From Algorithmsto Hardware Architectures:
A Comparison of Regular and Irregular Structured IDCT Algorithms

Claus Schneider , Martin Kayss, Thomas Hollstei nt, Jiirgen Dei cket

Siemens Corporate Technology, ZT ME 5, 81730 Munich, Germany
E-Mail: claus.schneider@mchp.siemens.de

* Darmstadit University of Technology, Institute of Microelectronic Systems, 64283 Darmstadt, Germany

Abstract

The inverse discrete cosine transformation (IDCT) is used
in a variety of decoders (e.g. MPEG). On one hand, highly
optimized algorithms that are characterized by an irregu-
lar structure and a minimum number of operations are
known from software implementations. On the other hand,
regular structured architectures are often used in hard-
ware realizations. In this paper a comparison of regular
and irregular structured IDCT algorithms for efficient
hardware realization is presented. Theirregular structured
algorithms are discussed with main emphasis on assess-
ment criteria for algorithm selection and high-level syn-
thesis for hardware cost estimation.

1 Introduction

The two-dimensional discrete cosine transformation
(2D-DCT) is used in many video coding standards (e.g.
JPEG, MPEG-1/2) to reduce redundancy. Decorrelation is
performed by transformation of image blocks (typically
8x8 pixels) into the frequency space. A decoder hasto per-
form the inverse transformation, which can be separated
into 2 one-dimensional inverse discrete casine transforma-
tions (1D-IDCT). For two 1D-IDCTs, 2N° multi plications
and 2N2(N-1) additions are needed to perform the matrix
multiplications. That are 1024 multiplications and 896
additionsfor N = 8.

The number of operations can be reduced drastically
by exploiting symmetries of the transformation matrix.
The more optimizations are made to reduce the number of
operations, the more irregular the algorithm gets. There-
fore many hardware architectures are based on less opti-
mized algorithms, that still have aregular structure. Using
a multiply/accumulate (MAC) architecture, these regular
structured algorithms can be designed with low effort. On
the other hand, irregular structured algorithms with a min-
imum number of operations are known from software
implementations. Same as the agorithm the hardware
structure gets more and more irregular and therefore
requires much effort for design.

For the transition from algorithms to hardware archi-
tectures, a trade-off between the number of operations and
the regularity of the structure has to be made. The design
flow and architecture trade-off process is demonstrated for
both, a regular structured architecture, and an irregular
structured one.

1.1 Related work

In literature, either application-specific hardware
realizations [CPS89, RuT092] or abstract descriptions of
fast and highly optimized algorithms [CSF77, ArJu89,
LLM89] can be found. The papers reporting on hardware
realizations mainly focus on architecture details and
mostly do not cover architecture exploration. Papers about
algorithms are dominated by discussions about how to
reduce the number of multiplications. A tool for editing,
simulation and analysis of data flow graphsis presented in
[LLM8S].

But for the transition from algorithms to hardware
architectures, many different architecture variants have to
be examined, to select one for the final realization. In this
paper regular and irregular structured algorithms are com-
pared for efficient hardware realization, and assessment
criterianeeded for architecture selection are discussed.

1.2 Paper Structure

First, an overview of different IDCT agorithms and
the architecture exploration process is given. After that, a
regular structured hardware architecture based on MACsis
presented. Then, irregular structured agorithms are dis-
cussed with main emphasis on assessment criteria for
algorithm selection and behavioral synthesis for hardware
cost estimation. A comparison of regular and irregular
structured algorithms concludes the paper.

2 Overview

2.1 Discrete Cosine Transformation

The DCT was first introduced by Ahmed et al. in
1974 [ANR74]. In Equation 1, the direct algorithm to
compute the 2D-DCT and in Equation 2 the inverse trans-
formation is defined.

2 N-1xN-1 (2x+ur _ (2y+1)vn
NC(U)C(V)szozy:of(X’Y)CG" N oS = (1)

2xN-1xN-1 (2x+Dum __(2y+1)vn
NZV:OZU:OC(u)C(v)F(u,v)coo N 5o (2)

The two-dimensional DCT can be separated into a
sequence of one-dimensional transformations. Therefore,
1D-DCTsare applied to all rows and all columns. The 1D-
DCT is defined in Equation 3 and the inverse operation in
Equation 4 using the constants of Equation 5.

N-1
X(m)= J%C(m)zk _® cos% ©)
N-1
X(K)= J% Zm : OX(m)C(m)cos% 4
1 fori =0
cm= Jlé otherwise. (5)

Fast algorithms use a basic operation called rotation
(see Equation 6). Graphically, the vector (x, y) is rotated
by an angle ¢ to calculate the vector (X, Y).

X = cos(9) - x+sin(9) -y = (sin(¢) —cos(9)) -y +t (6)
Y = —sin(¢) - x+ cos(¢9) -y = —(sin(¢) + cos(9)) - x+1t

The so-called fast rotation is obtained by calculating
the common sub-expression t = cos(e)- (x+y) first. At the
cost of an additiona register for t, the number of opera
tions can be reduced from 4 multiplications and 2 addi-
tionsto 3 multiplications and 3 additions.

2.1.1 Known Algorithms

In recent years, different algorithms have been pub-
lished to compute the discrete cosine transform and its
inverse. The goal of these approaches is the reduction of
the number of multiplications. The lower bound for an 1D-
DCT are 11 multiplications, as shown by Duhamel
[DuMi87].

Matrix factorization is used by Chen et al. to half the
computation costs of an N-point DCT, in which N is a
power 2 [CSF77]. For an 8-point 1D-DCT, 16 multiplica-
tions and 26 additions(subtractions) are needed. The num-
ber of operations can be further reduced to 13
multiplications and 29 additions(subtractions) by applying
the fast rotation to the algorithm.

Loeffler et a. introduced a version that requires only
11 multiplications and 29 additions(subtractions) for an 8-
point DCT [LLM89] with a maximum path length of 2
multiplications and 4 additions.

Artieri et al. developed an algorithm that has a recur-
sive structure and requires only 11 multiplications and 29
additions [ArJu89]. The drawback of this implementation
is that the maximum data path contains up to three multi-
plications and four additions. The problem is the error
propagation in the different stages, because of the neces-
sity of rounding the results after the multiplications.

2.2 Architecture Exploration

First, regular and irregular structured algorithms are
modeled in C to perform the |EEE compliance test. At this
stage the bit widths of the intermediate results and thus for
the operations have to be determined. For regular struc-
tured algorithms hardware costs can be estimated before
RTL modeling and synthesis. On the other hand, for irreg-
ular structured algorithms, a VHDL behavioral model is
developed. Resource estimation can be done with this
model.

After selection of one promising algorithm, behavioral
synthesis with different constraintsis performed to explore
the design space.

Finally, an architecture is selected for RTL synthesis.

3 Regular Architectures

Due to the relatively small modding effort, many
hardware realizations of the IDCT use regular structured
algorithms. The transformation can be written in matrix
form, as shown in Equation 7.

For an 8-point 1D-IDCT the input vector F has to be
multiplied with the transposed transformation matrix C to
get the result vector f. Therefore, 8 x 8 multiply/accumu-
late operations (64 multiplications and 56 additions) are
necessary. Because of the symmetry of the transformation
matrix C, the transformation can be divided into two 4 x 4
matrix multiplications and a butterfly operation [CSF77],
as shown in Equation 8 and Equation 9.

f CT T

f0123°% Fo246"C2 E1357 O

T T

7654 Fo246 % F1357 ©

The even part of the input vector F is multiplied with
the matrix C, and the odd with the matrix C,. Intermediate
results of these multiply/accumulate (MAC) operations are
added and subtracted by a so-called butterfly operation to
calculate the final results. A hardware architecture based
on multiple MACs and one butterfly operation is shown in
Figure 1.

TMEM

| IMEM

Even

Butterfly

AL

o
D
o
a
b
=
=
=

L| IMEM
Odd

| TMEM
Odd

Figure 1: Regular Structured IDCT

Because of the separation of the 2D-IDCT into two
one-dimensional ones, in the first step all rows and in the
second step al columns of the matrix are processed, or
vice versa. In the first step, the 1D-IDCTs are performed
reading the input memories (IMEM) and writing the trans-
pose memories (TMEM). The MAC operations can be per-
formed in parallel for the even part and the odd part. For
the butterfly operation the results from both parts are
needed. In the second step, the intermediate results are
read (TMEM) and the final results are written to the out-
put.

The architecture shown in Figure 1 is scalable by the
number of MACs. Even and odd part should consist of
equal numbers of MACs to enable parallel operation of
both parts and to avoid synchronization problems at the
butterfly operation. The controller (counter and look-up
table for multiplexor control signals) for the datapath can

be kept simple, if the total number of MACs is a power of
two. Because of the regular structure, the hardware costs
can be estimated rapidly.

100
Total e e

& -
o = MACs
310 Z
N3 2
g Mux &xWire
<
= Butterfly
21
S -
£ Controller
0 .
L Write Logic

0.1

0 1 2 3 4 5 6 7 8 9

Number of MACs
Figure 2: Hardware Cost Estimation

The overall circuit area is dominated by the area of
the MAC operations, Figure 2. As the number of MACs
increases, the multiplexor and wiring area is growing as
well, but slower than the area of the MAC operations.

The regular structured approach is characterized by a
simple datapath and controller, that can be modeled at
RTL with relatively little effort. Hardware costs can be
estimated rapidly before modeling and synthesis.

4 |rregular Architectures

4.1 Multiple Multiplications per Path

The agorithm proposed by Loeffler et a. [LLM89]
requires only the theoretical minimum of 11 multiplica-
tions. In Figure 3, the irregular structured data flow graph
(DFG) is shown.

But, besides the small number of operations, the algo-
rithm has the drawback of multiple multiplications per
data path. The multiplications are carried out with integer
constants that are scaled to 12-14 bhits depending on the
precision requirements. The problem that arisesfor an area
efficient hardware realization is the increasing bit width of
the intermediate results and especially the resulting multi-
plier size. Only rounding can keep the intermediate results
in areasonable bit width. Because of the fixed-point arith-
metic, this|eads to an error propagation through the IDCT
stages.

To solve this problem an architecture with only one
multiplication per path has to be found.

4.2 OneMultiplication per Path

The ideaisto expand the number of operationsin the
odd part to achieve parallel multiplications. This can be
done at the cost of one additional multiplication and three
additions. Thus, the number of operationsis 12 multiplica-
tions and 32 additions(subtractions). The advantage of this
implementation is, that no data path contains more than
one multiplication which alows an efficient and accurate
hardware design. The resulting data flow graph isshownin
Figure 4.

even Part odd Part

fo f1 3
D addition/subtraction @ multiplication

Figure 3: DFG (Loeffler) with 11 multiplications

even Part odd Part
FO F4 F6 F2 F7 F1 F3 F5

§g/
- C }g/
—

+
+ +

~—
— +
[
-
f5 f4 f6 7 f3 fo f1 f2

HL] additionvsubtraction ® multiplication shift operation

Figure 4: DFG (Loeffler) with 12 multiplications

4.3 Compliance Test

To guarantee consistency in the quality of the recon-
structed values, a strict error limit is given for the MPEG
standard. The different IDCT implementations use fixed-
point arithmetic with a finite number of bits for the con-
stants and the intermediate results. The input value to the
IDCT is set to 12 hits and the output to 9 bits by the
MPEG standard.

Because of the reduced precision due to the scaled
constants and the rounded intermediate results, the
IEEE1180-1990 compliance test [IEEE1180] is used to
check the accuracy of the final results.

The test generates 60.000 data blocks, each consist-
ing of 8 x 8 values, filled with random numbers. Compared
to a floating-point implementation, the fixed-point IDCT
algorithm has to reconstruct the blocks within a specified
error limit.

Because of the high amount of data blocks the differ-
ent algorithms were implemented as C software models to
perform the compliance test. They were tested to meet the
accuracy of the IEEE1180 with a minimum number of
additional fractional bits. Therefore, the result of each
multiplication and the output values after each 1D-IDCT
were rounded. The rounding also scales the results to con-
vert the values from fixed-point arithmetic.

The IEEE1180 compliance test is the crucial con-
straint for the selection of an algorithm for behavior syn-
thesis.

4.4 Algorithm Selection

The different implementations of the inverse discrete
cosine transform have to be evaluated by assessment crite-
ria to find the best candidate for behavior synthesis. The
number of resources is used as an indication to minimize
the area of the resulting circuit.

Criteria Chen Loefflerll | Loefflerl2 | Artieri
#multiplications 13 11 12 11
#additions 16 20 25 17
#subtractions 13 9 7 12
#operations 42 40 44 40
#mult. 2 2 1 3

path

#add. 5 4 4 4
#iregisters 9 12 11 10
#eycles 19 15 19 15

Table 1: Algorithm Selection Table

Based on the numbers in Table 1 an algorithm was
selected for behavioral synthesis. The number of required
registers was estimated by manual ASAP (As Soon As
Possible) schedules and register lifetime tables. For the
number of cycles, no I/O order and only one multiplication
and two Add/Sub operations per cycle, were assumed.

The agorithm of Loeffler et a. with 12 multiplica-
tions was chosen. At the cost of one additional multiplica-
tion compared to the theoretica minimum, this
implementation provides asimple solution for the problem
of fixed-point arithmetic and passes the compliance test

with good accuracy.

45 High-Level Synthesis

The usage of a behavioral description offers a lot of
opportunities in comparison to the limited possibilities of
RTL synthesis. Changes to the specifications are easier at
behavioral level, than redesigning an RTL implementation.
An introduction to high-level synthesis can be found in
[GaRa94], while [MLD92] describes the high-level syn-
thesis algorithms in more detail. Furthermore, an approach
to exploring the algorithmic design space using high-level
synthesis can be found in [PRE93].

The multiple options concerning the amount of
resources and the timing were generated to determine an
optimal architecture that can be synthesized.

The order of the input values at the two 1/O ports is
determined by local constraints because the IDCT

demands none.
¢¢ 1/0 Operations ¢¢

U

N

Initiation
Interval

Latency —p

r 3

N
N]
Cycles

multiple use
of resources

Sample N SampleN + 1

Figure 5: Initiation Interval and Latency

The usage of loop pipelining allows to increase the
data throughput in user-defined steps. The length of the
initiation interval (sample period) and the number of loops
were varied to find an optimal architecture suitable for
synthesis.

Different models with various options were generated
to examine the search space for a suitable candidate for
RTL synthesis.

45.1 SynthesisResults

The results of behaviora synthesis are shown in
Table2 and in Figure 6.

llnr:?e?'t\llgln Latency |Loop| * |+/-| + |Inc./Dec. R(eé;iltsst)er
5 20 4 13|81 0/0 572
6 18 3 12|71 2/2 352
11 22 2 2|40 0/0 340
12 24 2 |1]4,0 0/0 388
20 20 1 /1]3]0 0/0 284

Table 2: Resources (Behavior Level)

The number of resources in dependence of the length
of the initiation interval is used to determine the optimal
architecture for RTL synthesis.

Considering the results of behavioral synthesis there
are two interesting boundaries in the search area. Between
5/6 and 11/12 cycles the area drops because the number of
required multipliers decreases by one.

22
20
- 18
)
©
3 16
< 14
8
z 12 : total
2 10
]
£ 8 combinational
w 6
sequential
4 K/\‘\‘
2

4 6 8 10 12 14 16 18 20
Initiation Interval (Clock Cycles)

Figure 6: Area Estimation (Behavior Level)

The option with an initiation interval of 12 cyclesand
alatency of 24 cycles was chosen for RTL synthesis. The
result of the synthesis with different timing margins
showed that 46% of the total areais used by multiplexors
and interconnect, 3% by the controller, 22% by registers
and only 29% by the operations. The big multiplexor and
wiring area compared to the relatively small area used by
the arithmetic operations can be explained by the small
number of operations and the high amount of operands.

5 Conclusion: Regular vs. Irregular

There is a big difference in development time
between the two approaches. A long anaysis phase is
needed for the pre-selection of irregular structured algo-
rithms for behavioral synthesis. Especially the process to
determine the bit widths (to pass the compliance test) is
more complex and time consuming for irregular structured
algorithms, than for regular ones. Thistask can not be per-
formed by high-level synthesis tools. But for design space
explorations at behavior level, high-level synthesisis well
suited to perform atrade-off between the number of cycles
for the initiation interval on one hand, and the required
number of resources on the other. In contrast to the high
effort for architecture trade-off for irregular structured
algorithms, hardware cost estimation can be done with low
effort for regular structures.

However, the main advantage of irregular structured
algorithms is the possibility to adjust the performancein a
fine grain by the number of cyclesof theinitiation interval.
The regular structured architecture can only be parameter-
ized by the number of MAC operations. The number of
MACsimplies already the number of cycles(eg. 1,2,4,8
MAC:s correspond to 32, 16, 8, 4 cycles). The number of
cycles of the behavioral description of the Loeffler algo-

rithm can be defined in steps of one cycle by constraining
the high-level synthesis. However, only a few combina-
tions of the number of multipliers and the number of
cyclesresult in efficient hardware realizations.

The transition from an optimized software agorithm
to an efficient hardware architecture is difficult, because of
the various requirements and the huge design space. A
minimum number of operations is not as important for a
hardware redlization, as it is for a software implementa-
tion. On the contrary, because of the extensive resource
sharing, multiplexors and wiring take nearly half of the
total circuit area. This effect will more and more dominate
in deep submicron, where wiring delay is getting more
important than gate delay.

Acknowledgments

Wewould like to thank Sabine Rossel for all the help-
ful discussions and her support in modeling methodol ogy
and design constraining for behavioral synthesis.

References

[ANR74] Ahmed, N.; Natargan, T.; Rao, K.R.. Discrete
Cosine Transform. |EEE Transactions on Compulter,
January 1974, pp.90-93.

[Ardu89] Artieri, A.; Jutant, F.: Procédé de détermination de
transformée en cosine discréte. Brevet Ndeg. 89
0234, 23. février 1989.

[CSF77] Chen, W.H.; Smith, C.H.; Fralick, S.C.: A Fast Com-
putational algorithm for the Discrete Cosine Trans-
form. IEEE Transactions on Communications, Vol.
COM-25, No. 9, September 1977, pp. 1004-10009.

[CPS89] Carlach, J.C.; Penard, P; Sicre, JL.: TCAD: A 27

MHz 8x8 Discrete Cosine Transform Chip. |IEEE
Proceedings of the ICASSP, 1998.

[DuMi87] Duhame, P; H'Mida, H.: New 2" DCT Algorithms
suitable for VLS Implementation. Proceedings |IEEE
International conference on Acoustics, Speech and
Signa Processing, ICASSP-87, Dallas, April 1987,
pp. 1805-1808.

[GaRa94] Gajski, D.D.; Ramachandran, L.: Introduction to
high-level synthesis. IEEE Design & Test of Comput-
ers (1994) vol.11, no.4, p.44-54.

[IEEE1180]IEEE Sandard Specifications for the Implementa-
tions of 8x8 Inverse Discrete Cosine Transform.
|EEEStd1180-1990, 1991.

[LLM88] Loeffler, C.; Ligtenberg, A.; Moschytz, G.S.: Algo-
rithm - Architecture Mapping for Custom DSP Chips.
|EEE Proceedings of the ISCAS, 1988.

[LLM89] Loeffler, C.; Ligtenberg, A.; Moschytz, G.S.: Practi-
cal Fast 1D- DCT Algorithms with 11 multiplica-
tions. IEEE Proc. Int’l Conf. on Acoustics, Speech
and Signal Processing 1989 (ICASSP'89), pp. 988-
991.

[MLD92] Michel, P;Lauther, U.; Duzy, P: The Synthesis
Approach to Digital System Design, Chapter 6: High-
Level Synthesis, by Sabine Mirz. Kluwer Academic
Publishers, 1992.

[PRE93] Potkonjak, M.; Rabaey, J.; ed. Eggermont, L.D.J;
Dewilde, P; Deprettere, E.; Van Meerbergen, J.
Exploring the algorithmic design space using high
level synthesis. VLSl Signal Processing, VI (Cat.
N0.93THO0533-0), IEEE: New York, NY, USA, 1993.

[RuTo92] Ruetz, PA., Tong, P; A 160 MPixel/Sec IDCT Proc-
essor for HDTV. IEEE Proceedings of the Custom
Integrated Circuits Conference, 1992.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

