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Abstract

This paper presents a VLSI Architecture to implement the
forward and inverse 2-D Discrete Wavelet Transform
(FDWT/IDWT), to compress medical images for storage and
retrieval. Lossless compression is usually required in the
medical image field. The word length required for lossless
compression makes too expensive  the area cost of the
architectures that appear in the literature. Thus, there is a clear
need for designing an architecture to implement the lossless
compression of medical images using DWT.

The datapath word-length has been selected to ensure the
lossless accuracy criteria leading a high speed implementation
with small chip area. The result is a pipelined architecture that
supports single chip implementation in VLSI technology. The
architecture has been simulated in VHDL and has a hardware
utilization efficiency greater than 99%. It can compute the
FDWT/IDWT at a rate of 3.5 512×512 12 bit images/s
corresponding to a clock speed of 33MHz.

1: Introduction

In the medical imaging field, digitized images are
replacing conventional analog images as photograph or X-
rays. However, the vast volume of data required to
describe such images considerably slows transmission and
makes storage prohibitively costly. Images from Computer
Tomography (CT) or Magnetic Resonance (MR) are
512x512 pixels and 12 bit in depth [1]. The quantity of
data must be reduced while maintaining the reconstructed
image an acceptable fidelity with the original image.
Usually this fidelity must be total and lossless compression
is required.

Currently, block DCT based compression methods
produce block-like image artifacts that could mask or be
mistaken for pathology in medical images. In contrast with
the block DCT, DWT [2], [3] does not partition the image
into blocks for coding, thereby significantly reducing
artifact generation in the reconstructed image.

Compression is achieved by quantizing and then coding
the wavelet data.

The computation of the DWT is a very time
consuming task and parallel processing in the form of
specialized hardware is therefore necessary. VLSI
architectures for DWT computation are reported in the
literature [4]- [14]. These VLSI implementations of the
forward and inverse wavelet transform use multiply and
accumulate (MAC) units, and memory modules to store
intermediate results. The implementation cost depends on
the number of multipliers and size of storage units.
Further, these parameters will depend on the image size,
wavelet filters, number of scales and word length.

This paper concentrates on the filters best suited to
image compression according to Villasenor [15]. For
them, we have obtained the minimum word length
required to obtain a reconstructed image numerically
identical to the original one. This word length has been
obtained in a previous work [16].

In [14], it is surveyed the number of multipliers and
memory elements required for the existing
implementations of the FDWT and the IDWT that appear
in the literature. These architectures have been designed to
work with 8 bit resolution images and to achieve a
performance of 50-60 dB SNR. If lossless compression is
required, high word length is needed and it makes their
area implementation cost too high. Therefore, there is a
clear need for designing an architecture to perform lossless
compression of medical images using the DWT.

The paper is organized as follows. Section 2 reviews
wavelet concepts and presents the filters that will be used
in this paper. The effect of finite precision in DWT
computation is presented in Section 3. The VLSI
architecture for computing the DWT is presented in
Section 4. Finally, conclusions are reported in Section 5.

2: The Discrete Wavelet Transform

The discrete wavelet transform (DWT) decomposes
any arbitrary function d into different scale levels, where



each level is then further decomposed with a resolution
adapted to the level. The image decomposition method
used in this paper was developed by Mallat [2], and is
implemented by a pair of Quadrature Mirror Filters
(QMFs) using the pyramid algorithm. Each QMF pair
consists of a low pass filter (H) and a high pass filter (G)
that splits a signal’s bandwidth in half.

The two dimensional filtering decomposes an image

into an average signal ( dHH
j ), and three detail signals

which are directional sensitives (Fig. 1). The average
signal is the initial image for the next scale. Then, for a S-

scale DWT, the algorithm runs from j = 1 to S being dHH
0

the original image. The output is an average signal dHH
S ,

as well as the detail signals dHG
j , dGH

j , dGG
j  from j = 1 to

S. The inverse wavelet transform is calculated in the
reverse manner, i.e., starting from the lowest resolution
subimages, the higher resolution images are calculated
recursively.

In this paper, we will concentrate on 6 filters that are
the best suited to image compression according to [15].
The filter coefficients proposed in [15] are shown in Table
I. For each filter bank, it is given the low pass filters (H)
and inverse low pass filters ( H ), the number of taps and
the filter coefficients. Origin is the leftmost coefficient.
Coefficients for negative indices follow by the symmetry
of QMFs, and the high pass transform coefficients can be
derived from the low pass QMFs. The fifth column
represents the sum of the absolute values of the filter
coefficients.

For the FDWT, the number of multiply and
accumulate (MAC) operations to compute the jth scale
from the (j-1)th scale is:
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where N is the number of rows/columns of the image,
and L H( ) , L G( )  the length of the QMF filters. If the
FDWT algorithm runs from j=1 to S, the total number of
MACs operations is:
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The same result is valid for the IDWT. Let us
assume, N=512, QMF filters length 13, and S=6, then the
number of MAC operations to perform the FDWT of an
image is 8.99⋅106, and a 133MHz Pentium PC spends 42
seconds to compute it.
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Fig. 1. Basic building block of the 2D forward
discrete wavelet transform using pyramid

algorithm.

L Filter coefficients cn cn∑
F1 H 9 0.852699, 0.377402, -0.110624, -0.023849, 0.037828 1.952105

H 7 0.788486, 0.418092, -0.040689, -0.064539 1.835126

F2 H 13 0.767245, 0.383269, -0.068878, -0.033475, 0.047282, 0.003759, -0.008473 1.857495

H 11 0.832848, 0.448109, -0.069163, -0.108737, 0.006292, 0.014182 2.125814

F3 H 6 0.788486, 0.047699, -0.129078 1.930526

H 10 0.615051, 0.133389, -0.067237, 0.006989, 0.018914 1.683160

F4 H 5 1.060660, 0.353553, -0.176777 2.121320

H 3 0.707107, 0.353553 1.414214

F5 H 2 0.707107, 0.707107 1.414214

H 6 0.707107, 0.088388, -0.088388 1.767767

F6 H 9 0.994369, 0.419845, -0.176777, -0.066291, 0.033145 2.386485

H 3 0.707107, 0.353553 1.414213

Table I. Best Filters for wavelet image compression [15].



3: Word Length for Lossless Compression

Due to finite precision arithmetic, the reconstructed
image might be not numerically identical to the original
one, on a pixel-by-pixel basis. That means that lossless
compression is not achieved. In the medical image field,
that may compromise the diagnostic accuracy.

The adopted numerical system is fixed-point two's
complement. For each scale j, the FDWT (Fig. 1) causes

the magnitude of subimages d HH
j , d HG

j , dGH
j , and dGG

j

to grow with respect to the initial image d HH
j−1 , thus the

dynamic range increases with scale. The rate of increase is

upper bounded by ( )cn∑
2

 which is greater than unity

(Table I). If the integer part is maintained fixed and equal
for all scales j, the most significant bits are only fully used
in the last scale. Thus, our approach is to increase the
integer part with the scale. Table II [16] represents the
minimum integer part bint we have to use in order not to
exceed the dynamic range for the filters in Table I.

Scale
Filter s=1 s=2 s=3 s=4 s=5 s=6

F1 15 17 19 21 23 25
F2 16 17 19 21 23 25
F3 15 17 19 21 23 25
F4 16 18 20 22 24 27
F5 15 16 17 18 19 20
F6 16 19 21 24 26 29

Table II. b sint ( )  per scale

However, in the case of the IDWT, the dynamic
range of the reconstructed image at scale j-1 decreases
with respect to the reconstructed image and detail images
at scale j due to the perfect reconstruction property of
wavelet transform. Using a word length of 32 bits with
integer part variable, the lossless accuracy criteria is
fulfilled [16].

To sum up, the used precision is 13 bits (including
sign) for input images, 32 bits for wavelet filter, and 32
bits with variable integer part with scale for intermediate
results.

The VLSI architectures for DWT computation
reported in the literature [4]- [14], can be grouped into
four types:

A.- Serial-Parallel architecture [14]: it consist of two
serial filters to compute rows and two parallel filters to
compute columns. This circuit is fed in with two rows at
the same time.

B.- Parallel architecture [14]: is a modification of
the previous one, in that all the filters are parallel filters. In
this case the input of the circuit is only one row.

C.- Block based filtering proposal [13]: Image is
splitted into blocks, usually with the same size as the filter
length, each block can be processed following Serial-
Parallel or Parallel approach.

D.- Recursive 1-D WT [11]. The 1-D WT is
computed for all scales in row order, the resulting image is
transposed and finally the 1-D WT is computed again over
rows.

The above architectures have been designed to work
with 8 bit resolution images and to achieve a performance
of 50-60dB SNR. Table III shows the hardware
requirements for this architectures in number of arithmetic
blocks (multipliers and adders) and memory elements.

Serial-Parallel

Parallel

Block Filtering

Recursive 1D

2 · · +L N N4 · L

S N S S· · + · + · +3 4 21 1 2 27/ ( ) /2 · ·L S

S L N· + · ·28 6 2/

Multipliers Memory Elements

254.36

254.36

246.64

173.72

Area (mm2)

4 · L

2 · L

2 · · +L N N

Table III. Requirements for architectures,
L: Filter length, S: Number of scales,

N: number of Rows/Columns

Assuming a 0.7µm CMOS technology [18], the
multipliers and RAM areas have been obtained generating
the cells using the ES2 megacell compiler. The fourth
column of Table III represent the area that is occupied by
the multipliers and memory blocks for L=13, S=6, N=512
and word length of 32 bits. The results show that the
implementation cost is unaffordable for lossless accuracy.

Our goal is to design a specific hardware to speed up
the FDWT/IDWT computation with respect to a desktop
PC, while maintaining an affordable implementation cost.

4: Proposed Architecture

The datapath block diagram is shown in Fig. 3. We
have chosen a implementation for the filters that uses one
32×32 bits multiplier, one 64 bits accumulator and
( )N 2 2 32+ ·  memory elements of 32 bits, in contrast to
the hardware requirements shown in Table III.

This architecture uses an external DRAM memory to
store initial, intermediate and final convolution results.
Only one image size memory is necessary to compute the
FDWT/IDWT transform. DRAM accesses are slow and so
that, the proposed architecture minimizes them. Each data
is read and written only once from/to the DRAM. An input
buffer is needed to hold read data from the external
memory and an output buffer arranged like a FIFO is



employed to avoid data depedences between DRAM reads
and writes.

The design of the architecture is based on the
computation schedule shown in Fig. 2, which in his turn is
the result of applying the pyramid algorithm. A MAC
operations to compute one data convolution for 13 tap
filters is performed on a macrocycle of 13 cycles (0 to 12).
Cycles 13 to 18 are used to extend the macrocycle when a
refresh is required by the external DRAM. Every
macrocycle, a read and a write operation are performed
from the DRAM, and 13 reads from the filter coefficients
RAM.

The architecture achieves a maximum utilization
factor (busy_cyles/total_cycles) of the filter unit. The
multiplier is idle only during the refresh operation of the
external DRAMs.

Utilization Multiplier
Busy cycles

Total cycles
( )

_

_
.= = 99 04%

The architecture has been modeled in fully
synthesizable VHDL and simulated on data taken from

random images and gave the same output as a software
implementation.

4.1: Input Buffer Organization

To minimize DRAM accesses we need an input
buffer to hold input data while they are alive in such a way
that each data is read only once from the memory. Once a
data is read, it must remain live in the input buffer in order
to produce the subsequent scale output data during L
cycles. That is not valid for the data near the edges of the
image due to the border effects. We use a “so called”
circular convolution, i.e., an NxN image is extended
periodically on both rows and columns. So border data are
alive while the row/column is being computed.

If the filter length is L = 2⋅l+1, 2⋅l data are the
number of rows/columns extended beyond the image
edges, l on the left/top and l on the right/bottom. And
2⋅l+1 data are needed to compute a new result. Then, the
minimum size for this buffer will be:

Bsize l l l= ⋅ + ⋅ + = ⋅ +2 2 1 4 1

Cycle 0 1 2 3 4 5 6 7 8 9

DRAM Manager DRAM rd DRAM wr

Input Buffer rd_cf4 rd_cf5 rd_cf6 rd_cf7 rd_cf8 rd_cf9 rd_cf10 rd_cf11 rd_cf12 rd_cf13

Acc_ctl load acc acc acc acc acc acc acc acc acc

Output FIFO wr rd

Cycle 10 11 12 13 14 15 16 17 18

DRAM Manager DRAM wr branch DRAM refresh

Input Buffer rd_cf1 rd_cf2 rd_cf3 idle idle dec. ptr. rd_cf1 rd_cf2 rd_cf3

Acc_ctl acc acc acc hold hold hold hold hold hold

Output FIFO

Fig. 2. Operation scheduling
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To simplify the control, this minimum size is
rounded up to the nearest power of two. For instance, for
L = 13 tap, Bsize = 4⋅6+1 = 25, and the taken buffer size
will be 32.

This buffer is folded in two banks (Fig. 4). For even
rows/columns, the top of the first bank stores the data used
to extend the image and the second bank holds the
following Bsize/2 data. Depending on the row/column
length Bank2 is reused #rounds times (Table IV). The
remaining data is stored in the bottom of Bank1. The
behavior of these banks switches for odd rows/columns.

4.2: MAC Unit

Table V shows part of the 32 x 32 bit multiplier data
sheet generated by means of the ES2 Megacell Compiler.
We have considered the worst-case industrial conditions
for the timing parameters. This 32 x 32 bit multiplier is too
slow (access time of 50.88ns) for our purposes. So, we
have designed a Wallace tree 2-stage pipelined multiplier.
This block is larger than the compiled one, but has a
propagation delay that allow us work with a clock period
of 25ns. The accumulation is performed in 64 bits to
increase the accuracy.

4.3: Alignment and Rounding

As we have said in Section 3, the integer part of the
intermediate wavelet data changes with scale. The
alignment unit is in charge of this task. The increment
(FDWT) or decrement (IDWT) of the integer part at each
scale is stored in a configuration memory since it depends

on the filters (Table II).
After the accumulation in 64 bits and the bit

alignment, rounding narrows the datapath word length to
32 bits. If the MSB of the truncated bits is 0, truncation is
performed; if the MSB is 1, then round-up by one is
performed.

4.4: FIFO Organization

When calculating the FDWT from scale S1 to S2, the
output of a convolution is used as input for the next one.
Then, when computing the horizontal convolution on a
column, we must use the old values generated by the last
convolution. Therefore, there are a write-after-read
dependence. For each row j in the same processing
column, we must ensure that the number of cycles since
this memory position j is read till the same memory
position j is written must be greater than zero.

For a given column c, the memory position of row j,
is read and write at the following cycles:

( )
( )

( ) ( )

Re _ ( ) ,

_ ( )

,

,

ad cycle j l j from j to
N

l

Write cycle j

l j

l j N

N

S

S

S

= + + = − −
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⋅ + + ⋅
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where L = 2⋅l+1 is the filter length. Let us define the
distance of the data dependence as the difference between
the cycle at which j is written and the cycle at which it is
read:

Distance j Write cycle j ad cycle j( ) _ ( ) Re _ ( )= −
When the new value is available before the old value

has been read, the new value write operation is delayed D

0

2l

Bank1

Bank2

Border
data

#rounds

15

16

31

0

15

#rounds

16

2l

31

even row/column odd row/column

4

20

Border
data

Fig. 4 Input buffer organization

Scale row/column size #rounds
1 512 31
2 256 15
3 128 7
4 64 3
5 32 1
6 16 0

Table IV. Bank2 utilization for a 512x512 image

Access time to (ns) Cell Area (mm2)
ES2 50.88 2.92

Pipelined 23.45 8.03

Table V. DWT Multiplier Design



cycles in order to satisfy the order implied by the
dependence such that:

[ ]MIN Distance j D( ) + > 0 .

D delays are generated with a D deep FIFO. It can be
seen that D depends on the scale. Thus, the variable deep
FIFO is implemented in an intermediate RAM that is
accessed as a FIFO.

The above calculations give a minimum value to D.
But D is also upper bounded. In the change between
vertical and horizontal convolution appear read-after-write
data dependences that impose a maximum value to D. The
IDWT also imposes restrictions on D. Table VI sums up
the imposed bounds on D for N = 512 and L =13.

Scale 1 2 3 4 5 6

MIN(D) 250 122 58 26 10 2

MAX(D) 504 248 120 56 24 8

Table VI. Bounds on FIFO deep

5. Conclusions

A VLSI architecture for computing the forward and
inverse 2-D Discrete Wavelet Transform has been
presented. The targeted applications aim at the
compression for storage and retrieval of Medical Images,
thus real-time is not required. The datapath word length
has been selected to achieve lossless compression for the
filters best suited to image compression that appear in the
literature [15]. The implementation employs only one
multiplier and N/2 + 32 memory elements to compute all
scales what results in a considerable smaller chip area
(11.2 mm2) than former implementations (Table III). The
hardware design has been captured by means of the VHDL
language and simulated on data taken from random
images. Running at 33MHz, this architecture computes 3.5
512×512 with 12 bit resolution images/s. Thus, our
architecture is 154 times faster than a desktop Pentium
133MHz PC. We are currently working on the design of a
chip based on the proposed architecture, with a PCI Bus
interface. This chip is the core of a PCI board that will
speedup the DWT computation on desktop PCs.
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