
A Flexible Message Passing Mechanism for Objective VHDL

OFFIS, Germany
putzke@offis.uni-oldenburg.de

Abstract
When defining an object-oriented extension to VHDL, the
necessary message passing is one of the most complex is-
sues and has a large impact on the whole language. This
paper identifies the requirements for message passing suit-
ed to model hardware and classifies different approaches.
To allow abstract communication and reuse of protocols on
system level, a new, flexible message passing mechanism
proposed for Objective VHDL1 will be introduced.

1 Structure of the paper

The introduction explains the general purpose and is-
sues of message passing. Additionally, some basic terms
are introduced. The third chapter illuminates different as-
pects of message passing to identify the related require-
ments—especially for hardware design—and shows the
implications to the whole language.

To allow an estimation of message passing mecha-
nisms, a classification scheme is proposed in Chapter 4.
Chapter 5 describes and classifies two message passing
mechanisms of currently most discussed approaches for ob-
ject-oriented extensions to VHDL. Finally, a very flexible
message passing mechanism for a new object-oriented ex-
tension of VHDL—Objective VHDL—is proposed and
classified.

2 Introduction

A (hardware) system can be described in the object-
oriented fashion as a set of interacting or communicating
(concurrent) objects. In consequence to encapsulation the
objects tend to be relatively autonomous and only loosely
coupled with their environment [13]. Further, an object
should contain most of the elements it needs to perform its
functionality. This property provides high potential to reuse
objects in other environments than the original one. On the
other hand the specialization and structural decomposition

1. This work has been funded as part of the OMI-ESPRIT Project
REQUEST under contract 20616

of objects requires communication among the objects. The
communication enables objects to use services of other ob-
jects, to inform other objects about something, or in concur-
rent domain to synchronize with each other. Such a
communication mechanism is called message passing in
the object-oriented domain. The basic idea is that objects
are able to send and receive messages to provide or get
some information. Of course, it is desirable that a message
passing mechanism preserves as much as possible of the
loose coupling of the object with its environment in order
to obtain universally reusable objects.

Generally, for the communication of concurrent be-
haviours/processes two mechanisms can be used [6]. The
first is communication using shared memory and the sec-
ond the message passing via channels or communication
pathways. For the communication of concurrent objects the
latter choice seems to be more appropriate because passing
messages is one of the basic concepts of the object-oriented
paradigm.

Figure 1 shows an abstract picture of message passing.
Object X in the role of a client needs a service of object Y
in the role of a server. To invoke the corresponding method
of Y, X sends a message via a communication pathway to
Y. The message exchange is controlled by a protocol. After
Y has received the message, the correct method has to be
invoked. This functionality is provided by a dispatcher. As
indicated by the figure we will consider the dispatching as
part of the message passing mechanism. After execution of
the method return values—if any—are replied.

Figure 1: Message passing

send message to
invoke method

return values

pr
ot

oc
ol

communication
pathways

Object Y

attributes

methods

d
i
s
p
a
t
c
h
i
n
g

Object X

attributes

methods

1



In the sequential domain often the terms message pass-
ing and method call are used as synonyms. But in concur-
rent domain both terms have different semantics. While
with the method call the invoked method needs the compu-
tational thread of the caller to execute the method, invoca-
tion of a method via message passing does not need the
computational thread of the caller because the target object
can use its own.

3 Aspects of message passing

In this chapter several aspects of message passing will
be considered separately. This consideration shows on the
one hand the design space for message passing and on the
other hand the large impact to the whole language.

3.1 Consistency to language

Message passing is an integral part of an object-orient-
ed language. The relationship between message passing
and the other parts of the language is bilateral. While it is
indispensable that message passing is consistent to the oth-
er object-oriented concepts, these concepts can be used for
the specification of message passing. If for example an lan-
guage embodies different encapsulation concepts (classes,
objects) message passing has to take this in account—at
least its implementation. A class concept based on abstract
data types needs another realization of the message passing
compared to a class concepts which represents (structural)
hardware-components. The message passing mechanism
proposed for Objective VHDL in this paper will give an ex-
ample how the object-oriented concepts like classification,
inheritance, and polymorphism can be used to implement
it.

Another desired feature of message passing is the con-
sitency with the techniques of object-oriented modelling.
This means consistency in terms of refinement and extensi-
bility. If a model is extended by components which need a
more refined or different way for communication, the mes-
sage passing mechanism must be adaptable and by object-
oriented means.

Further, consistency means that the abstraction level of
message passing fits to the abstraction levels the whole lan-
guage is intended for. The programming interface should
be abstract and easy to use. For example, the appropriate
encapsulation of the transmission of messages by send/re-
ceive methods.

Abstraction and encapsulation, however, shouldn’t be
considered in isolation because they have large impact on
other aspects of message passing (e.g. flexibility, simula-
tion/synthesis).

3.2 Communication pathways

Passing a message from one object to another and per-
forming the communication protocol requires a communi-
cation pathway which interconnects the objects. If
communication is restricted to 1:1 relation2 the target ob-
ject can be identified directly by the communication path-
way. But the abstraction and definition of communication
pathways differs significantly in literature.

In case a method call has the semantics of a procedure/
function call, the procedure/function call mechanism and
the name of the target object/method can abstractly be con-
sidered as the communication pathway.

If the communicating objects represent hardware com-
ponents, in VHDL terms—entities, another representation
of communication pathways is necessary. In [14] some
kind of identifier for an entity object, called a handle which
can be exchanged among entities, is proposed. If an object
has the handle of another object, the handle can be used to
address the other object to pass a message. So the handle
can be considered as the communication pathway. This so-
lution is abstract because this communication pathways
have no direct physical representation and flexible because
it allows to establish communication pathways during runt-
ime. Generally, it allows to send messages to objects which
are dynamically generated during runtime. The dynamic
generation of objects, however, might be a powerful feature
for system design, but it is really far away from hardware.

Another solution proposed in [12][9][11] is to use the
VHDL mechanism to exchange data between components,
i.e. to interconnect components by signals. From the send-
er’s point of view the target object can be addressed by the
port which connects both objects. Of course, this approach
isn’t as flexible as the handle solution to address compo-
nent-objects, but it is very close to hardware.

Although signals can be used for communication, there
is still a gap between the abstraction provided by VHDL
signals and communication in object-oriented sense.

3.3 Protocol

In software, sending a message to an object has the se-
mantics of a procedure or function call3. Results can be giv-
en back by assignments [12]. In hardware message passing
among concurrent components/objects needs specialized
protocols. Of course, the necessity of protocols results in a
much tighter relation between the objects than it is desired
by object-oriented paradigm (cf. Chapter 2). Sending a
message needs the knowledge and the ability to perform the
target object’s communication protocol.

2. A 1:1 relation not necessarily means a point to point communication
because an object can consist of concurrent processes.

3. Without consideration of distributed programs.



Figure 2: Encapsulation of an object by protocol

From a communication point of view the protocol can
be seen as the encapsulation of an object (Figure 2). In the
following subchapters several aspects of a protocol for
message passing will be illuminated

3.3.1 Abstraction

Since the object-oriented paradigm addresses model-
ling on higher abstraction levels, the details of the commu-
nication protocol should be encapsulated and the
specialization of the protocol has to correspond with the ab-
straction. The protocol should be applied through an ab-
stract interface.

3.3.2 Flexibility

A universal message passing mechanism for hardware
design needs the possibility to integrate different protocols
for message exchange. An abstract model of an MMU on
system level may need another protocol than a simple reg-
ister on RT level. Further, in perspective of a top down de-
sign methodology, it should be possible to refine a protocol
towards more detail according to the description level. The
same need occurs if co-simulation of abstract models to-
gether with already synthesized models is desired.

The flexibility, however, to choose or refine a new pro-
tocol is at the expense of encapsulation of the protocol.
Even if the interface to use a protocol can be encapsulated
it is not possible to hide the protocol by the language com-
pletely.

3.3.3 Synchronization

In concurrent object-oriented domain objects need to
synchronize with each other to describe their behaviour de-
pendent on the state of other objects.

We would like to differ three synchronization modes:
• synchronous
• asynchronous
• data-driven

With synchronous communication the sender object
needs to wait until a receiver object is ready to receive a

message. In most synchronous communication mecha-
nisms [7] the sender object/process is blocked from the mo-
ment of sending a message request until the service which
is intended to be invoked by the message is finished and the
results are given back.

With asynchronous communication the sender does
not wait for the readiness of the server object to receive a
message. In order to avoid the loss of messages, this mode
requires queuing of messages within the communication
pathway or the receiver. An additional advantage of such
queues is the potential flexibility to dequeue messages in
another order than FIFO. On the other hand the message
queues can have large impact on simulation and synthesis
aspects. Generally, asynchronous communication is non-
blocking [3]. So the sender object can continue its compu-
tations directly after sending. The return of results requires
to send explicitly a message from the server to the client.

The data-driven synchronization [5] allows a sender
object to run its computations until the results of a previ-
ously sent message request are needed. In this case the
sender has to wait until these results will be provided by the
server object. In literature the initial sending of a message
request is described to be asynchronously [3]. However, a
synchronous (but non-blocking!) sending of a message re-
quest is also conceivable.

In summary, the data-driven synchronization allows
more flexibility than standard synchronous/asynchronous
communication.

3.3.4 Concurrency

To be consistent with (Objective) VHDL, a message
passing mechanism must preserve and support the concur-
rency provided by (Objective) VHDL.

The relation between communication and concurrency
is ambivalent. On the one hand concurrent objects/process-
es are the reason for the necessity of message passing, on
the other hand the message passing mechanism can restrict
the concurrency. If an object contains only one process
(dispatcher process) which receives requests and dispatch-
es them, all requests will be sequentialized.

For concurrent object-oriented languages it is expected
that the objects can have own activity and can run in paral-
lel. But besides the concurrency of parallel running objects
there can be concurrency inside the objects if they contain
concurrent processes. This intra-object concurrency may
allow an object to execute requests for services in parallel.

For example, a dual-ported RAM allows concurrent
read and write operations. This can be modelled with con-
current dispatching processes. However, allowing parallel
method execution raises the potential problem of nondeter-
ministic behaviour of the object, due to concurrent access
to the same attributes. But VHDL already provides mecha-
nisms to solve concurrent access to signals and variables.



Concurrent (write) access to signals can be handled by res-
olution functions. With variables the proposed protected
types can be used [15]. So at least atomic access to varia-
bles can be ensured. But the problem with nondeterminism
is still unsolved because the value of a shared variable de-
pends on the activation order of the accessing processes.

A possibility to avoid nondeterminsim is to ensure that
concurrent methods have only access to exclusive at-
tributes. This can be implemented by grouping all methods
which have access to the same attributes. Each group gets
an own dispatching process and maybe a queue. So only
methods without access conflicts can be executed in paral-
lel.

3.4 Simulation/Synthesis efficiency

Simulation efficiency and synthesizability are general
aspects for the quality of object-oriented extensions of a
HDL. These are being influenced by implementation deci-
sions of message passing/protocol and communication fre-
quency between objects. A complex protocol enriched with
a lot of detailed timing informations and unlimited message
buffers to avoid the loss of messages may decrease the sim-
ulation speed significantly. Moreover, without limitation of
maximal buffer size the protocol is not translatable into
hardware.

4 Classification scheme

In the above chapters some of the aspects a message
passing mechanism for an object-oriented HDL has to deal
with have been proposed and discussed. These can be used
to define a classification scheme for different message
passing mechanisms.

The first criterion for classification is the flexibility of
the message passing mechanism. The following cases will
be distinguished:

• flexible: different protocols are possible and can be re-
fined.

• fixed: the protocol is not modifiable.
• semi-flexible: one protocol, with potential for refine-

ment or different not-refinable protocols.
The second criterion is the ability of an object to accept and
perform several requests concurrently. It should be only
distinguished between:

• yes: it is possible.
• no: it is not possible.

The third criterion is the synchronization of the message
passing. It can be:

• blocking: the sender is always blocked until the return
values are received.

• non-blocking: the sender continues execution after
sending a request. Maybe at a certain point of execu-
tion he has to wait for the results.

• both: depending on the kind of message or on the kind
of method invocation (method call vs. message pass-
ing, cf. Introduction) blocking or non blocking com-
munication is possible.

The last criterion is whether there are queues to buffer mes-
sages if the receiver is busy. It will be distinguished be-
tween:

• no: no queues are provided.
• one: one queue per object.
• many: more than one queues per object.

5 Other OO-VHDL approaches

During the last years several proposals for an object-
oriented extension to VHDL have been made
[1][2][4][12][14]. All the proposals need to define message
passing to be object-oriented.

Because not all of the proposals can be considered
here, two typical but completely different proposals are se-
lected to describe their message passing mechanisms. Be-
cause this cannot be done isolated, it is necessary to
introduce the core concepts of the proposals up to a certain
degree. But it is outside the scope of the paper to draw a
complete picture of the special proposals.

The Vista approach [14] introduces a new design unit
called Entity Object (EO) which is based on the VHDL en-
tity and it’s architecture. In addition to the entity the EO
may contain method specifications called operation speci-
fications. Operations are similar to procedures, but they are
visible outside the EO. In contrast to procedures operations
can have a priority and a specified minimal execution time.
For invocation of operations the EOs are not interconnected
with explicit communication pathways (signals).

To address an EO, each EO has an accompanying han-
dle which is a new predefined type that can be stored in sig-
nals or variables and can be part of composite types.
Handles can be exchanged to make the corresponding EO
addressable for other objects. A special handle to address
an object itself (self) is predefined. The parent class can be
addressed by the new keyword ‘super’. A message send re-
quest is performed by a send statement which includes the
handle of the target EO, the name of the operation, and the
parameter values.

Each EO has one queue to buffer incoming messages.
The messages in the queue are dequeued by their priority.
Messages with the same priority are dequeued by FIFO.
One queue per EO means that concurrent requests are se-

flexibility parallel methods
(per object) synchronization queues

(per object)

flexible
fixed

semi-flexible

yes
no

blocking
non-blocking

both

no
one

many

Table 1: Classification scheme



quentialized. If an EO needs to invoke an own operation
(send self), this request will not be queued. It will be treated
like a procedure call and immediately executed. This mech-
anism avoids deadlocks with recursive method calls.

Messages can be of blocking (default) or non-blocking
mode (immediate). But immediate messages are restricted
to have in-parameters only. The blocking mode cannot be
changed during inheritance.

For EO synchronization a rendezvous concept is pro-
vided. Accept and select statements similar to Ada are used
to establish a rendezvous.

Finally, it should be remarked that the proposed mes-
sage passing mechanism is neither sythesizable nor it is in-
tended to be. The abstract concepts of dynamic
communication pathways represented by the handle con-
cept and the unlimited message buffers have no counterpart
in hardware.

Another approach was developed at Oldenburg Uni-
versity [12]. It is based on the VHDL type concept. Records
are used to represent the objects. To allow a record to be ex-
pandable by inheritance, it is marked as a tagged record.
The corresponding methods, which are simple procedures,
must be defined in the same design unit (package). Because
the methods cannot be formally encapsulated by the object
it belongs to, the parameter list of each method contains a
parameter of the object’s type which assigns the method to
the object. For each tagged record a corresponding class-
wide type exists, which is the union of all types derived
from the tagged record. With the attribute 'CLASS the
class-wide type can be referenced. Polymorphism is based
on the class-wide types. If a method is called with an actual
of class-wide type (mode in, inout), the actual type is deter-
mined during runtime and the correct method will be in-
voked.

Inter-process communication can be modelled consist-
ently with VHDL by signals. Abstraction and expandability
are supported by use of polymorphic signals (class-wide
type). Sending a message to another object has the seman-
tics of a procedure/function call or in our terminology a
method call. The requested method is executed by the send-
er which is blocked until the end of the request. Several
methods of an object can be performed concurrently if they
are requested by different processes. But in case of concur-
rent assignment to a signal (instantiation of a tagged
record), resolution functions are necessary.

Even if in [12] a special protocol mechanism is pro-
posed other protocols can be integrated because the proto-

col is not built into the language. The classification here
refers to the proposed master-slave protocol.

6 Objective VHDL

Objective VHDL is the object-oriented extension to
VHDL developed in the EC-Project REQUEST4 [8][10].

Objective VHDL combines the structural object ap-
proach [14] with the type object approach [12]. Both lan-
guage extensions have shown their suitability for hardware
design.

The structural objects are usual VHDL entities. At-
tributes and methods of an entity class are declared within
the declarative part of the entity. They correspond to
VHDL object declarations (signals, shared-variables and
constants) and procedure or function declarations respec-
tively. The implementation of the methods follows in the
corresponding architecture. Single inheritance for entities
and architectures is provided but no polymorphism on enti-
ty objects.

A type class consists of a declaration and a definition,
likewise. Class types are declared like usual types but the
declaration of attributes and methods are assembled be-
tween the new ‘is class’ and ‘end class’ constructs. The im-
plementation of the declared methods or private methods,
which are not declared in the interface, follows in the cor-
responding class body. As well as for the entity classes, sin-
gle inheritance is provided for the type classes.

Each class type has an associated class-wide type,
marked by a new attribute 'CLASS. The class-wide type is
the union of the type itself and all derived subclasses. Sim-
ilar to the [12] approach class-wide types are used to realize
polymorphism on type classes. A variable or signal of
class-wide type T'CLASS can hold any instantiation of a
class which is derived from T or T itself.

Calling a method of a directly visible instantiation of a
class type has the semantics of a simple procedure/function
call (blocking). Calling a method of an entity object or a
type object instantiated in another entity is more difficult.
A method of an entity cannot be called directly because the
entity encapsulates the procedures/methods completely.
The only interface to the outer world are the ports and ge-
nerics of the entity. Breaking this encapsulation would

4. Objective VHDL is defined in [9]. The Objective VHDL Language
Reference Manual is intended as an extension to the VHDL LRM.
Although the current status of Objective VHDL within the REQUEST
project is stable minor changes in the language are possible in future.

flexibility parallel methods
(per object) synchronization queues

(per object)

fixed no both one

Table 2: Classification of [14]

flexibility parallel methods
(per object) synchronization queues

(per object)

flexible (yes) blocking no

Table 3: Classification of [12]



change VHDL. A solution to that problem, which was cho-
sen in [14], was to introduce a new design unit—the Entity
Object where the methods (operations) of an EO are visible
outside the EO. Due to the additional implementation costs
for a new design unit, this solution was discarded for Ob-
jective VHDL.

6.1 Message passing mechanism

To provide the flexibility to use an appropriate com-
munication for message exchange, the message passing is
not fixed in the language definition. Nevertheless, a way to
implement a flexible message passing will be shown by us-
age of the other object-oriented features. The main ideas
will be now described in more detail.

Basically, the message passing mechanism consists of
three parts:

• the communication structure which defines the con-
nection of objects with communication pathways (Fig-
ure 3),

• protocol and messages for exchange (Figure 4),
• dispatcher (Figure 3).

6.1.1 Communication structure

To enable communication between objects which are
represented by entities or type objects inside different proc-
esses, the communication pathways between the objects are
implemented by VHDL signals. Beside the signal which
carries the message additional signals for the protocol may
be necessary. To avoid resolution functions, the signals are
unidirectional. Consequently, this requires two opposite
communication pathways if the message request produces
return values. This physical connection is depicted in Fig-
ure 3.

Figure 3: Communication structure

So the target object of a communication can be ad-
dressed by the port which connects the sender with the re-
ceiver. Further a communication pathway is restricted to
connect only two objects.

However, VHDL signals do not provide the abstrac-
tion expected from object-oriented message passing. To en-
able the connecting signals to provide the required
abstraction, they will be implemented as polymorphic type
classes. So such a signal gets the ability to hold different
messages and to encapsulate a communication protocol.

The messages and the communication protocol can be
modelled by a structure which is shown in Figure 4. But in
following main emphasis is given to the modelling of the
messages.

6.1.2 The messages and the protocol

The messages and the protocol are implemented and
encapsulated by an abstract type class (‘message’). The
class is abstract because it is not intended to be instantiated
and it should serve as base class for the classes representing
real messages. Furthermore, the class provides the interface
which allows to apply the message passing among the ob-
jects. The interface is inherited to the derived classes and
declares methods like ‘send’ (a message), ‘receive’ (a mes-
sage, or ‘dispatch’ etc. .

Figure 4: Modelling of messages

To enable a communication pathway to hold all mes-
sages to a target object, the type class ‘message’ is refined
by inheritance. Because (target) classes differ in the meth-
ods their instantiations can receive, for each kind of (target)

receiver

method M1 (...)
method M2 (...)

. . .

dispatching

signal “message_to_receiver'CLASS“

signal “message_to_receiver'CLASS“

unidirectional communication
pathway for message & protocol

sender

. . .

. . .

E
nt

ity
 O

bj
ec

t

E
nt

ity
 O

bj
ec

t

class receiver

method M1 (X in ...; Y inout ...);
method M2 (Z inout ...);

. . .

message

exec_method
send
dispatch
return_results
receive
...

. . .

message_to_receiver

M1

X
Y

. . .
exec_method

. . .

general functionality
& protocol

address special
classes

address methods
& parametersM2

Z

. . .
exec_method



object an abstract subclass is derived (Figure 4, 2nd-stage).
This class implements no additional functionality, its pur-
pose is only to distinguish the different kinds of objects.
(Different objects which are instantiations of the same class
are represented only one time!)

Finally, a message must correspond to one method
which should be invoked and the message must contain the
parameters for method invocation. To allow this, each class
of the second stage of Figure 4 is refined with subclasses
representing the methods of the (target) object (Figure 4,
3rd stage). The subclasses are named by the methods and
the method parameters are represented as attributes.

A signal which is an instantiation of such a class can
hold a message corresponding to a special method and pro-
vides the communication protocol if one was defined in the
superclasses.

A communication pathway, however, should be able to
hold all messages which can be sent to an object. By instan-
tiation of the communication pathway as signal of a class-
wide type belonging to the representation of a kind of ob-
ject (Figure 4, 2nd stage) this ability is given to the signal.

Finally, each of the classes representing a method (Fig-
ure 4, third stage) implements a method (‘exec_method’),
which invokes the corresponding method of the target ob-
ject. As mentioned before, the methods of an entity object
cannot be invoked directly because the entity encapsulates
its methods completely. Nevertheless, to allow this method
invocation a new construct ‘for entity ... end for’ is intro-
duced. The semantics of the construct is to make the decla-
rations of an entity class visible inside a type class in order
to allow its invocation. The implementation of such a meth-
od must be available wherever ‘exec_method’ is invoked
with an instance of the message class.

Results produced by the method execution can be sent
back by the same mechanism.

6.1.3 Dispatching

Each entity object contains one or more dispatching
processes. These processes are sensitive to the ports which
carry the incoming messages and must be specified by the
user. To dispatch the incoming messages, functionality pro-
vided by the class ‘message’ can be used if implemented
(method ‘dispatch’). But basically, within the dispatcher
process only the method ‘exec_method’ of the received
message has to be invoked which calls the desired method
of the entity object. By the type of the received message it
can be decided during runtime which ‘exec_method’ has to
be called.

The number of the dispatching processes can be cho-
sen by the user and determines the number of concurrently
executable methods. If concurrent methods are allowed, the
user has to take care about conflicting concurrent access to
the attributes. To ensure atomic access to attributes, shared

variables with the protect mechanism (cf. Chapter
3.3.4)[15] can be used.

6.1.4 Synchronization

Synchronization can be very flexible. Synchronous,
asynchronous, and data driven sychronization (c.f Chapter
3.3.3) can be modelled.

The proposed mechanism does not require that an ob-
ject is blocked after sending a message to a concurrent ob-
ject. But it should wait at least until it is ensured by the
protocol that the target object accepts the request. Of
course, additional synchronization is necessary if the re-
sults of the request are needed.

For asynchon communication message queues have to
be integrated into the message passing mechanism.

6.2 Summary of message passing

The provided message passing mechanism provides
easy means to send messages. The sender identifies the tar-
get object through the port(s) by which they are connected.
Now, it needs only to call the ‘send’ method of the class
‘message’ with the port names and the message itself as pa-
rameters. The ‘send’ method will perform the protocol and
assign the message to the interconnecting signal if the re-
ceiver is ready to accept it. After sending the sender can be
sure the message is received and can continue its execution
until potential results of the request are needed. In this case
the sender is blocked until the results are available.

The receiving object possesses a dispatching process
which is sensitive to the connecting port signal. If a new
message arrives, the dispatching process performs the re-
ceiver’s part of the communication protocol and invokes
the desired method. Of course, this functionality can be en-
capsulated by a ‘receive’ or ‘dispatch’ method of the class
‘message’.

The potential results can be send back implicit and im-
mediately after their computation or explicit by a new com-
munication.

Finally, it is important to note that the modelling of
messages (cf. chapter 6.1.2) is really straight forward. So
the effort to use this communication mechanism can be re-
duced significantly by a tool which produces the messages
automatically.

6.3 Classification

According to the proposed classification scheme the
message passing can be classified as shown in Table 4. Dif-
ferent protocols can be defined and stored in a library. If re-
quired they can be refined. Concurrency of method
execution depends only on the number of dispatching proc-
esses the user defines. In the proposed communication
mechanism a method call is blocking and passing a mes-



sage can be blocking as well as not blocking. Queues to
buffer messages and to allow asynchronous communica-
tion can be modelled in principle but are not integrated in
the communication up to now.

So it is important to note that a special implementation
of the message passing mechanism may result in a slightly
other classification.

7 Future work

A precompiler which translates Objective VHDL to
VHDL will be implemented. With the availability of this
tool the desired benefits of Objective VHDL and especially
the message passing mechanism can be evaluated.

The proposed mechanism for message passing has po-
tential for improvements. For better protocol reuse a
stronger separation of the protocol and the messages will be
useful. The modelling effort which is caused by the restric-
tion of unidirectional communication pathways can be re-
duced if resolution functions for the connecting signals can
be defined.

8 Conclusion

By analyzing and discussing the several aspects of ab-
stract communication the design space for message passing
has been shown and a classification scheme for message
passing mechanisms has been developed. The scheme has
been applied to the message passing mechanisms of two of
the currently most discussed proposals for object-oriented
extensions to VHDL.

Finally, a new idea for message passing mechanism
developed for Objective VHDL was introduced and classi-
fied. The new approach targets especially flexibility of pro-
tocols, reuse of protocols and consistency to VHDL
(concurrency).

9 References

[1] Peter J. Ashenden, Philip A. Wilsey, Dale E. Martin:
SUAVE: Painless Extensions for an Object-Oriented VH-
DL. VUIF Fall ’97 Conference Proceedings

[2] Judith Benzakki, Bachir Djafri: Object Oriented Extensions
to VHDL - The LaMI proposal, submitted to CHDL’97

[3] L. Bergmans, M. Aksit, K. Wakita, A. Yonezawa: An Ob-
ject-Oriented Model for Extensible Concurrent Systems:
The Composition-Filters Approach, http://wwwtrese.cs.ut-
wente.nl/Docs/Tresepapers/tresepapers.html

[4] David Cabanis, Prof Sa'ad Medhat: Object-Oriented Exten-
sions to VHDL: The Classification Orientation, VHDL User
Forum, SIG-VHDL Spring’96, Dresden, Germany

[5] D. Caromel: Concurrency And Reusability: From Sequen-
tial To Parallel, JOOP, September/October 1990

[6] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, Jie Gong:
Specification and Design of Embedded Systems, Prentice-
Hall, Inc., 1994

[7] C. A. R. Hoare: Communicating Sequential Processes,
Prentice Hall Int. Series in Computer Science, 1985

[8] Das OMI-Pro-
jekt REQUEST, Eingeladener Vortrag, 3. GI/ITG/GME-
Workshop, Hardwarebeschreibungssprachen und Model-
lierungsparadigmen, Holzau, 26.-28.02.1997.

[9]
Martin Radetzki: Final Objective VHDL Language Defini-
tion, REQUEST deliberable 2.1A, public May 1997, avail-
able on WWW from URL http://eis.informatik.uni-
oldenburg.de/research/request.html

[10]
M. Tagant, S. Maginot: VHDL extensions to support ab-
straction and reuse, 2nd Workshop on libraries, Component
Modeling, and Quality assurance, Toledo, April 1997

[11] Martin Radetzki, Wolfram Putzke, Wolfgang Nebel: Lan-
guage Architecture Document on Objective VHDL, RE-
QUEST deliverable 1.2C, public, December 1996

[12] Guido Schumacher, Wolfgang Nebel: Inheritance Concept
for signals in Object Oriented Extensions to VHDL, Euro-
DAC’95 with Euro-VHDL’95, Brighton, England (1995)

[13] Bran Selic, Garth Gullekson, Paul T. Ward: Real-Time Ob-
ject-Oriented Modeling, Wiley 1994

[14] Sowmitri Swamy, Arthur Molin, Burt Convot: OO-VHDL
Object-Oriented Extensions to VHDL, IEEE Computer, Oc-
tober 1995J. Willis, S. Bailey, C. Swart: Shared Variable
Language Change Specification (PAR 1076), Version 5.7,
December 1996

[15] J. Willis, S. Bailey, C. Swart: Shared Variable Language
Change Specification (PAR 1076), Version 5.7, December
1996

flexibility parallel methods
(per object) synchronization queues

(per object)

flexible yes both (no)

Table 4: Classification of Objective VHDL


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


