
Parallel VHDL Simulation

E. Naroska
Computer Engineering Institute

University of Dortmund
44221 Dortmund, Germany

Abstract
In this paper we evaluate parallel VHDL simulation

based on conservative parallel discrete event simulation
(conservative PDES) algorithms. We focus on a conser-
vative simulation algorithm based on critical and exter-
nal distances. This algorithm exploits the interconnection
structure within the simulation model to increase paral-
lelism. Further, a general method is introduced to auto-
matically transform a VHDL model into a PDES model.
Additionally, we suggest a method to further optimize par-
allel simulation performance. Finally, our first simulation
results on a IBM parallel computer are presented. While
these results are not sufficient for a general evaluation they
show that a good speedup can be obtained.

1 Introduction
VHDL [3] is a formal programming language intended

for use in all phases of digital electronic design. As the
complexity of digital designs continuously increases, vali-
dation by simulation becomes the most time and resource
consuming task. To deal with this problem parallel VHDL
simulation on a parallel computer or a network of work-
stations has been suggested. This approach is based on
the parallel discrete event simulation (PDES) paradigm and
promises to reduce the simulation time by distributing the
simulation workload on many nodes of a parallel computer.

Previous research in PDES has resulted in two main si-
mulation approaches, the conservative and the optimistic
one. In the conservative approach all events of a process
P are executed in the order given by their time-stamps
[5], i.e. the chronological order of events is preserved at
each process. Conservative algorithms can be further sep-
arated into blocking and non-blocking ones. A blocking
approach has been introduced for instance by Chandy and
Misra [2]. Soule and Gupta [8] reported that these algo-
rithms tend to spend a lot of computation time for dead-
lock detection, deadlock recovery and additional process
computation when applied to simulation of digital circuits.
Non-blocking algorithms prevent deadlocks but require of-
ten additional computation and communication overhead
[8].

Alternatively, the optimistic approach allows the pro-
cessing of an event at a process without guaranteeing that
no other event with a smaller time-stamp may arrive at the
same process [4]. If the chronological order is violated,
the simulation must be rolled back in time to a safe state.
Therefore, an optimistic simulation algorithm requires a
strategy for backing up the simulation. This results in ad-
ditional memory requirements which may be unacceptable
for large VLSI simulation tasks.

For our VHDL simulation we choose a conservative
non-blocking approach. Similar to [1, 7] our approach is
based on distances between processes. However, in order
to adapt to parallel computers with message passing we
avoid all barrier synchronization. Instead, a special kind
of state messages (null-messages) for asynchronousnode
synchronization similar to [7] are used.

2 PDES based on critical and external dis-
tances

A discrete-event simulation is represented by a
weighted di-graphG(P;W; l) with W � P � P and
l : W ! IN+

0
. Intuitively, p 2 P andw = (pi; pj) 2 W

denote a logical process and a link between two logical
processes, respectively. During the simulation a message
q, called an event, may be sent across a link(pi; pj). Each
eventq consists of a time stampt(q) and a value.

Upon receiving an eventq on link (pi; pj) the des-
tination processpdest(q) = pj may change its internal
state and may also send events on its output links. The
virtual time t(pj) of pj is set tot(q). The time stamp
t(q0) of any outgoing eventq0 on link (pj ; pk) is at least
t(pj) + l(pj ; pk). Thus, the weightl(w) � 0 of a link
w = (pi; pj) denotes the lower bound of the event delay
on this link.

Consequently, the earliest time, at which a processpi
may influence the state of a processpj , is given byt(pi) +
d(pi; pj) whered(pi; pj) is the length of the shortest path
in G from pi to pj . As the simulation is causal,t(pi) is
not allowed to decrease. Hence, an appropriate scheduling
method must guarantee that no eventex may arrive atpi
with t(ex) � t(pi).

Prior to parallel simulation a part of the model (par-
tition) is assigned to each simulation processor in a step
called partitioning. We assume that each processor is as-
signed a single partition which consists of a large amount
of processes. As we concentrate on the synchronization
algorithms in this paper we further assume that an appro-
priate partitioning of the simulation models is given.

Lookahead is a very important part of PDES. It is an
estimation on the future behavior of a process and is used
to determine event dependencies during the simulation. A
lookahead valuetlah(p) of a processp states that any yet
unprocessed eventq will have an time stamp greater equal
to tlah(p).

Asynchronous conservative simulation algorithms usu-
ally execute in two main steps. First, event dependencies
caused by events located on different computation nodes
(partitions) are determined in a step called event state anal-
ysis. This analysis is based on lookahead information pro-
vided by other partitions. As a result the state of an event
becomes either ready or blocked. Usually, event state anal-
ysis is done by simply comparing the event time stamp with
the minimal lookahead (channel) time of all incoming links
of the partition. An event is blocked if the time stamp is
greater or equal to that value. While this method produces
only moderate computation overhead the interconnections
of the processeswithin a partition have no effect on event
state analysis. As a result, events may be blocked by links
which in fact have no influence on these events. During
the second step all ready events are executed in time stamp
order.

Our scheduling algorithm is conservative and asyn-
chronous as well. However, it uses so called critical and ex-
ternal distances which represent the communication struc-
ture of the processes located on a partition in order to de-
termine the state of the events and the lookahead [6]. As a
result, mutually independent events of apartition are rec-
ognized and executed if they cannot be affected by an event
located on another partition i.e. if they are ready. Blocked
events are not executed until they become ready. This re-
quires recalculating the state of blocked events when new
lookahead information arrives.

In the Fig. 1 three partitionsP1 to P3 of a simulation
model are shown. The logical processes are represented by
circles. The processes labeledc1, c2, e1 ande2 are nor-
mal processes likep1 to p3 but have a special meaning to
partitionP2. The (external) processesei form the external
process setE2 of P2. They are not located onP2 and have
at least one outgoing link connected with a process ofP2.
On the other hand the (critical) processesci form the criti-
cal process setC2 of P2. These processes belong toP2 and
are elements of at least one external process set of another
partition.

Figure 1: Event state analysis and lookahead calculation
based on distances

Consider an eventq with a time stampt(q) which re-
sides at processpdest(q) located on a partitionPn. To de-
termine the state ofq, the influence of each external process
of Pn onq is determined by evaluating the expression

t(q) < tlah(pe) + d(pe; pdest(q)) 8 pe 2 En: (1)

If at least one in-equation evaluates to false, the event is
blocked, otherwise it is ready. Ready events may now be
executed e.g. in time stamp order. This will preserve the
dependencies between the local (blocked as well as ready)
events.

Lookahead calculation is done in a similar way. To es-
timate the lookahead for a critical processpc of a partition
Pn the expression

tlah(pc) = minfftlah(px) + d(px; pc) j px 2 Eng;

ft(q) + d(pdest(q); pc) j q 2 Qngg

(2)
is calculated, whereQn denotes the local event set of parti-
tionPn. The distancesd(pi; ci), ci 2 Cn are called critical
distances. The new lookahead for processpc may now be
sent to other partitions asynchronously. Because the link
weights are static, the distancesd(pi; pj) are static as well
and may be stored into a critical respectively external dis-
tance table as shown in Fig. 1.

3 Model transformation
Parallel VHDL simulation is based on the parallel dis-

crete event simulation paradigm (PDES). Because there is
a wide variety of simulation algorithms for common PDES
problems, it is appropriate to transform the VHDL model
into the common PDES model.

The first problem occurring during the transformation
process is the handling of VHDL signals. Signals are used

in VHDL for inter process communication. Processes may
read from and write on signals. Additionally, processes
may be executed on a change of a signal value. In gen-
eral, there are three different ways how to deal with signals.
The first solution is to combine them with the VHDL pro-
cesses, which are writing values to them, to form a hybrid
node. Unfortunately, this may reduce lookahead if a pro-
cess writes to several signals. For instance, if a processp1
has write connections to two signalss1 ands2, these nodes
are combined to one single hybrid node. As a result, trans-
actions created for e.g.s1 are located on that hybrid node.
Therefore, the lookahead algorithm cannot determine that
these transactions have no affect ons2.

Alternatively, signals may be combined with the VHDL
processes which are reading from them. However, if a sig-
nal is read by several processes then transactions for that
signal must be copied and distributed to all corresponding
hybrid nodes. Unfortunately, this may result in additional
computation overhead, if the transaction of the signal does
not produce any event i.e. does not change the value of the
signal. In this case this transactions are first inserted and
then all removed from the system, separately. Moreover,
most transactions in VHDL do not produce any events.

On the other hand using distinct signal and process
nodes avoids these problems but requires additional mem-
ory and computing overhead to handle the signal nodes.
Fortunately, this overhead may be reduced due to the spe-
cial properties of the signal nodes.

Every signal is represented by a driver and a reader node
corresponding to the driver and reader part of a VHDL
signal [3]. In addition each resolved signal is associated
with a resolution node representing the resolution function.
Port map connections using conversion functions are han-
dled by distinct conversion nodes. The different nodes are
connected by links modeling the information flow, which
is necessary to obtain the reader values for the signals.
To handle the different VHDL delay mechanisms, each
link e is associated with a weightl(e) consisting of three
time values(adist(l(e)); cdist(l(e)); wdist(l(e))), which
are described separately:

� The activation weightadist(l(e)) represents the
smallest time difference between an event on the
source node and an event which mayactivatethe des-
tination node.

� The clearing weightcdist(l(e)) is connected with
inertial delays. Executing an eventq on a source
node ps may remove all events on the destination
node pd with a time stamp greater or equal than
t(q) + cdist(l(ps; pd)).

� The write weightwdist(l(e)) represents the smallest
time difference between an event of the source node

and a resulting event on the destination node.

With this technique the PDES mechanisms can be used
to provide the signal update mechanisms as defined in the
VHDL standard [3].

Next, we address how to analyze the possible interac-
tions between VHDL processes and signals. After simu-
lation startup all links between processes and signals are
determined. If a VHDL process node may read from a sig-
nal node or may be sensitive on that node, a link leading
from the reader node of that signal to the process node is
inserted into the model. The weight of this link is set to
(0; 0; 0) if the process may be sensitive on the signal or
to (0; 0;1), otherwise. If a process includes statements
which write on a signal, then a linke leading from the pro-
cess to the driver of the signal node is inserted. The weight
of that link depends on the signal write statements included
within the process code1:

� cdist(e) is set to the minimal difference between the
delay and the corresponding reject time of all signal
assignment statements related to that signal. If this
minimum is 0 thencdist(e) is set to1d.

� wdist(e) is set to the minimal value of the delay of
all signal assignment statements related to the signal
or 1d if this minimum is 0.

� adist(e) is set towdist(e).

Fig. 2 shows an example VHDL model consisting of 2 pro-
cesses and Fig. 3 the corresponding transformed model.
Some optimizations may be obtained by combining nodes
of the model. This reduces the amount of nodes and as a
result the simulation overhead and memory consumption.
However, a detailed description of the transformation and
the optimization rules is beyond the scope of this paper.

4 Optimization for parallel VHDL simula-
tion

Usually, digital circuits include a large number of flip-
flops which create new events on their outputs only if their
clock input changes. In contrast, events on the data inputs
cannot activate the flipflop. However, during the transfor-
mation of the VHDL model into a PDES graph, all com-
munication channels must be introduced as edges into the
PDES graph regardless whether they may activate a pro-
cess or represent pure data dependencies only. To distin-
guish between data and activation dependencies, the acti-
vation delayadist of all pure data dependency links is set
to1 as shown in Section 3. Fig. 4 shows a digital circuit
consisting of 4 flip-flops and 3 gates. The flip-flops have

1The corresponding weight value is set to1d if the minimal differ-
ences cannot be determined after simulation startup.

-- a, b, and c are signals of type INTEGER
p1: PROCESS -- definition of process p1
BEGIN

a<= c + 1AFTER 2 ns;
b<= a + bAFTER 10 ns;
IF a= b THEN

WAIT ON a; -- wait statement #1
ELSE

WAIT ON b; -- wait statement #2
END IF ;

END PROCESS;

p2: PROCESS(b) -- definition of process p2
BEGIN

c<= TRANSPORT b - cAFTER 30 ns;
END PROCESS;

Figure 2: VHDL model with 2 processes

Figure 3: Transformed VHDL model (all link weights not
shown are(0; 0; 0))

Figure 4: An example model and corresponding PDES
graph

an inertial delay of 8 and the gates of 5, respectively 9 time
units. Fig. 4 also displays the corresponding PDES model
of the grey shaded partition. To calculate the external dis-
tances of the model we must use thecdist-values of the
weights to take the delay model of VHDL in consideration.
However, determining the critical distances may be based
on the activation weightsadist only. As a consequence the
lookahead of e.g.c2 is only dependent on the events sub-
mitted bye3 andp6 (d(e3; c2) = 8, d(p6; c2) = 8). The
other nodes (p1 to p5, e1 ande2) may also produce events
for c2 directly or indirectly, but none of them can activate
c2 i.e. the corresponding critical distances are equal to1.

Using the activation weights for lookahead calculation
we obtain two advantages. First, the lookahead value usu-
ally can be increased compared to lookahead calculations
based on the write valueswdist of the weights. Second,
less operations are required to determine the lookahead, as
less events and lookahead values can affect the critical pro-
cesses. For example in Fig. 4 event located on processese1,
e2 andp1 to p4 cannot affectc1 or c2 and may be omitted
during lookahead calculation.

5 Simulation results
We have implemented a parallel

VHDL compiler/simulator prototype based on the above
described concepts. The system is running on an IBM SP2

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

S
p
e
e
d
u
p

1 2 3 4 5 6

Number of processors (partitions)

? ? combinatorial, no feedback..........................

...................
...................

...................
...................

...................
....................

..................
..................

..................
..................

..................
....................

.....................
.....................

.....................
.....................

......................
.......................

.......................
......................

........................
..............................

..............................
..............................

..

?

??

??

??

??

?

� �small, pipel., no feedback..........................

..................
..................

..................
..................

..................
..................

.....................
...................

....................
...................

....................
....................

...................
...................

...................
...................

...................
.....................

....................
....................

.....................
....................

....................
....................

....................
.....................

....................
.........

�

��

��

�

��

s s large, pipel., no feedback..........................

.................
.................

.................
.................

.................
.................

..................
..................

..................
..................

..................
..................

..................
....................

...................
...................

...................
...................

......................
.........................

.........................
........................

......................
.................

.................
.................

.................
.................

.................
.........

s

ss

ss

ss

ss

s
c c small, pipel., feedback..........................

....................
....................

....................
....................

....................
............................

.............................
..............................

..............................
............................

.............................
...............................

..................................
.................................

..................................
..................................

.................................
..

c

cc

cc

c

cc

� �large, pipel., feedback..........................

.................
.................

.................
.................

.................
.................

..................
..................

..................
..................

..................
..................

....................
...................

....................
...................

...................
....................

........................
........................

.........................
.........................

.......................
.....................

.....................
.....................

.....................
.

�

��

��

��

��

�

2 2large, simple state analysis. . . .

..........
.....

...
...

...
.......

........

2

22

2222
22 22

2

4 4small, simple state analysis. . . .

....
....

....
.............

.....................................

4

44 44
4

44

Figure 5: Speedup of the large and the small model

parallel computer and has been used to simulate various
versions of a multiplier at gate level (latches and combina-
tional logic) consisting of 10,771 (large model) and 2,699
(small model) VHDL processes. Additionally, we imple-
mented a version of each model which included a feedback
path from the outputs of the models back to their inputs.
Finally, we simulated a non pipelined multiplier (combi-
national model) consisting of 6164 VHDL processes. All
models were manually partitioned.

In Fig. 5 the speedup curves for the models on the par-
allel computer are shown. For almost all models we got
good speedup curves. Only the small pipelined multiplier
with feedback fails to achieve speedup above 3.5 due to the
small amount of VHDL processes present in the model.
Further, to compare state analysis based on external dis-
tances with simple approaches we included two additional
speedup curves (“simple state analysis”, dotted curves) for
a large and a small pipelined model with feedback using a
simplified state analysis algorithm. Simple state analysis in
our experiments was done by combining the external pro-
cesses to form twovirtual external processes. Event state
calculation was then based on the external distances to this
virtual external processes. This approach is similar to the
algorithms which compare the event time stamp with the
minimal incoming channel times directly. As shown in the
Figure the simple approach fails to achieve a speedup value
greater then 2.0 respectively 1.6.

6 Summary and conclusion
In this paper we introduced methods to transform

VHDL models into PDES models. This methods allow
the use of different PDES algorithms for parallel VHDL

simulation. We used an algorithm based on critical and ex-
ternal distances to synchronize the partitions of the simula-
tion computer. Further, a optimization technique has been
discussed which helps to exploit the parallelism within a
VHDL simulation model.

A prototype compiler/simulator has been used to ob-
tain some experimental results for several VHDL models.
While these results are not sufficient for a general evalua-
tion they show that a good speedup can be obtained.

References
[1] R. Ayani and H. Rajaei, Parallel Simulation Based on

Conservative Time Windows: a Performance Study,
Concurrency: Practice and Experience, vol.6(2),
pp.119-142, April 1994

[2] K.M. Chandy and J. Misra, Asynchronous Distributed
Simulation via a Sequence of Parallel Computations,
Comm. of the ACM, vol.24, no.11, pp.198-206, Apr
1981

[3] IEEE, IEEE Standard VHDL Language Reference
Manual, IEEE Std 1076-1993, 1994

[4] D.R. Jefferson, Virtual Time, ACM Trans. on Prog.
Lang. and Sys., vol.7, no.3, pp.404-425, Jul 1985

[5] J. Misra, Distributed Discrete-Event Simulation, Com-
puting Surveys, vol.18, no.1, pp.39-65, Mar 1986

[6] E. Naroska and U. Schwiegelshohn, A new Schedul-
ing Method for Parallel Discrete-Event Simulation, In
Proc. of the 2nd Int. Euro-Par Conf., Lyon, vol II,
pp.582-593, Aug 1996

[7] D. Nicol, Parallel Discrete-Event Simulation of
FCFS Stochastic Queuing Networks, SIGPLAN Not.,
pp.124-137, Sep 1988

[8] L. Soulé and A. Gupta, An Evaluation of the Chandy-
Misra-Bryant Algorithm for Digital Logic Simulation,
ACM Trans. on Modeling and Comp. Sim., vol.1, no.4,
pp.308-347, Oct 1991

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

