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Abstract

System-chip design which starts at the RTL-level today
has hit a plateau of productivity and re-use which can be
characterised as a “Silicon Ceiling”.   Breaking through this
plateau and moving to higher and more effective re-use of
IP blocks and system-chip architectures demands a move to
a new methodology: one in which the best aspects of
today’s RTL based methods are retained, but complemented
by new levels of abstraction and the commensurate tools to
allow designers to exploit the productivity inherent in these
higher levels of abstraction.   In addition, the need to
quickly develop design derivatives, and to differentiate
products based on standards, requires an increasing use of
software IP.  This paper will describe today’s situation, the
requirements to move beyond it, and sketch the outlines of
near-term possible and practical solutions.

1. Introduction:   System-Chip Design Today
If we classify the design process for system-chips and

chipsets into four stages:   behaviour, architecture, assembly
and manufacturing (see Figure 1), then the current design
methodology encompasses the assembly and manufacturing
stages.     Assembly can be defined as starting at the RTL
capture/RTL-level floorplanning level of design, on the HW
side, and writing C and assembly code on the SW side.

Figure 1: Stages of System Chip Design Process

Today’s design methodologies vary widely.    Although
many design teams use HDL-based RTL-level synthesis
extensively, others, for example in Japan, have just started
in the last year or so [3].    Design re-use is limited by meth-
odology:    the Virtual Socket Interface (VSI) Alliance was
formed in September 1996 to foster the development and
recognition of standards which will enhance designers’
capability to create and integrate re-usable blocks of IP.
[1,5]    The VSI Alliance is now one year old, and despite its
desire to endorse existing standards activities in preference
to creating new ones, re-use of synthesisable, soft RTL
cores is still difficult.   Re-use of hard layout cores is less
flexible than soft cores, in that they have already been com-
mitted to a particular IC manufacturer and process; this has
led to the idea of a “firm” IP block or Virtual Component,
although this concept has not yet been fully developed.    

Whatever the re-use and system-chip design paradigm,
verification of design intent and implementation continues
to be a problem, which is compounded for embedded prod-
ucts which have a significant Software component. Today,
HW-SW co-verification is hard.   HW-SW Co-design is
essentially a collection of manual techniques, as described
in  [2].

In addition to the re-use and verification issues,
progress in IC technology is forcing a move to the linkage
of logical and physical design.     Successful system-chip
design processes include early floor-planning and forward
estimation/prediction of performance effects (timing,
power, cost/area), and the propagation of the resulting
design constraints into synthesis and layout, in order to con-
trol the timing and power outcomes of the logic synthesis
and layout stages.

2. Current Methodology Limits
System-chip architectures captured at the RTL-C level

are hard to re-use and evolve. At the RTL level, architec-
tures must be fully articulated or elaborated, with all signals
instantiated on all blocks, all block pins defined, and a full
on-chip clocking and test scheme defined.   As well as a
complete definition of each block’s functionality, architec-
tural designs at RTL-level have completely defined commu-
nications mechanisms. This makes it very hard to change
the on-chip control structures and communications mecha-
nisms between blocks.   Because of the need to “rip-up” and
“re-route” the communications mechanisms, and to re-wire
any new or substituted functional blocks to the communica-



tions structures, an architectural change is very time-con-
suming; thus it is almost impossible to effectively explore
the architecture space.

A corollary effect is that it is difficult to “drop-in” or
substitute a new IP block choice.   Dropping in a new micro-
controller core requires detailed “rip-up” and “re-route” to
link the block to the communications structure, making it
hard to explore the space of available IP effectively.

Designs captured at the RTL level mix both behav-
ioural and architectural design together.   Often the only
model of IP block function is the synthesisable RTL code
which represents the implementation of the function.   Simi-
larly, the only model of a SW function may be the C or
assembly language implementation of the function.  This
"intertwining" of behaviour and architectural components
together makes it extremely difficult to evolve the behav-
iour of the design and its architectural implementation sepa-
rately.  If a design needs to conform to a particular standard
which is evolving, or needs to be modified to conform to the
next generation of a standard, the RTL/C level design which
entangles both behavioural intent and implementation is a
very clumsy and difficult representation to work with.

Finally, verification of embedded HW-SW designs at
the RTL level requires:

• nearly-complete hardware design

• nearly-complete Software code for the hardware 
interface (drivers), part of the RTOS, and if the 
behaviour of the system is to be verified, the layered 
application(s)

Co-verification with today’s ad hoc and emerging com-
mercial tools at this level is slow [2,4].    It is clear that one
cannot verify complete system application behaviour in an
HDL/C simulation environment.

During such co-simulation, if major application prob-
lems are found, a time-consuming and tedious redesign pro-
cess is required to repair the design.   Re-partitioning is very
difficult as the communications infrastructure will require
detailed redesign.    Substitution of better programmable
HW IP blocks (new processors, controllers) or custom HW
accelerators for part of the SW implementation requires sig-
nificant changes to application SW.

The net result of today’s limited methodology is that
system partitioning and design is often done with manual,
back-of-the envelope techniques, and carries a high risk of
major problems emerging during downstream implementa-
tion and integration.

3. Where would we go by evolving current 
methodology?
As today’s RTL-level tools and methodologies evolve,

we will see more up-front system and chip design planning,
better forward prediction of physical effects of layout (so
that these effects can be incorporated into up-front design

planning), and more robust HW-SW co-verification.

RTL-level, top-down floorplanning is emerging.   It is
important to remember, however, that not all IP blocks will
be re-used at the RTL-level.   Re-use of “hard” (essentially,
laid out in an IC process), and “firm” (cell-level netlists)
blocks will increase, and for many reasons, vendors of large
complex programmable IP cores may prefer distribution to
their end-customers of their blocks in these formats as
opposed to synthesisable, “soft”, RTL code.    However,
RTL-level floorplanning will give better control over the
physical effects determined during the synthesis process,
and will allow a reduction in the number of iterations
required to converge on a feasible design.

Continued work within VSI will eventually result in a
near-complete IP block interchange standard covering the
“soft”, “firm” and “hard” domains, from RTL level down
through physical layout.

However, such an evolution of methodology will not
touch some of the major limitations enumerated above:

• architectures will still be hard to re-use, and evolve

• it will still be difficult to explore IP block alternatives, 
especially programmable ones

• verification that an architecture and design will work for 
an application will still pose considerable difficulties.

• the behaviour and architectural implementation for a 
design will still be intertwined and difficult to evolve 
separately

4. Can we break through the “Silicon 
Ceiling”?
Providing solutions for these major limitations in

today’s methodology and tools requires a breakout from
concentrating on chip-level design at today’s RTL-C level -
the “Silicon Ceiling”.

Breaking through the ceiling requires a move to higher
levels of design abstraction:   the “architectural” and
“behavioural” levels (Figure 1).   Abstraction is required in
3 key areas:

• architectures

• models

• design exploration and verification

Architectural abstractions must be easy to capture,
evolve and change. This requires that such abstractions
must remove the fully elaborated detail that is not necessary
for first- and second-order architectural exploration and
evaluation.

One cannot explore architectural and IP choices with
detailed cycle- and pin-accurate simulation models. They
are fundamentally too slow to execute, and too difficult to
easily manipulate during exploration. Articulated HDL-
based signal and event-driven simulation, whether just used



for HW validation or as part of HW-SW co-verification, is
too slow to allow the validation of system-level behaviour
for embedded system-chip designs, or to allow the explora-
tion of architectural and IP alternatives.   The appropriate
abstraction level is the use of performance analysis tech-
niques to make first and second-order architectural trade-
offs.

5. Abstractions
First-order architectural trade-offs don’t need fully

articulated architectures to be captured. Instead, the mini-
mum requirement is to capture a “relaxed” view of the sys-
tem-chip architecture.   In this relaxed view, IP function
blocks are instantiated with simple connections to abstract
views of communications mechanisms.   At the highest
level of abstraction, communications can be described as
moving frames, packets, tokens between function blocks
over channels.    The next lower level of communications
abstraction is as a series of basic bus-transactions (acquire
bus, bus-read, bus-write, burst-read or write), or SW com-
munications methods (memory-mapped IO, semaphores,
interrupts).  [7]

The functional IP blocks can be classed into several
categories: processors (control dominated or signal process-
ing dominated), custom function blocks (e.g. MPEG decod-
ers, filter blocks), memories, peripheral controllers, buses,
etc.   These functional IP blocks process tokens, frames,
packets, or step through control and computational
sequences under SW control.    The basis system operation
can be described by how fast blocks process tokens or run
SW, and blocks transfer tokens to each other over commu-
nications mechanisms.   The equations which describe block
performance are called delay equations. Since shared
resources (buses, processors) imply contention for the
resource, this must be modeled in the appropriate delay
equations, which need to invoke models of resource conten-
tion.

Making first-order architectural trade-offs does not
require finely detailed models incorporating all signals, pins
and HW details, and every detailed state transition or signal
event to be simulated.   Rather, system application behav-
iour can be modeled and verified at higher abstraction levels
using faster simulation methods.    A key technique suitable
for making decisions is the use of architectural evaluation
performance analysis. 

6. Making IP Blocks Re-Usable
The current VSI definition helps in re-use of soft, firm

and hard IP blocks.    But a design methodology which
focuses solely on RTL through hard layout makes IP re-use
inherently hard.   Abstraction makes IP block re-use and
architectural exploration easier, so it must follow that:  an
effective IP re-use methodology will require abstract mod-
els of IP blocks.

We define these abstract models to be a combination of

• architectural delay equations, appropriate for the class 
of IP block, and

• resource contention models for shared resources.

These models are tractable and can be constructed
through developing characterisation methods appropriate to
the classes of IP blocks.

SW IP represents an interesting class of IP.   SW code
is re-usable if it can be easily re-targeted.    There are two
essential kinds of SW IP:

• “Close-to-Hardware”:   RTOS, drivers, HW-dependent 
code, that is optimised to particular HW platforms, often 
written in assembly rather than a higher language such 
as C, and inherently hard to re-target

• “HW-independent”:   usually in C, and having adequate 
performance when kept HW-independent. For this 
software, re-targeting primarily requires an assurance 
that the SW will perform “adequately” on new target 
HW. We now have techniques (based on extensions to 
the SW estimation work in POLIS [6]), that permit this 
assurance to be derived not through detailed SW 
execution on a detailed HW model or actual HW, but by 
estimating SW performance automatically on target 
HW.

7. Re-usable architecture
As functional IP blocks become easier to re-use, it is

important to move on to the next step: the re-use of chip
architectures.    Architectures can be made re-usable if they
have the following characteristics:

• simple to capture and modify: i.e., in a “relaxed” form, 
rather than a fully articulated form

• come with rich libraries of architectural IP components, 
from internal and 3rd party IP providers

• supported by central architecture groups, who create 
architectural derivative product design kits, containing 
reference architectures, IP block libraries and sample 
applications

• easy to modify system control and communications 
through use of abstract communications description and 
mechanisms for refining from abstract through bus-
transaction through to articulated level:   a methodology 
emerging as “Interface-Based Design” [7].

• easy to export to implementors of architectural 
derivatives.   It must be possible to link architectural 
design to real HW and SW implementation flows, so 
that design information captured at the architectural 
level will be usable at subsequent design process stages.

8. Derivative Product Design: A conundrum
In today’s embedded consumer communications and



multimedia products, original architectures created on a
“blank sheet” are relatively rare.   However, a base or plat-
form architecture is often used to create a whole series or
family of derivative products.

Derivative designs may rely on the same basic proces-
sor cores and communications buses, but:

• may vary peripherals depending on the application

• may add optional accelerating HW

• may do limited IP blocks substitution (for example, 
moving to a new micro-controller core which, via 
subsetting, is instruction-set compatible with the old 
core)

• will definitely involve significant SW changes, tailoring 
a global product for particular markets, adding special 
new User Interface capabilities, etc.

Since derivative design is a must for product variants
and evolutions, they require rapid and risk-free design
cycles. This presents a problem with an RTL/C-based meth-
odology: at this level of abstraction, derivative design is
either “hard” or “limited”:

• if HW changes are needed, it’s “hard”.   The design is 
fully articulated at the RTL level: it’s hard to change 
blocks. Communications mechanisms are fully 
described at the pin and signal level - this makes it hard 
to add new IP blocks or modify the communications.   
The application SW must be re-validated, somehow, by 
ad hoc and slow HW-SW co-verification methods, and 
one cannot really be sure that the new design will work 
without exhaustive and exhausting regression testing.   
Furthermore, if programmable HW is changed, 
extensive SW changes may be required.

• if HW changes are too risky, or “hard”, then a “limited” 
derivative design is the only one possible. Here one 
must only modify SW, and then must re-validate against 
HW using the ad-hoc and slow HW-SW co-verification 
methods.   If one is always restricted to SW changes, 
then the architecture and partitioning cannot be 
optimised. If the new SW does not run fast enough, then 
the product will be infeasible.

9. A new methodology
To break out of the “Silicon Ceiling”, RTL designers

need a methodology and tool technology that supports:

• easy, rapid, low-risk architecture derivative design

• risk reduction for complex product designs:   system 
designers must be able to develop key concepts at an 
abstract level and pass them to be rapidly implemented 
with little risk of architectural infeasibility

• abstract models that are easy to generate

• an ability to make first-order trade-offs and architectural 
and IP evaluations above RTL level

• real and effective HW-SW co-design and co-
verification at a higher level:   applications running on 
an architecture without the overhead of verifying 
complete details at the RTL level

• easy to create and modify on-chip communications 
schemes, and to hook up and change the interface of IP 
blocks to those mechanisms

• linkages to real HW and SW implementation flows

A description of new technology and methodology
under development which has these characteristics can be
found in [8].

10.  Conclusions
Moving beyond today’s RTL-based methodology for

system-chip design requires the elaboration of a new re-use
driven methodology and the provision of tools and technol-
ogies which support it.    This paper has outlined the key
characteristics of this new methodology, and discussed why
they are necessary.   Technology developments are cur-
rently underway which will allow designers to move
through today’s “Silicon Ceiling” to new levels of abstrac-
tion and design productivity through re-use and a focus on
IP-based system-chip integration.

References

1. Virtual Socket Interface Alliance Architecture Document. V 
1.0, March, 1997, p. 1. © VSI Alliance.  See the VSI-A web 
site at URL:  http://www.vsi.org.

2. G. Martin, "HW-SW Co-Design:  A Perspective", EDA Vision, 
Volume 1, Number 1, October 1997 (on-line magazine:  URL:  
http://www.dacafe.com/EDAVision/Issue1/EDAVision.1-
3a.html).

3. Gary Smith, Dataquest, Private Communication, June 1997.   
Gary Smith notes that designers in Japan as of January 1997 
are ramping up with RTL-level synthesis very fast, compared 
to 1.5 years earlier.

4. J. Rowson, “Virtual prototyping”, Proceedings of  CICC 1997, 
May, 1997, pp. 89-94.

5. M. Hunt and J. Rowson, “Blocking in a system on a chip”, 
IEEE Spectrum, November 1996, pp. 35-41.

6. F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. 
Lavagno, C. Passerone,  A. Sangiovanni-Vincentelli, E. 
Sentovich, K. Suzuki, and B. Tabbara, Hardware-Software 
Co-Design of Embedded Systems, Kluwer Academic 
Publishers, Dordrecht, The Netherlands, 1997.

7. J. Rowson and A. Sangiovanni-Vincentelli, “Interface-based 
design”. Proceedings of the 34th. Design Automation 
Conference, 1997, pp. 178-183.

8. G. Martin and B. Salefski, “Methodology and Technology for 
Design of Communications and Multimedia Products via 
System-Level IP Integration”, Proceedings of  DATE 98, 
February, 1998.


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


