYSTOLIC ARRAY;

Figure 2: Functional class

Figure 2 shows a part of the domain of matrix multiplier
at the function layer in our class and instance notation
(CLINT). CLINT was developed for an easy and compre-
hensive description of the object–oriented database and the
generated instance nets. The important parts of a class: at-
tributes, views, interfaces, specialization (isa), and decom-
position (parts) are highlighted.

Classes are patterns for constructing objects, which are
used to model concrete components in the domain. A tar-

get system is modeled by a hierarchy of objects which are
connected by relations. This object model has to satisfy
all given design requirements. A class hierarchy emerges
from connecting classes by relations. Three types of rela-
tions are available to connect classes and build hierarchies:

an is-a relation to describe specializations within a
layer (taxonomical hierarchy),

has-parts relation to represent aggregation within a
layer (decompositional hierarchy),

an implementation relation to model the mapping of
classes of the specification layer into classes of the
function layer or classes of the function layer into
classes of the architectural layer, respectively.

is-a is an : relation. Every superclass may have differ-
ent specializations. Specialization means particularization,
i. e. refinement and/or extension of attributes, interface or
behavior of a class.

has-parts is a relation. Several subclasses may be
related to one superclass, correspondingly several super-
classes may be related to one subclass.

The actual design of class hierarchies by is-a and has-parts
is left to the domain expert designing the hierarchies. Usu-
ally, though, is-a relations are more common at the func-
tion level than at the architecture level, has-parts are more
usual at the architecture level than they are at the function
level.

The implementation relation is quite different to the other
two relations. While these both are strictly intra-layer re-
lations, implementation only occurs as an inter-layer re-
lation. Between the specification and function layer im-
plementation means implementing specification concepts
by functions. Between function and architecture layer it
means implementing functions by architectures. In the
general case this relation is between classes and at-
tributes of both levels, in some situations more complicated
relations are required to map e. g. specification concepts to
functions like the instruction decoder of a RISC processor
([11]).

2.3 Constraints and constraint net

Conceptual constraints represent non–hierarchical depen-
dencies between attributes of classes or their instances, re-
spectively as well as between the existence of instances of
certain classes. For example, constraints between a class
and its successors in the has-parts relation are used to fix
dependencies between attributes of the respective instance
and its parts.

A constraint is defined by a pattern consisting of a sub-
structure of a class (pattern), an expression that has to be



true whenever the pattern matches an object substructure,
and finally a relaxation factor that specifies how “hard”
the respective constraint is. When generating an object
structure a constraint net is automatically constructed from
those conceptual constraints if the pattern match the object
structure. By propagating the constraint net of an object
structure inconsistencies in the structure are revealed if the
net is not free of conflicts. The conflict is the more serious
the higher the relaxation factor of the constraints involved
in the conflict is.

specification constraint IVL DIM OVL is
pattern P0 (

N0 : any ARCHITECTURE;
N1 : any INPUT VECTOR LENGTH -> N0;
N2 : any OUTPUT VECTOR LENGTH -> N0;
N3 : any MATRIX DIMENSION -> N0);

relax (0.5);
expr (N2.OVL >= 2 * N1.IVL + log(N3.DIM, 2))

end IVL DIM OVL;

Figure 3: Conceptual constraint

The example in figure 3 shows a part of a class hierarchy
describing the domain of matrix multipliers (example in
section 4). The constraint expresses the relation between
matrix dimension and the data width of the values of input
and output matrices, if all three are parts of the same archi-
tecture (N0). The minimal output vector length (N2.OVL)
is equal to twice the input vector length (N1.IVL) plus an
additional logarithmic overhead caused by potential carry
flags occur during (N3.DIM) additions of subresults.

2.4 Our approach and UML

During the last years several approaches towards object–
oriented modeling have emerged that provide frameworks
for describing object–oriented class hierarchies. The
most prominent is the Unified Modeling Language (UML)
[9]. UML defines “static structure diagrams” that include
nearly all notions defined by our knowledge model. Figure
4 depicts the concepts required for representing knowledge
about digital systems in an object–oriented hierarchy and
the way they can be described by UML. While UML of-
fers a pendant to every notion defined by our approach (and
much more) it can not replace our domain model because
of several essential advantages that our approach offers:

two-layer interface: UML is targeted at supporting the
development of software tools. Thus its class descrip-
tions only offer software interfaces as sets of meth-
ods. Our approach provides two layers of interfaces:
a port interface, ie. a set of in/out ports, and a set of
method interfaces on top of it. Hardware classes con-
tain at least the port interface and typically additional

method interfaces as protocols on these ports, soft-
ware classes typically provide only method interfaces.

integrated constraint system: UML supports constraints
only as an informal comment — checking them is
“tool responsibility”. Our domain model explicitly in-
cludes a full–featured constraint net that can be propa-
gated, checked for conflicts, that can be used to update
attribute values of instances, and so on. Thus non–
hierarchical dependencies that are outside the scope
of UML are handled in a formal manner in our ap-
proach.

three distinct layers: Our domain model consists of three
different layers of knowledge that are connected by
powerful mapping relations. In this way the whole
design flow of a system beginning with specification
and ending with implementation of system functions
by architectures is covered by the domain model. In
UML it is left to the user to create such a model.

more universal decomposition relation: UML's associ-
ation relations only allow association roles with a
fixed multiplicity. In our domain models the mul-
tiplicity of a decomposition relation can be formu-
lated as an expression on constants and attribute val-
ues. This enables the designer to conveniently model
structural dependencies like a register file that con-
sists of as many registers as an attribute it defines de-
scribes. This kind of dependency is common in hard-
ware description and an important feature for an ap-
propriate representation of hardware domains.

views and model generators: Our view concept allows
to independently describe the behavior of classes by
e. g. VHDL, C++, and any other language. Model gen-
erators take care of mapping an object–oriented model
of a system to not necessarily object–oriented target
languages like VHDL. UML, on the other side, is ex-
plicitly focused on object–oriented target languages
and unable to handle eg. VHDL code generation.

3 Design methodology and tool WISYRA
The goal of our approach is a comprehensive design sup-
port of systems in a specific domain by using (reusing) ex-
isting component descriptions and the knowledge about the
domain.

Foundation is the analysis of the target domain and con-
struction of a knowledge base containing information
about concepts and relations of the designable systems.
Currently we have implemented a relatively simple do-
main, matrix multiplier, and a complex domain, RISC pro-
cessors.

Starting point of a new design is a set of functional, qual-
itative, and quantitative requirements of the system to be



notion expressed by UML expressed by our approach
class class class
parameterized class template generic attributes
attribute attribute attribute
inheritance generalization specialization
aggregation association/composition decomposition
constraints constraints (informal) constraints (formal)
interface operation port, method
class behavior interact./state trans. diagram view (e. g. VHDL, C++)

Figure 4: Object–oriented concepts expressed by UML and our approach

designed. These requirements are interactively mapped by
our specification editor onto a set of objects, relations, and
constraints of our class hierarchy at the specification layer
using the knowledge base. The model is completed by the
configuration system and checked for inconsistencies. This
model at specification layer is transformed into different
models at function and architecture layer. Depending on
the information in the knowledge base the transformation
is done automatically or can be controlled by the designer.
The models of the target design are estimated using the
analysis information about components and subsystems in
the knowledge base. Also the models can be written out in
different descriptions and simulated, tested, and analyzed
using other commercial tools. Model generators for dif-
ferent languages (e. g. VHDL, C++) automatically create a
complete description of the modeled system from the views
of the object descriptions and the knowledge about connec-
tion between the included components.

At least a synthesizeable VHDL description of a model at
architectural layer can be generated.

This methodology and a corresponding tool set is being
developed in the project WISYRA. Essential parts are:

knowledge based configuration system

constraint system

specification editor SpecEd

model generator for VHDL, C++

graphical input and output of class hierarchy and de-
signed models

Interfaces are implemented connecting external commer-
cial tools (e. g. tools by Synopsys) for simulation, synthe-
sis, or analysis.

4 Example
By the example of matrix multipliers we show the strength
of our approach and the developed tool WISYRA. Ba-

sis of the design is the description of the domain using
object–oriented class hierarchies. These conceptual hier-
archy at specification, function, and architecture layer are
the knowledge base for the design by WISYRA.

The example is a matrix multiplier for matrices. A
matrix multiplier can be specified by matrix dimension,
word width of matrix values, maximum chip area, or the
principle kind of computation (each matrix value sequen-
tial, a row/column parallel, or a special highly parallel way
using a systolic array).

Matrix_Multiplier

Restriction

Multiplier_Area Architecture

Sequential_Multiplier

Parallel_Multiplier

Systolic_MuliplierDimension

Input_Vector_Length

Output_Vector_Length

n

has-parts is-a

Multiplier_Speed

Figure 5: Class hierarchy at specification layer

This paragraph presents the design flow from a set of re-
quirements to a synthesizeable VHDL description: The de-
signer chooses the class Matrix Multiplier of the specifica-
tion hierarchy (figure 5) as starting a point of the design
and creates an instance of this class. The specification edi-
tor SpecEd (figure 6 shows one of the interaction windows)
asks the designer to fill in all requirements to specify the
target system.

The configuration system that runs in the background sup-
ports this process by using and evaluating the knowledge
about structures and dependencies of the knowledge base.



A

B

C

D

Figure 6: Specification editor specifying a matrix multiplier

Figure 6 shows different kinds of inputs and dependencies
using SpecEd. Point A represents the input of the attribute
value IVL of the object Input Vector Length. Furthermore
the architecture of matrix multiplier can be specialized to
a sequential, parallel, or systolic matrix multiplier (point
B). This means that in the knowledge base a specializa-
tion relation (is-a) exists from class Architecture to the
classes Sequential Multiplier, Parallel Multiplier, and Sys-
tolic Multiplier. Point C shows the automatically parti-
tioning of a component in subcomponents by our tool.
The aggregation relation has-parts connects class Archi-
tecture and classes Input Vector Length, Dimension, and
Output Vector Length in the knowledge base at the spec-
ification layer. Constraints of the knowledge base will
be automatically created and evaluated. Point D shows
the three attributes, which instantiate a constraint of type
IVL DIM OVL (see figure 3) to describe the dependency
between these attributes.

If the specification of the component matrix multiplier is
not complete after the designers input the configuration
system will complete the object hierarchy using the knowl-
edge of the knowledge base. The result is a complete object
hierarchy at the specification layer.

The next step is to transfer a freshly created model of a ma-
trix multiplier from specification layer to function layer.
The knowledge about which object and attribute at the
specification layer entail objects, relations, or attribute val-
ues at the function layer is part of the knowledge base.
Using this knowledge some objects and relations on func-
tion layer are created as skeleton of our functional model.
These objects are the instance Mat Mult 0 of the functional
class Mat Mult including attribute values IVL=4, DIM=2,
and OVL=9 and the instance Ctrl Systolic 1 representing

the control unit of a systolic matrix multiplier.

The configuration system constructs an object model at the
function layer from this initial objects. This is described
in section 3 and more in detail in [10]. A well defined
knowledge base causes a nearly automatic configuration of
the described target system. But the designer can control
the creation of the model and can interact with the system.

As result an object model is built which only consist of a
set of instances at function layer and aggregation relations
has-parts between them. Then all constraints are satisfied
and general objects are replaced by specializations as far
as necessary, e. g. the root node Mat Mult 0 is replaced by
a specialization Systolic Mult 0 (figure 7).

This object model can be used in two ways: It can be trans-
formed into a model at the architecture layer using concrete
implementation for subcomponents on function layer or a
description of these functional model is generated from the
descriptions in the views.

In the first case all leaf nodes of the functional object hi-
erarchy are transferred into corresponding objects at archi-
tectural layer. At the lower left corner of figure 7 a concrete
adder realization (carry look ahead adder : ADD CLA 0)
at architecture layer implements a functional class (addi-
tion operation : ADD OP 6). The objects at architecture
layer contain synthesizeable VHDL descriptions. A model
generator builds a complete VHDL model from these de-
scriptions. The task of the model generator is to substitute
generic parameters by their values or to connect entities
with their components which result from specialization.
The result is a simulateable or synthesizeable description
of the matrix multiplier.

In the second case different model descriptions can be cre-
ated from the object model at the function layer. As de-
scribed in section 2.2 every class can contain one or many
different views of the class. Each view represents a de-
scription of the class in a specific language for a specific
purpose. A model generator of this language creates a
model of the component in this language. The model gen-
erator of VHDL and C++ can generate a model description
of the matrix multiplier.

5 Conclusion

A hierarchical, object–oriented model was presented as a
basis for designing digital systems. It allows the construc-
tion of knowledge bases for various domains of applica-
tion. A knowledge base represents knowledge about spec-
ifying systems by functional, quantitative and qualitative
requirements, about system functions and subfunctions and
about feasible system architectures. Our approach includes
the option to generate functional prototypes, means of ver-



Figure 7: Object hierarchy at function layer

ification, synthesis of architectures, testing and reuse of
characteristic elements in the various design layers.

Advantages of our approach are:

after developing the knowledge base (only once), for-
mal descriptions can be built of many different target
systems of this domain,

the simple, informal specification of the target system
by requirements,

the reuse of specification, function and architecture
knowledge including behavior described in various
languages as well as of systems or subsystems de-
signed previously,

a quick and easy generation of prototypes for simula-

tion, synthesis or mapping to FPGAs, and

the systematization of knowledge and documentation
of systems of a given domain.

Limitations are set by the cost of developing the knowledge
base. As in all other reuse scenarios there is an overhead
in modeling effort. The effort building our object–oriented
class hierarchy is high but the breakthrough can be reached
to amortize the modeling effort. If many different designs
of one domain are made using the same knowledge base
the tool WISYRA will work profitable.

Actual work is done at the area of analysis methods and
for reuse of components in heterogeneous systems (hard-
ware/software, analog/digital) using WISYRA. Further-
more additional domains will be modeled to get further



results about the application of our model and our tool.

Our work is supported by the “Deutsche Forschungsge-
meinschaft” under project VF 1298.

References
[1] L. Chaouat, C. Munk, A. Vachoux, and D. Mlynek.

An expert assistant for hardware systems specifica-
tion. In Proc. workshop on libraries, component mod-
eling, and quality assurance, Nantes, France, April
1995.

[2] U. Langer. Ein Konzept zur entwurfsbegleitenden
Leistungsanalyse von Rechensystemen. Dissertation.
Kovac, Hamburg, 1995.

[3] V. Preis, R. Henftling, M. Schütz, and S. März-
Rössel. A reuse scenario for the vhdl-based hard-
ware design flow. In Proc. Europ. Design Automa-
tion Conf. EURO-DAC'95 , Brighton, Great Britain,
September 1995.

[4] V. Preis and S. März-Rössel. Aspects of Modeling a
Library of Complex and Highly Flexible Components
in VHDL. In Proc. Workshop on Libraries, Com-
ponent Modeling, and Quality Assurance, Nantes,
France, April 1995.

[5] A. Reutter, B. Mößner, I. Kreuzer, and W. Rosen-
stiel. Wiederverwendung komplexer Komponenten
für Synthese und Simulation unter Verwendug von
VHDL. In Proc. 8. E.I.S.-Workshop, Hamburg, Ger-
many, April 1997.

[6] J. Rumbaugh and other. Object-oriented modeling
and design. Prentice Hall, Englewood Cliffs, USA,
1991.

[7] G. Schumacher, W. Nebel, W. Putzke, and
M. Wilmes. Applying object–oriented techniques to
hardware modelling – a case study. In Proc. VHDL
User Forum europe, SIG-VHDL'96 , Dresden, Ger-
many, May 1996.

[8] S. Takar and R. Kumar. A formalization of a hier-
archical model for risc processors. In Proc. EURO-
ARCH'93 , Reihe Informatik, München, Germany,
October 1993.

[9] UML Unified Modeling Language.
In http://www.rational.com/uml/references/ 1997.

[10] S. Kahlert, J.-U. Knäbchen, D. Monjau, S. Schulze.
System Level Synthesis Using Knowledge-Based
Configuration Tools. In Proc. of Workshop on Com-
puter Aided Systems Technology, Ottawa, Canada,
May 1994.

[11] K. Agsteiner, D. Monjau, and S. Schulze. Automat-
ing system-level design: From specification to archi-
tecture. In Proc. EUROMICRO '96 , Prague, Czech
Republic, September 1996.


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


