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Abstract
In this paper, we enrich VHDL with new specification con-
structs intended for hardware verification. Using our ex-
tensions, total correctness properties may now be stated
whereas only partial correctness can be expressed using
the standard VHDL assert statement. All relevant proper-
ties can now be specified in such a way that the designer
does not need to use formalisms like temporal logics. As
the specifications are independent from a certain formal-
ism, there is no restriction to a certain hardware verifica-
tion approach.

1 Introduction
As VHDL [1] is an important IEEE standard for describing
digital circuits, many commercial design tools are based on
this hardware description language. Originally created for
simulation, this language has recently been used also for
formal verification [2] to ensure the correctness of designs.

However, VHDL itself is only intended for describ-
ing the implementation of a system for synthesis or sim-
ulation. For capturing the system specification, only the
assert statement is given to simplify the analysis of lengthy
simulation results. Due to the original purpose of this con-
struct, only simple safety properties can be stated which are
not sufficient for formal hardware verification. For verifi-
cation, at least additional constructs for specifying liveness
and fairness properties are required to state that some event
will actually happen once or infinitely often. Moreover, the
environment of the current design reflecting all reasonable
inputs to the design has to be modeled appropriately.

In this paper, we propose to enrich VHDL by new con-
structs in such a way that all the necessary specifications
can be written directly in a slightly extended VHDL. The
extension is based on a verification scenario, called veri-
fication bench, in strong analogy to the usual simulation

scenario, known as test benchs. Furthermore, we sig-
nificantly extend the existing specification capabilities of
VHDL: The existing assert statement only allows to cap-
ture partial correctness whereas our extension allows to
specify also total correctness of VHDL programs, i.e. now
the verification of program termination is possible.

We have incorporated the new constructs as part of the
tool FLOWER, which is an experimental environment for
the formal semantics and verification of VHDL [3]. As
we are aware of the fact that existing design tools do not
support our extensions, means for translating the extended
VHDL sources into standard VHDL are given.

The paper is structured as follows. First, we give a
brief overview about other approaches to VHDL verifica-
tion. Then, we present the verification scenario, based on
the verification bench and the new specification constructs
with their syntax and semantics. We then give some exam-
ples and conclude the paper with some remarks on further
directions of research.

2 State of the Art
The basis of all formal approaches to VHDL is a formal
semantics of VHDL. Unfortunately, the IEEE standard for
VHDL does not provide this such that various approaches
to giving a formal semantics to VHDL have been investi-
gated [4, 5, 3]. For brevity and conciseness of the paper, we
assume that a formal semantics for VHDL based on tran-
sition systems as presented e.g. in [3] is given and focus
only on the semantics of our new constructs.

In general, two approaches to hardware verification can
be distinguished: verifying the equivalence of two imple-
mentations and property verification. For the former, stan-
dard VHDL is sufficient as only two implementation de-
scriptions are necessary. Different tools from companies
like AHL, CHRYSALIS, VERYSYS etc. are already avail-
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able to check the equivalence of two designs. Usually, only
synchronous VHDL is supported [6, 7].

On the other hand, property verification of VHDL de-
signs requires to write down specifications to be checked
for an implementation given in VHDL. Since a correctness
result is always relative to the specification, it is impor-
tant to be sure that the specification is the one that is really
wanted. Thus being able to easily set up clear, precise,
and concise formal specifications is essential. Most verifi-
cation tools which support VHDL implementations require
that the specification is given in the formalism, the verifica-
tion tool is based on. For example, underlying formalisms
are temporal logics as in CV/CVC , timing diagrams trans-
lated into temporal logics [8], -automata for language in-
clusion [9], and first-order logics [10].

All these approaches bear problems if a designer wants
to write a formal specification:

The designer is forced to learn new formalisms like
temporal logics which are different from VHDL and
are often hard to learn. Even for experts, it is in some
cases difficult to set up a precise specification [11].

Specifications in other formalisms have to refer to the
formal semantics of the VHDL program. Thus the
designer has to know e.g. the notion of time and ex-
ecution states to which the temporal operators of the
logic relate to.

The specification paradigm normally used in formal
methods does not have any relation to the well-known
test bench concept, used by designers for simulation-
based validation.

To eliminate these problems, we suggest to write down
specifications in VHDL itself – avoiding the use of any
other formalism for specification. Early approaches for de-
scribing specifications in VHDL [12, 13] have not been de-
veloped further as at that time no formal semantics and no
verification tools for VHDL were available. Our new ap-
proach consists of the concept of a verification bench that
is described by new language constructs in VHDL. Doing
this, the problems described above may be solved as fol-
lows:

Implementations and specifications intended for for-
mal verification may be both written directly in
VHDL. No formal languages have to be learned al-
though the full expressiveness of other formalisms as
e.g. -automata [14] is reached.

The verification bench concept is an extension of the
usual test bench approach. Thus the designer is ac-
customed to its intention and basic principles.

http://www.cs.cmu.edu/ modelcheck/cv/project.html

For simulation purposes, the new language constructs
used for specification can be removed to obtain stan-
dard VHDL. Thus if the verification fails, the gener-
ated counterexample can be directly simulated using
standard tools.

The addition of new language constructs is necessary if for-
mal verification has to be based on VHDL descriptions of
the implementation and the specification without altering
the standard semantics of VHDL. The reason for this is
that formal verification of a module has to consider the be-
havior of this module under all reasonable inputs of the
module, while the simulation semantics of VHDL is based
on a single input sequence. Consequently, VHDL mod-
ules do not have free inputs [1] in the sense that these free
inputs can arbitrarily change their values each simulation
cycle. Instead, free inputs in VHDL must be initially fixed
to some value and are not able to change in the following,
hence they behave as constant values.

Moreover, the assert statement as the only existing
specification construct in VHDL is insufficient as only re-
stricted safety properties can be stated. In order to reason
about total correctness that also covers the termination of
selected statements, we need additional concepts.

The practicability of the approach has been demon-
strated by the tool FLOWER, which has been implemented
to translate verification bench descriptions into standard
model checking problems [3]. In FLOWER, a full simu-
lation cycle-based semantics is implemented, which espe-
cially supports delta-delays and arbitrary non-zero delays
at the same time. The implementation has been used to
perform actual verification runs, including the generation
of counterexamples. However, the methodology proposed
in this paper is independent of the chosen verification tool
and also of the chosen VHDL semantics and may be used
for other verification systems – or even other hardware de-
scription languages – as well.

3 Verification bench
3.1 Test bench vs. Verification bench
Today, the usual method to ensure correctness of a design
described in VHDL is the simulation of a test bench. A
test bench consists of three components: the stimuli gen-
erator, the implementation and an observer, as shown in
figure 1. The stimuli generator deterministically produces
inputs for the implementation, while the observer analyzes
both the inputs and outputs, and produces a report if both
do not fit together. As the stimuli generator describes the
environment of the implementation, there are no inputs to
the test bench, hence test benchs are closed systems.

In this paper, we suggest to adapt the well-known con-
cept of a test bench for the needs of formal verification.
Thus we construct a ‘verification bench’ (figure 2).
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Figure 1: Test bench

A verification bench consists of the same parts as a test
bench, however the deterministic stimuli generator of the
test bench is replaced by a ‘universal’ stimuli generator.
This is due to the fact that formal verification must con-
sider all possible input sequences of the implementation,
not only a concrete sequence, which is sufficient for sim-
ulation. A verification bench is still a closed system such
that there is no need to have free inputs. The introduction
of free inputs would require to change the existing seman-
tics of VHDL .

In order to describe the universal stimuli generator for
the verification bench, we introduce a new VHDL func-
tion T’arbitrary. The argument is any type T, and the re-
sult is a value of the same type T. Whenever this function
is called, the result is some arbitrary, nondeterministically
chosen value; and calling this functions never produces an
error. In our formal semantics, each call for T’arbitrary
leads to a universal quantification in the formula associ-
ated with the statement, i.e. the semantics reflects that the
considered property holds for all values of type T.

During the translation into a finite state transition sys-
tem, the formal semantics for T’arbitrary is simply cap-
tured by defining a new input variable with domain T.
As input values can not be predicted, these variables may
change arbitrarily.

3.2 Formal specifications in VHDL
All specifications of a VHDL program are captured in the
observer part of a verification bench. As the observer
which is also a VHDL program may also contain some lo-
cal state variables to store previous events, and runs as a
process parallel to the implementation, we can view the ob-
server as an accepting finite-state -automaton [14]. With-
out additional VHDL constructs, the acceptance condition
of this -automaton can only be given with the assert state-
ment.

However, even if we consider both the observer and
the implementation under all possible input sequences in

VHDL does not have free inputs. If an input of an entity is left open,
the input is set to a predefined value (e.g. see [1, pp. 165, lines 492–493]).

Figure 2: Verification bench

a verification bench, assert is still not sufficient for writ-
ing down powerful specifications in form of observers. To
illustrate the shortcomings of assert, we have to explain
some notations of the VHDL transition system semantics
used in the following.

The IEEE standard semantics of VHDL is operational
and can thus be understood as a state transition system.
Thus, we have defined predicates and
that hold for a VHDL statement list whenever its ex-
ecution starts or terminates, respectively. and

are sets of states in a transition system reflecting
the semantics of a given VHDL program.

The statement assert only allows to prove that if
a certain point of the program is reached, a condition
must hold. Using temporal logic , we define the seman-
tics of assert as , or equivalently,

.
Hence, assert can only be used to assure that if a cer-

tain point of the program is reached, a property must
hold. Nothing can be done to ensure or to detect if the pro-
gram state is reached or not, hence, assert can not be used
to reason about the termination of statements. As the ob-
server may have in its implementation additional state tran-
sitions, the resulting specification language would have the
expressiveness of -automata with only safety properties
as acceptance conditions.

In order to allow more powerful specifications, other
constructs have to be added. We propose to introduce
the statement ‘reach hold ’ to VHDL, where is a
VHDL sequential statement list and is a boolean ex-
pression in VHDL. The semantics of reach hold is de-
fined as , where W is the
‘strong when’ operator . Hence, reach hold means

Of course, these predicates must consider the context of , but we
neglect this in the following.

is the temporal logic always operator that states that a property
must hold from a certain point of time on and is an operator that requires
that the property must hold for all possible computation sequences [15].

holds at a certain point of time , iff must hold at least
once after and holds when holds for the first time after . There is



that whenever the point of the program is reached where
the execution of is started, it must terminate and then
must hold.

The difference between assert and
reach hold is that with the latter we can express that

terminates. In particular, the sequence assert does
not cover this fact, as we can only conclude from the se-
mantics that holds, which is the same
as . As in the latter formula only the
weak W operator occurs, it is not necessarily the case that

will ever terminate. Adding the new specification con-
struct to VHDL hence extends the specification capabilities
from partial correctness to total correctness .

Moreover, using reach hold we can control the
paths on which the program point has been reached as
we consider two program states, namely and

instead of a single one. For example, we can also
observe the relationship between certain signals.

The allowed positions of the key words reach and hold
within a sequence of statements may depend on the actual
used formal semantics of VHDL. If a formal semantics on
the lowest time abstraction level [17], the simulation cycle,
is used, then all positions are allowed. If a formal seman-
tics is used, which executes all sequential statements be-
tween two wait statements within one step (as it is usually
done for e.g. verifying fully synchronous circuits), reach
and hold are only allowed to appear directly after a (not
necessarily the same) wait statement.

A lot of results have been found about the expressive-
ness of various formalisms used for specifying and verify-
ing properties. For example, it is well-known that nonde-
terministic Büchi automata are more powerful than deter-
ministic ones [14]. However, it has been shown that if uni-
versal quantification is added, then both are equally expres-
sive [18]. We have chosen the new specification constructs
for the verification bench in such a way that we can model
deterministic Büchi automata with universal quantification
with the observers: the state transitions of an finite-state
automaton can be directly expressed in an observer writ-
ten in VHDL and the universal quantification is covered by
T’arbitrary function calls. The acceptance condition of a
Büchi automaton requires that a propositional property
must hold infinitely often for each computation sequence.
This can be modeled with the following VHDL program :

also a ‘weak when’ operator that states that must hold for the
first time when holds, but if never holds then holds also (see
also [16] for further discussion).

This distinction of correctness by termination is done in dynamic log-
ics used for program verification: reach hold is a VHDL equivalent
of the dynamic logic formula and assert is equivalent to .

To see that the program actually implements consider the fol-
lowing proof: abbreviating the statement wait until with , we can
first conclude that by the definition of
reach/hold. This is equivalent to by the

process is begin
reach

wait until ;
hold TRUE;
null;

end process;

Hence, our specification language is as expressive as deter-
ministic Büchi automata with universal quantification, and
hence as expressive as nondeterministic Büchi automata
[18]. As it is well-known that these are at least as expres-
sive as all other known -automata [14], and as expressive
as some arithmetic approaches [19], and even more power-
ful than linear temporal logic [20], we have a very powerful
specification language.
3.3 Simulating Verification Benchs
For simulation with an existing VHDL simulator, the func-
tion calls T’arbitrary have to be replaced by (arbitrary)
concrete values of type T. If a verification run yields in a
countermodel, this countermodel provides concrete values
for each call of T’arbitrary. Proceeding this way, a coun-
termodel can be visualized by the possibilities of a com-
mon VHDL simulator.

reach hold statements can be replaced by an ap-
propriate combination of report and assertion statements.
In that way, a formal specification using a verification
bench can be checked for some concrete stimuli by sim-
ulation. For example, reach hold can be replaced for
simulation by the following piece of VHDL code:

report ”entered...” severity NOTE;

report ”...leaved.” severity NOTE;
assert report ” is false” severity ERROR;

The described reach hold property is not fulfilled if
for a reported message ”entered...”, no according message
”...leaved.” is reported or if a message ” is false” is re-
ported.
3.4 Verification Workflow
The design flow of our method requires that the designer
writes a verification bench for verification similar to writ-
ing a test bench for simulation. We then compute au-
tomatically a finite state machine from this verification
bench according to a fixed semantics for VHDL [3]. Addi-
tionally, all reach hold statements are collected and
form now a specification of the form

semantics of the strong when operator. According to the semantics of the
wait construct, can only hold when holds. As is entered
infinitely often, we can finally conclude that must hold.



The above formula is not a CTL formula such that we
can not directly use standard CTL model checkers. How-
ever, the translation method presented in [16] can be used
to translate the above formula to the following equivalent
CTL formula:

As a back-end tool, we currently use the CTL model
checker SMV [21] to check that the above formula holds
for the generated finite state structure. Using model check-
ing as verification technique, we currently have to restrict
the given VHDL implementation descriptions. For exam-
ple, we have to assume that only data types over a finite
domain occur (otherwise we could not translate to a finite-
state machine), and we are not able to handle generate
statements.

4 Examples
In the following, some typical properties of an environment
or of an implementation will be presented.
4.1 Lift Controller
Consider a lift controller, which has a detector in its envi-
ronment. The detector sets the input signal of the controller
door open to TRUE if the door of the lift is open. All
events on door open lag between 2 ns and 7 ns behind
the rising edge of a clock signal. The stimuli generator
representing this environment is given below.

process is
type R is range 2 to 7;

begin
wait until Clk = ’1’;
door_open <=
BOOLEAN’arbitrary after
TIME’VAL(R’arbitrary);

end process;

The output signal go up of the lift controller makes the
lift to go up and its output signal go down makes the lift
to down. Below an observer is given, which specifies that
the door of the lift is never open when the lift is moving. It
works as follows: If at some time, the door is open and the
lift is moving, the wait statement terminates and the spec-
ification statement will be executed. Then FALSE should
hold. As FALSE never holds, the lift controller would vio-
late the specification.

process is begin
wait until door_open
and (go up or go down);
reach hold FALSE;

end process;

4.2 Loop Termination
A specification statement must not always appear in con-
text with a wait statement. Consider the loop statement
shown below. The specification statement specifies that
this loop will terminate at some time, regardless of any wait
statement.

process is begin
...
reach

while x < y loop
...

end loop;
hold TRUE;
...

end process;

4.3 A simple Protocol
Always when there is a rising edge for signal request,
3 s to 7 s later a falling edge on signal enable should
follow (for simplicity, assume that as long enable as has
not been falling, request would not fall and rise again).

process is begin
wait until request = ’1’;
reach

wait until enable for 3 us;
hold not enable’EVENT;
reach

wait until enable for 7 us;
hold enable = ’0’;

end process;

5 Current Work
As most of our efforts are currently invested in building
a new verification system C@S , we currently adapt the
approach presented in this paper to the new context. C@S
itself is not based on the use of VHDL, it rather has its own
system description language PURR that is more suited for
verification than VHDL. PURR is a superset of ESTEREL
[23] enhanced by many features useful in the context of
hardware verification [22, 24]. Also in PURR, we provide
separated means to denote implementations and associated
specifications. However, we have extended the approach
of this paper in several ways:

The arbitrary construct of VHDL allows only the se-
lection of an arbitrary value of a given type. In PURR
we have generalized this notion to
such that a value of a given type that satisfies an addi-
tional property is chosen .

See http://goethe.ira.uka.de/hvg/cats/ or [22] for
more details.

This is nothing else than Hilbert’s choice operator [25].
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In the setting described in this paper, it is not possi-
ble to directly constrain input sequences. In the C@S
system, a REQUIRES statement allows to forbid all
inputs that do not satisfy the given requirements. In
particular, we can express fairness constraints known
from model checking.

As PURR is based on ESTEREL, it is possible that
a single thread can fork into two or more other
threads while running a program. Hence, the sim-
ple reach hold can no longer be used to reason
about control points since we must be able to con-
trol which ‘reach’ is related to which ‘hold’. Thus,
we use labeled assertions ASSERT where
is a name that labels the current control point and
is a temporal logic formula that must hold whenever
ASSERT is reached. If is a statement where
no fork to new threads occurs, then reach hold is
equivalent to

ASSERT

ASSERT

6 Conclusions
In this paper we have presented a new specification para-
digm for VHDL. Properties are specified using determin-
istic -automata with universal inputs and can be written
directly in form of an observer module in VHDL. New
statements, namely T’arbitrary and reach hold have
been introduced such that a powerful specification lan-
guage is obtained. For compatibility with existing tools,
we have also given means to translate our VHDL descrip-
tions into standard VHDL to carry out e.g. a simulation
with a commercial simulator. We claim that the use of a
FSM-based specification paradigm is more natural and eas-
ier to learn for a designer who is not familiar with formal
methods.

We currently have implemented a backend to a CTL
model checker for our extended VHDL semantics. As for
the correctness proof the product Kripke structure of the
design and the accepting automata has to be constructed,
the size of the verifiable designs is limited. Our approach
is however not restricted to FSM-based techniques and
hence, we are also exploring theorem proving based cor-
rectness proofs.
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