
Object-Oriented Modelling of Parallel Hardware Systems

Abstract
Object-oriented techniques like inheritance promise

great benefits for the specification and design of parallel
hardware systems. The difficulties which arise from the use
of inheritance in parallel hardware systems are analysed
in this article. Similar difficulties are well known in con-
current object-oriented programming as inheritance
anomaly but are not yet investigated in object-oriented
hardware design. A solution how to successfully deal with
the anomaly is presented for a type based object-oriented
extension to VHDL. Its basic idea is to separate the syn-
chronisation code (protocol specification) and the actual
behaviour of a method. Method guards which allow a
method to execute if a guard expression evaluates to true
are proposed to model synchronisation constraints. It is
shown how to implement a suitable re-schedule mecha-
nism for methods as part of the synchronisation code to
handle the case that a guard expression is evaluated to
false.

1. Introduction

Re-use of intellectual property in form of hardware
models is an important issue in hardware design. It is nec-
essary to provide appropriate modelling techniques which
allow re-use of models on all levels of complexity. Beside
the re-use of unchanged models the re-use of incremen-
tally modified models is very interesting.

Several proposals have been made to use inheritance in
hardware modelling as an object-oriented technique for
incremental modification. Most of these proposals are
based on language extensions to VHDL which provide
inheritance as a key element [3][4][5][8][12][13][14]. All
these language extensions allow the modelling of parallel
hardware systems in an object-oriented way. When model-
ling such concurrent systems it can be discovered that syn-
chronization mechanisms and inheritance often conflict.
This phenomenon is known as inheritance anomaly in the
software world [10]. In worst case it cancels the benefits of
inheritance out. There is no solution to the inheritance

anomaly in the software domain which provides an effi-
cient implementation.

The phenomenon appears in a similar way in object-
oriented hardware modelling. This is analysed in Chapter
4. Chapter 5 introduces a hardware modelling technique
which solves the anomaly. It is based on an object-oriented
language extension to VHDL[13]. For those readers not
familiar with the language extension a short survey is
given in Chapter 2. Chapter 3 presents some basic model-
ling techniques using the language extension. It is
explained how to apply inheritance and overloading to
methods of concurrent objects.

2. Object-oriented language extension to
VHDL

VHDL as it is today allows to a certain extend the mod-
elling of systems in an object-based view [11]. Objects in
the definition of the LRM [9] are signals, variables and
ports. They can be used to model objects like state varia-
bles or interconnections. As these are typed objects it is
possible to aggregate complex objects from simple ones
by using record types and establish a part-of-hierarchy. In
this view a record definition can be used to define the
instance variables or attributes of a class [15]. The behav-
iour of a class (its methods) can be implemented by a sub-
program which reads or modifies attributes, i.e. the record
elements. Packages are used as an encapsulation mecha-
nism. The class interface is then described by subprogram
declarations.

What is missing in this concept to become an object-
oriented concept is the possibility to modify a class by an
incremental specialization to build up an is-a-hierarchy.
This concept of incremental specialization which allows a
class to inherit characteristics from a parent class is one of
the most fundamental object-oriented features to enable
re-use. A language extension to VHDL which adds the
missing inheritance concept to types has been presented in
[13]. The following very brief summary of the language

Guido Schumacher, Wolfgang Nebel

FB 10 – Department of Computer Science

Carl von Ossietzky University Oldenburg

D-26111 Oldenburg, Germany

guido.schumacher@informatik.uni-oldenburg.de

extension is limited to those features which are necessary
to follow the rest of the paper.

The extension allows to build up an is-a-hierarchy of
records. The records used to create the hierarchy are called
tagged records. It is possible to derive a new tagged record
from an existing one. In such a case the new record inher-
its the structure and the behaviour of the parent record.
The inherited structure can be modified by adding new
attributes to the class. The parent record of a derived
tagged record definition is marked by the keyword new.
Any additional new attributes are listed following the key-
word with. The derived tagged record inherits all the sub-
programs which implement the behaviour of the parent
record. The interface specification, i.e. the subprogram
declaration, is automatically adapted to the derived tagged
record. The behaviour of the derived class can be modified
by adding new methods to the class.

In addition to this inheritance hierarchy a subtype hier-
archy can be created by means of the 'Class attribute
which provides the basis for heterogeneous object contain-
ers and hence polymorphism.

Invoking a method of a heterogeneous object container
means to start a method of that tagged subtype which sub-
stitutes the class-wide type at that time of the simulation
when the method is invoked. As methods are implemented
in the language extension by subprograms which can be
inherited and overloaded subprograms, overloading is
extended to polymorphism. Please note that different to
Ada’95 which knows a similar mechanism no access types
are needed to model a heterogeneous object container.

An example is given to illustrate the modelling capabil-
ities provided by the language extension. The example
consists of a bounded buffer with a put and a get opera-
tion. It can be modelled as a tagged record (see Listing 1).

The methods are implemented as subprograms (see
Listing 2).

A bounded buffer object is instantiated as a signal of
the tagged type “bbuffer”. The buffer communicates with
objects running in parallel by signals. Messages to the

buffer are encoded by tagged records and can be sent to a
“bbuffer object” via a signal of a class-wide type
“op_channel'class”. These messages can be derived from
the tagged record “op_channel”, e.g. see Listing 3.

A complementary signal of a class-wide type “bufferre-
turnvalue'class” is used to send results back to the caller of
a method. The buffer implementation is sketched in
Figure 1. The methods are invoked by sending a message

of type “op_channel'class”. It can be decoded by a subpro-
gram implementing the protocol code of a method. The
corresponding methods are then invoked and executed in a
sequential order.

The language features and the implementation style
presented in this chapter allow signature compatible modi-
fications of a class as it is known from the software
domain. It means that the behaviour of a class which can
be incrementally modified is approximated by a signature
for modification purposes [15]. The next chapter explains
why this approximation often is not precise enough in
hardware design. It introduces restrictions which can be
imposed on the modelling style to nevertheless success-
fully use signature compatible modifications.

3. Approximation of behaviour

To substitute a class-wide object by an object of a
derived tagged subtype in any context of the class-wide
type during simulation requires the compatibility between
the class-wide type and its subtype with respect to the
structure and behaviour, i.e. the methods. In the language
extension the common structure of a parent class and a
derived class is preserved and the classes behaviour is
inherited. Thus the required subtype relation can be estab-
lished.

However, the situation is different if the behaviour is
modified by overloading an inherited method. In this case
the new method has to be compatible with the old one. As

Listing 1 Bounded buffer

Listing 2 Methods

type bbuffer is tagged record
buf: buffer_array (buffersize);
buf_in, buf_out: buffersize;

end record;

procedure execute_put(signal this : inout bbuffer;
signal op_channel : in bufferoperation'class;
signal returnvalue_channel : out

bufferreturnvalue'class);

procedure execute_get(signal this : inout bbuffer;
signal op_channel : in bufferoperation'class;
signal returnvalue_channel : out

bufferreturnvalue'class);

Listing 3 Derived type

Fig. 1 Bounded buffer implementation

put is new op_channel with
operand : bufferelement;

end record;

Signal bbuffer (instance variables)

op_channel'class

protocol_part_get

protocol_part_put

bufferreturnvalue'class

object_body

execute_get

execute_put

invokes

it is normally too difficult to analyse precisely and com-
pletely if the behaviour is compatible, only the signatures
of the method are checked for compatibility. This approxi-
mation of behaviour works very well for many languages
and applications in the software domain. At the start of a
method a set of values is passed as parameters and after
completing the calculations return values are given back to
the caller. The signature describes the type and mode (in,
inout, out) of the parameters and thus implicitly defines
the time when the values have to be passed as parameters.
In other words, the signature contains all the relevant pro-
tocol information. This is illustrated by an example from
the software world. Consider a buffer “x_buf2” which is
derived from “bbuffer”. “x_buf2” has the same structure
as “bbuffer” but an additional method “get2” which
returns the two oldest items from the buffer back to the
caller (see Listing 4).

For this example it is possible to overload the method
by looking at its signature1 without analysing the body of
the method in detail.

In VHDL however, it would be possible to model the
“x_buf2” example with a method “execute_get2” which
has the same interface list as the method “execute_get”
because it would be possible to multiplex the two return
values on one return signal. Hence to overload the method
it is not sufficient to just know the signatures and to know
that the method returns the two oldest items. The protocol
has to be analysed how the return values are given back.
The protocol has to be preserved if the method is re-
defined in a derived class. Unfortunately, there is no com-
piler technique to check if the protocol is preserved.

The fact that a signature is not sufficient to completely
describe a procedure interface is not a problem of object-
oriented modification techniques but a more general one
of encapsulation and re-use in VHDL. A signature does
not describe the fact that an interpretation of a signal’s
value may change over time and that not a single value but
a projected output waveform is given back to a caller.

A solution to this problem is to impose restrictions on
the use of methods, i.e. subprograms. This can be seen as a
protocol implicitly defined for each method.

One of the most restrictive protocols is to block a caller
of a method until it receives all results. The caller does not
change its state before it has all results from the method
call. Moreover the caller must not send any parameter val-
ues to the method during the method’s execution while the
caller is blocked. A projected waveform which schedules a
transaction during the method’s execution must not be

1 The term signature is not used in the strict sense of the LRM.
Here it also covers the names of the parameter and its modes.

passed as parameter. Thus the protocol is similar to the
one used in most sequential object-oriented languages.

A more powerful but also more complex approach is to
allow parallelism without blocking and to try to separate
protocol specification and implementation from the func-
tionality of a method. The functionality is modelled in
methods which are called inside the methods implement-
ing the protocol. Re-definition of the behaviour often can
be done by incrementally modifying the functionality
without affecting the existing protocol parts. In such a case
a method implementing a protocol can be inherited pre-
serving the compatibility. Again the restriction has to be
imposed that projected waveforms passed as parameters of
mode in must not schedule transactions during the execu-
tion of the method and that projected waveforms passed as
parameters of mode out must not schedule transactions
after the execution of the method. In cases in which the
protocol has to be modified the method’s signature
together with its protocol method(s) can be seen as inter-
face which has to be changed. It is not necessary to under-
stand the details of the implementation of the functional
part.

In the example the method “protocol_part_get2” could
be implemented by a procedure which calls two times the
method “execute_get” without allowing the execution of
“protocol_part_get2” to be interrupted by another invoca-
tion of “get2” or “get”. After the execution of the proce-
dures “execute_get” the result is given back to the caller.
Modifying the behaviour without changing the interface
consisting of the signature plus the method
“protocol_part_get2” is done by just re-defining the meth-
ods “execute_get”.

Unfortunately, the separation of protocol and function-
ality is not so straightforward like in the example in many
cases. Often it is necessary to partition the functionality
and the protocol into several different methods which
makes the solution much more complex.

In the example this would be the case if the protocol
allows the execution of one or more put operations in
between the two calls of the method “execute_get” in the
method “protocol_part_get2”. A possible implementation
is sketched in figure 2.

Listing 4 Signature of get2

procedure execute_get2(this: inout x_buf2;
op_channel : in bufferoperation'class;
oldest_item: out bufferreturnvalue'class;
second_oldest_item: out bufferreturnvalue'class);

Fig. 2 Implementation 2 of method get2 of x_buf2

protocol_part_get2

lock external get messages

return oldest item

execute_get execute_get

invokes

allow execution of protocol_part2_get2

unlock external get messages

return oldest item

protocol_part2_get2

execute_get execute_get

invokes

The protocol has to be divided into two parts because
the get2 operation can be interrupted by put operations
and the result is given back in a sort of multiplexed proto-
col.

This chapter has shown that a signature is not sufficient
to approximate the behaviour of a method for re-use pur-
poses and that the protocol implementation has to be con-
sidered as a part of the method’s interface. Re-use then can
be achieved without breaking the encapsulation by analys-
ing the method’s interface and thus reducing the difficul-
ties when inheriting and modifying a protocol.

The next chapter presents some more situations when
protocol implementation conflicts with inheritance.

4. Inheritance anomaly

Communication between objects in hardware systems
can be defined by all kinds of protocols. A protocol
describes among other things which messages can be
accepted by an object depending on its own and the com-
munication channel’s state. The restriction of acceptable
messages is called synchronization constraint.

In the example of the bounded buffer synchronization
constraints are to accept a get message only if the buffer is
not empty and to accept a put message only if the buffer is
not full. So three states of the buffer can be identified
which are therefore relevant for specifying and imple-
menting the protocol: “buffer_empty”, “buffer_full”, and
“buffer_partial”. The synchronization code which imple-
ments the protocol must take the constraints into account.

If a new class is derived from an existing one it might
happen that the number of states which have to be distin-
guished for specifying the synchronization constraints
increases.

In the example of the derived class “x_buf2” the state
“buffer_partial” has to be partitioned into two new states:
“buffer_partial_more_than_one” and “buffer_partial_one“.
The state “buffer_partial_more_than_one” means that
more than one item is stored in the buffer and
“buffer_partial_one” means that exactly one element is
stored in the buffer. Now, the message get is accepted
when the buffer is in state “buffer_partial_more_than_one”
or in state “buffer_partial_one”. The message “get2” is
accepted when the buffer is in state “buffer_partial_more-
_than_one”.

As a consequence of the state partitioning the protocol
code of the derived class which contains the synchroniza-
tion constraints has to be modified without becoming
incompatible with the protocol of the parent class. This
may cause problems depending on the implementation
technique of the protocol as shown in Chapter 3. In case
that the synchronization code is not separated from the
functional part of the method inheritance enforces to break
the encapsulation of the methods.

It is necessary to analyse, re-define, and re-implement
the method get although the incremental modification of
the buffer is the additional method get2 and not the modi-
fication of the behaviour of get. Depending on the imple-

mentation of the synchronization constraints it even can be
necessary to re-implement all methods.

The described problem is not specific to object-oriented
hardware design but is a general problem of designing
object-oriented concurrent systems. There are some more
scenarios similar to the one described above in which
inheritance and synchronization constraints conflict with
each other. In object-oriented concurrent programming
these conflicts are called inheritance anomaly. A detailed
description of inheritance anomaly is given in [10]. In [10]
the anomaly is analysed, categorized, and illustrated by an
example of a bounded buffer1. Three main categories of
anomaly are described in [10]:
• Partitioning of acceptable states
• History-only sensitiveness of acceptable states
• Modification of acceptable states

The anomaly caused by the partitioning of acceptable
states is the anomaly described above and illustrated with
the derived buffer “x_buf2”. The state “buffer_partial” in
which the message to invoke the method get is accepted
has to be partitioned into the states “buffer_partial_one”
and “buffer_partial_more_than_one”.

History-only sensitiveness means that the messages
which are accepted only depend on the previous states of
the object. For example, a buffer “gb_buf” derived from
“bbuffer” has a method “gget” which behaves almost iden-
tical to the method get with the exception that it cannot be
invoked immediately after the invocation of the method
put.

The anomaly caused by the modification of acceptable
states appears if new methods provoke the object to
restrict the states in which it accepts the inherited meth-
ods. For example, the buffer “lb_buf” derived from
“bbuffer” has two new methods “lock” and “unlock”.
After “lock” is executed no message to invoke a method
inherited from “bbuffer” is accepted until the method
unlock is executed.

Several attempts to solve the anomaly are described in
[10]. Although only a solid solution is given to the state
partitioning anomaly the technique to use guards for spec-
ifying the synchronisation constraints proposed by [7] and
analysed in [10] appears to be a promising one. Therefore
the solution of the inheritance anomaly presented in the
next chapter is based on guards.

5. Solution of the inheritance anomaly

This chapter describes a modelling technique based on
the object-oriented language extension to VHDL which
solves the inheritance anomaly. In object-oriented pro-
gramming several attempts have been made to solve the
anomaly. A very interesting one was made in [7]. It is
based on guards. In [7] a guard gives a condition under
which a method cannot be accepted. For example “buf_in
= buf_out -- buffer empty” could be a guard of the method

1This is the reason why the bounded buffer is used here.

get of the bounded buffer. However, it was shown in [10]
that the guard mechanism presented in [7] does not solve
every inheritance anomaly.

Another proposal to solve the anomaly by guarded
methods is given in [6]. In this proposal methods are inter-
preted as nested conditional critical regions (CCRs). As a
consequence, efficient implementation for CCRs have to
be developed first, before the proposed concept can be
implemented.

The solution presented in this chapter is also based on
guards but avoids the drawbacks of the above proposals.
One of the main ideas is to separate the protocol specifica-
tion and implementation from the functional part of a
method as already described in Chapter 3. Each method
has an interface list which contains the object itself as a
signal parameter and some other signals to communicate
with other objects, e.g. clients. The principle structure of a
subprogram implementing the protocol is composed as
shown in Listing 5. Only if a message is detected to invoke

the operation realized by the corresponding method and
only if the guard expression is true then the subprogram is
invoked which implements the functional part of the
method. The internal call of the subprogram is dynami-
cally bound,1 i.e., for modifying the behaviour it is suffi-
cient to derive a new tagged type which re-implements the
subprogram. The inherited protocol then automatically
calls the re-implemented subprogram. This all is done
without consuming time. There must be no wait state-
ments between the beginning of the subprogram imple-
menting the protocol and the call of the method
implementing the functional part.

Different to proposals from the software domain [6][7]
a method guard is not part of the object-oriented language
but is only part of the modelling technique to solve the
anomaly. Any expression is allowed as a guard. If it is true
it means that the message to invoke the method can be
accepted. As simulation time does not proceed neither the
message to invoke the method nor the guard expression

1 This is different to e.g. Ada where internal calls are statically
bound by default

can change between the invocation of the method imple-
menting the protocol and the invocation of the method
implementing the functional part of the method. If the
message is not detected or the guard expression does not
accept the method invocation then the protocol method
also does not consume any time. The method which
implements the functional part consumes time. It contains
wait statements so that signal assignments in the method
change the object’s state and/or the output channel
(message_out).

As an example the method get of the bounded buffer is
modelled (see Listing 6).

Both, “protocol_part_get” and “execute_get” are sub-
programs implementing a method of the bounded buffer.
In the modelling technique all the methods have to be
implemented in this style.

5.1. How to model a body of an object

The body of an object running in parallel to other
objects is implemented as a concurrent procedure call
which calls a subprogram “object_body”. The procedure
“object_body” consists of sequential procedure calls
invoking all methods of the class (see Listing 7).

The procedure starts when the state of the object
changes or a message comes in. Then a method is invoked
(the functional part) if the corresponding message appears

Listing 5 Protocol implementation

procedure protocol_part_method (
signal this : inout taggedtype;
signal message_in : in message'class;
signal message_out : out another_message'class) is

begin
if decode(message_in) = op_code then -- operation

decoded
if guard_expression then

method(this, message_in, message_out);
additional protocol code;

end if;
end if;

end protocol_part_method;

Listing 6 Protocol of method get

Listing 7 Object body

procedure protocol_part_get(
signal this: inout bbuffer;
signal op_channel : in bufferoperation'class;
signal returnvalue_channel : inout

bufferreturnvalue'class) is
begin

if decode(op_channel) = get then
if not(this.buf_in = this.buf_out) then

-- guard: buffer not empty
execute_get(

this => this, op_channel => op_channel,
returnvalue_channel => returnvalue_channel);

 end if;
 end if;
end;

procedure object_body (
signal this : inout bbuffer;
signal op_channel : in bufferoperation'class;
signal returnvalue_channel:out bufferreturnvalue'class)is

begin
protocol_part_put(

this, op_channel, returnvalue_channel);
protocol_part_get(

this, op_channel, returnvalue_channel);
end object_body;

and the guard expression is true. If there are not any mes-
sages the objects waits for new messages. If there are mes-
sages but the corresponding guard expression is not true
the method is not executed. The method is re-scheduled
for the time when the object’s state or any incoming mes-
sage causes an event. Then it is tested if the message still
is there and the complete guard expression is evaluated
again. As it is shown later the guard expression can
become more complex by inheritance. Nevertheless, it is
completely evaluated when a method is re-scheduled (see

Listing 8). As reported in [1] “the most difficult question
is how to do something suitable with inheritance in the
definition of the body (the local process of an object)”. In
some cases inheritance enforces to re-implement the com-
plete body of an object. The problem is also described in
[10] as body anomaly for objects which have a body with
its own thread of control. Therefore the method imple-
menting the object body has no thread of control beside
the unavoidable sequential order of execution of the proce-
dure calls. If a new method is added to a class a new body
is defined. It contains a procedure call which invokes the
protocol part of the new method. It also contains a sequen-
tial procedure call which invokes the old body. To denote
the old “object_body” and to distinguish it from the over-
loaded procedure “object_body” the attribute 'Parent is
used. This is illustrated for the example of the buffer
“x_buf2” in Listing 9. That way the new object body
remains compatible with the old one.

In the modelling style an instantiated object can be
interpreted as a statemachine. The values of the object’s
attributes, i.e. record elements of the tagged record store
the state of the object. Guard expressions containing val-
ues of the object’s attributes distinguish different states of

the object or in other words, they determine equivalent
states with respect to the possibility to invoke methods. A
method can only be invoked by a message if the object is
in a state allowing the method to be executed. As
described above the states are determined by the guards of
a method. If a method is executed the object performs a
transition in its state space. The next state depends on the
values which are written into the attributes of the objects
by the method.

The guard expression for the method get of a buffer of
distinguishes between two states: “empty” and “not
empty”. The guard expression of put distinguishes
between two other states: “full” and “not full”. The result-
ing state space consists of three states: “full”, “partial”,
and “empty”.

5.2. Partitioning of acceptable states

The anomaly caused by the partitioning of acceptable
states can be solved by the guard mechanism. The new
method which requires the partitioning of the states just
has a new guard expression which partitions the state. It is
illustrated by the example “x_buf2” (compare Chapter 3)
in Listing 10.

The guard which checks if there are at least two items
in the buffer partitions the state “partial”. Each of the new
resulting states behaves the same as the old state “partial”
with respect to the inherited methods put and get.

If states are partitioned into new states by adding new
attributes to the class it might be necessary to refine exist-
ing transitions. It might be necessary to state more pre-
cisely which partition of the old state becomes the target
of the new state on which condition. This requires to add
protocol code to existing methods in form of synchroniza-
tion constraints (guard expressions) and/or assignment
statements which assign values to the new attributes. This
has to be done without breaking the encapsulation and
while staying compatible with the existing protocol. The
proposed solution in the modelling technique is to embed
the existing functional part of the method in a re-defined
method which overloads the method implementing the
functional part. The re-defined method contains the addi-
tional protocol information. As described above, the
implementation of the synchronization constraints, i.e. the

Listing 8 Re-schedule

object_body with state and messages_in in sensitivity list
protocol_part_method_a

protocol_part_method_a
if decode(message_in) = a then

if guard expression1 then
if guard expression2 then

if guard expression3 then
execute_method_a

endif; endif; endif; endif
end protocol_part_method_a;

protocol_part_method_b
…

false

re
-s

ch
ed

ul
e

protocol_part_method_b

…
end body

true

Listing 9 Object body of buffer x_buf2

procedure object_body (
signal this : inout x_buf2;
signal op_channel : in bufferoperation'class;
signal returnvalue_channel : out

bufferreturnvalue'class) is
begin

protocol_part_get2(
this, op_channel, returnvalue_channel);

object_body'parent(
this, op_channel, returnvalue_channel);

end object_body;

guard expressions must not consume any time (see Listing
11). Although new guard expressions are added to the pro-

tocol code the re-schedule mechanism as shown in Listing
8 still works.

5.3. History-only sensitiveness of acceptable
states

The described modelling style allows to solve the
anomaly caused by the history-only sensitiveness of
acceptable states. It is only necessary to introduce an
attribute which traces the history, to partition the states,
and to refine the transitions as described above. As an
example the buffer “gb_buf” (compare Chapter 4) is
shown in Listing 12.

In the buffer “gb_buf” only the value of the additional
attribute is specified for each method to select the new
transitions.

5.4. Acceptable states anomaly

The refinement of conditions which enable transitions
by putting additional guard expressions to existing meth-
ods allows to solve the modification of acceptable states

Listing 10 x_buf2

Listing 11 Refinement of protocol code

x_buf2 is new bbuffer with null; end record;

procedure protocol_part_get2(
signal this: inout x_buf2;
signal op_channel : in bufferoperation'class;
signal returnvalue_channe : inout

bufferreturnvalue'class) is
begin

if decode(op_channel) = get2 then
if not(this.buf_in = this.buf_out) and

-- guard: buffer contains more than one element
not((this.buf_out + 1) mod (this.buf'length + 1)
= this.buf_in) then
execute_get2(

this=>this, op_channel => op_channel,
returnvalue_channel => returnvalue_channel);

 end if;
 end if;
end;

procedure protocol_part_method
begin

if decode(message_in) = op then
if guard expression then

execute_method

no wait statements
allowed

procedure execute_method
begin

if guard expression2 then
execute_method'parent

endif;
additional protocol code;

end execute_method;

endif;
endif;

additional protocol code
end protocol_part_method;

Listing 12 gb_buf

type gb_buf is new bbuffer with
after_put: boolean; -- traces invocation of put

end record;

procedure protocol_part_gget(
signal this : inout gb_buf;
signal op_channel : in bufferoperation'class;
signal returnvalue_channel : inout

bufferreturnvalue'class) is
begin

if decode(op_channel) = gget then
if not(this.buf_in = this.buf_out)
and after_put = false then

execute_gget(
this=>this, op_channel => op_channel,
returnvalue_channel => returnvalue_channel);

end if; end if;
end;

procedure execute_get(-- OVERLOADING !!!
signal this : inout gb_buf;
signal op_channel : in bufferoperation'class;
signal returnvalue_channel : inout

bufferreturnvalue'class) is
begin

-- always: guard = true
execute_get'parent(

this=>this, op_channel => op_channel,
returnvalue_channel => returnvalue_channel);

this.after_put <= 'false'; -- refinement of transition
wait on clk = '1'; -- or wait for 0 ns; ect.

end;

procedure execute_put(-- OVERLOADING !!!
signal this : inout gb_buf;
signal op_channel : in bufferoperation'class;
signal returnvalue_channel : inout

bufferreturnvalue'class) is
begin

-- always: guard = true
execute_put'parent(

this=>this, op_channel => op_channel,
returnvalue_channel => returnvalue_channel);

this.after_put <= 'true'; -- refine transition
wait on clk = '1'; -- or wait for 0 ns; ect.

end;

anomaly. The modification can be seen as a refinement of
the transition conditions. Therefore the modification can
be expressed by an additional guard. This is illustrated by
the example of the buffer “lb_buf” (compare Chapter 4) in
Listing 13.

Methods to lock and unlock the objects are added to the
class. A new guard expression which checks if the object
is locked or not is added to each method (see Listing 14).

Again it can be seen that it is not necessary to break the
encapsulation of the object or more precisely of the meth-
ods to solve the anomaly. It is important to note that the
protocol part only can be incrementally modified by add-
ing new synchronization constraints. It is not possible to
remove a guard expression. In such a case the protocol
would not be compatible any more (compare Chapter 3).

The concept to solve the anomaly is compatible to
genericity extensions like e.g., the one described in [2].
Especially, mixin inheritance can be used without worry-
ing about acceptable states anomaly.

In summary one can say that the object-oriented lan-
guage extension to VHDL in combination with the pre-
sented modelling technique can be used to solve all the
inheritance anomalies without breaking the encapsulation
of the class. It is neither necessary to analyse existing pro-
tocol code or functional code nor to re-implement them
when inheriting methods from a parent class.

6. Conclusion

This paper has analysed the inheritance anomaly with
special respect to object-oriented hardware design. A
modelling technique was presented which is based on an
object-oriented language extension to VHDL. In this con-
text it was shown that event driven simulation allows the
modelling of guards as appropriate synchronisation con-
straints in concurrent systems.

In summary, one can say that there is a solution to the
inheritance anomaly in object-oriented hardware design.

7. References

[1] America, P.: Inheritance and Subtyping in a Parallel
vin, J.; Hullot, J-M.;

Lieberman, H. (eds.): European Conference on Object-
Oriented Programming ECOOP ’87, Lecture Notes in
Computer Science 276, Springer 1987

[2] Ashenden, P., J.; Wilsey, P., A.; Martin, D.E.: Reuse
Through Genericity in SUAVE. in Rapid System
Prototyping with VHDL. Proceedings of the VIUF Fall
1997 Conference, 1997

[3] Ashenden, P., J.; Wilsey, P., A.; Martin, D.E.: SUAVE:
Painless Extension for an Object-Oriented VHDL. in Rapid
System Prototyping with VHDL. Proceedings of the VIUF
Fall 1997 Conference, 1997

[4] Benzakki, J.; Djafri, B.: Object Oriented Extensions to
VHDL–The LaMI proposal. CHDL’97, Toledo, Spain,
1997

[5] Cabanis, D.; Medhat, S.: Object-Oriented Extensions to
VHDL: The Classification Orientation. Proceedings of the
VHDL User Forum Europe 1996, Shaker Verlag 1996

[6] Ferenczi, S.: Guarded Methods vs. Inheritance Anomaly
Inheritance Anomaly Solved by Nested Guarded Method
Calls. ACM SIGPLAN Notices, Volume 30, Number 2,
Februar 1995

[7] Frølund, S.: Inheritance of Synchronization Constraints in
Concurrent Object-Oriented Programming Languages. in
Lehrmann Madsen, O. (ed.): European Conference on
Object-Oriented Programming ECOOP ’92, Lecture Notes
in Computer Science 615, Springer 1992

[8] Glunz, W.; Pyttel, A.;Venzl, G.: System-Level Synthesis. in
Michel P.; Lauther U.; Duzy P. (eds): The Synthesis
Approach to Digital System Design. Kluwer Academic
Publishers, p. 221-260 , 1992

[9] IEEE Standard VHDL Language Reference Manual Std
1076-1993, Revision of IEEE Std 1076-1987, 1994

[10] Matsuoka, S.; Yonezawa, A.: Analysis of Inheritance
Anomaly in Object-Oriented Concurrent Programming
Languages. in Agha, G.; Wegner, P.; Yonezawa, A. (eds.):
Research Directions in Concurrent Object-Oriented
Programming, MIT Press, 1993

[11] Perry, D.: Applying Object Oriented Techniques to
VHDL. Proceedings of the VIUF Spring Conference, p.
217-224, 1992

[12] Radetzki, M.; Putzk .; Nebel, W.: Language
architecture document on Objective VHDL. REQUEST
Report D1.2C, ESPRIT Project 20616, OFFIS, LEDA,

[13] Schumacher, G.; Nebel, W.: Inheritance Concept for
Signals in Object-Oriented Extensions to VHDL.
Proceedings of the EURO-DAC ’95 with EURO-VHDL
’95. IEEE Computer Society Press, 1995

[14] Swamy, S.; Molin, A.; Covnot B., M.: OO-VHDL
Extensions to VHDL. Computer, October 1995 pp. 18–26,
IEEE, 1995

[15] Wegner, P.; Zdonik, S. B.: Inheritance as an Incremental
Modification Mechanism or What Like Is and Isn‘t Like. in
Gjessing, S.; Nygaard, K. (eds.): European Conference on
Object-Oriented Programming ECOOP ’88, Lecture Notes
in Computer Science 322, Springer 1988

Listing 13 lb_buf

Listing 14 New guard expression in method put

lb_buf is new bbuffer with
lock: boolean;

end record;

procedure execute_put(-- OVERLOADING !!!
signal this: inout lb_buf;
signal op_channel : in bufferoperation'class;
signal returnvalue_channel : inout

bufferreturnvalue'class) is
begin

if this.lock = false then
execute_put'parent(

this => this, op_channel => op_channel,
returnvalue_channel => returnvalue_channel);

end if;
end;

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

