
Register Transfer Level VHDL Models without Clocks

Matthias Mutz (MMutz@sican{bs.de)
SICAN Braunschweig GmbH, Digital IC Center

D{38106 Braunschweig, GERMANY

Abstract

Several hardware compilers on the market convert

from so-called RT level VHDL subsets to logic level

descriptions. Such models still need clock signals and

the notion of physical time in order to be executable.

In a stage of a top-down design starting from the algo-

rithmic level, register transfers are considered, where

the timing is not controlled by clock signals and where

physical time is not yet relevant. We propose an ex-

ecutable VHDL subset for such register transfer mod-

els.

1 Introduction

The paper introduces a VHDL subset for model-
ing register transfer behavior at a more abstract level
than usual in today's synthesis tools. First of all, we
want to motivate why VHDL can play a central role
for synthesis at several levels of abstraction. VHDL
has been designed to support hardware models at all
levels of abstraction. We are aiming at a systematic
way of performing an incremental design by adding
information to a hardware description. VHDL is also
suited to model hardware at more abstract timing lev-
els. In addition to physical time, VHDL provides the
concept of delta time counting successive simulation
cycles which do not increase physical time (so called
delta cycles). We explicitly use delta time and the
corresponding simulation semantics to model hard-
ware timing at higher levels. Furthermore, we need
user-de�ned resolution functions, which are used to
combine values assigned to a signal at the same time.
Other languages only support implicit resolution func-
tions for buses. At higher levels, we also have multi-
ple sources for other signals, e.g. module and register
ports.

In [1] it is already mentioned that there should be
a systematic but general way based on VHDL sub-
sets to deal with VHDL in order to create e�cient
link with hardware synthesis results. We use our own
VHDL subset for modeling the register transfer level,
because known subsets only cover models using clock
and control signals. We model register transfer level

timing based on control steps. Clock and control sig-
nals with physical timing implementing the timing
based on control steps are introduced in a succeeding
synthesis step. Therefore, we use delta time instead
of physical time.

Subset selections could be based on designer's
guides for using VHDL [2, 3]. In such guides, behavior
at the most abstract level is based on clocking schemes
with de�nite clock periods, which models behavior at
lower levels than the ones we are aiming at. Such
guidelines lead to VHDL subsets for synthesis tools.
For example, a subset for logic synthesis is given in
[4]. Also subsets for higher levels are proposed, e.g.
[5] for high level synthesis, but still involving explicit
clocks. An European working group [6] is going to de-
�ne standards for VHDL subsets for synthesis. There
are e�orts in de�ning a subset in order to constitute
a standard subset of VHDL for synthesis application,
which will allow description portability between tools
as well as design reusability [7].

If we look for formal veri�cation, other aspects be-
come more important. For example, [8] introduces a
veri�cation oriented subset of VHDL. It has already
been shown that it makes sense to deal with more
abstract levels of behavior than supported by cur-
rent subsets. [9] describes a methodology for veri-
fying VHDL descriptions of processors using a com-
puter algebra simpli�cation tool relating instruction
level and register transfer level. The most important
similarity to our approach is, that VHDL descriptions
don't use explicit delay times and explicit clocks. In-
stead, abstract state transitions are inferred from suc-
cessive VHDL simulation cycles not increasing simu-
lation time.

Most e�orts concentrate on clocked circuits. We
want to go towards standards for higher timing levels.
Section 2 introduces the VHDL subset for the more
abstract register transfer level. It �rst explains the
basic model. Then basic component descriptions are
given. Finally, the construction of register transfer
models is described. Section 3 gives an example for the
application of our subset. In section 4, we summarize



and conclude.

2 Register Transfer Models
2.1 The basics

We here only discuss the base model, which can be
easily extended for di�erent register transfer timings
and di�erent data types to be performed. The model
uses structural components, the so-called resources,
and covers the usage of the resources at a behavioral
level by so-called transfers. The model supports a spe-
ci�c high-level architecture not based on clocks, which
can be mapped to several low-level architectures de�n-
ing how transfers are implemented based on clocks.

A register transfer model is de�ned by a set of reg-
isters, a set of modules performing arithmetical and
logical operations, a set of buses used for transfers of
values between modules and registers, and the timing
of transfers. Registers and modules are called func-
tional units. Register transfers are embedded in a
control step scheme. 1 illustrates a concrete register
transfer of an example.

R1 R2

55
B2

ADD

6

6

5

B1

5

Figure 1: a concrete register transfer

Fig. 1 only shows the resources a�ected by the
register transfer denoted by the tuple

(R1,B1,R2,B2,5,ADD,6,B1,R1)

The tuple is interpreted in the dollowing way. In
control step 5, the value at the output port of register
R1 is transferred to the left input port of the module
ADD via bus B1. Also in control step 5, the value
at the output port of register R2 is transferred to the
right input port of the module ADD via bus B2. In
control step 6, the value of the output port of the
module ADD is transferred to the input port of register
R1 via bus B1.

It is to mention, that nothing is said about the im-
plementation of transfers and the implementation of
control step timing. It is also just said, that transfer
occur via buses, it is not said how ports are connected

to buses. There still are several degrees of freedom for
further synthesis steps. This is a typical situation in
a top-down design, where resources are allocated and
register transfers are scheduled to implement opera-
tions. At this stage abstract level of timing resource
conicts can be detected. This is better than usual RT
models in the sense that the more abstract model can
be mapped to several usual RT models. It is worse

than usual RT models in the sense that it is not di-
rectly synthesizable, i.e. an additional transformation
is needed to obtain a usual RT description that can
be performed by current commercial synthesis tools.

The transfers given by 9-tuples de�ne when values
are transferred between buses and ports of the func-
tional units. The functional units combine values at
the input ports available in a control step and provide
the resulting value at the output port at the same or a
later control step. The scheduling task is to determine
the register transfers and to properly embed them into
the control step scheme observing the timing of the
functional units.

2.2 Timing

A control step is partitioned into six successive
phases, which occur in a cyclic manner as shown in
�g. 2.

then cs := cs + 1
if cs < cs_max

cs := 1
rA

wB

cR rB

cM

wA

cs : control step

wB: buses to register input ports

wA module output ports to buses

cM: module input ports to buses

rB: buses to module input ports

rA: register output ports to buses

cR: register input to output ports

Figure 2: timing of register transfers

Control step phases are introduced as VHDL enu-
meration type:

type Phase is (rA,rB,cM,wA,wB,cR);

and it is represented by a signal PH: Phase. The
control step number is represented by a natural num-
ber signal CS: Natural. The cyclic occurrence of phases
with increasing control step number is driven by a con-
troller process:

entity CONTROLLER is

generic (CS MAX: Natural);

port (CS: inout Natural := 0;



PH: inout Phase := Phase'High); -- Phase'High = cR

end CONTROLLER;

architecture transfer of CONTROLLER is

begin

process (PH)

begin

if (PH = Phase'High) then

if (CS < CS MAX) then

CS <= CS+1;

PH <= Phase'Low; -- Phase'Low = rA

end if;

else

PH <= Phase'Succ(PH); -- Phase'Succ(cM) = wA

end if;

end process;

end;

For a concrete register transfer model, one con-
troller process is instanciated, where the maximum
number of control steps CS MAX is given. As it can
be seen from the source code, the phase changes with
delta delay, i.e. no physical delay is modeled. So, the
simulation of each control step takes 6 delta simula-
tion cycles. The complete simulation takes CS MAX

�6 delta simulation cycles.
An additional synthesis step leading to a synthe-

sizable RT description, which can be performed by
commercial synthesis tools, would de�ne, how control
steps are implemented by clock signals and clock cy-
cles. Of course, there are di�erent ways to implement
control steps. The choice of a speci�c control step
implementation also inuences the implementation of
registers and modules.

2.3 Values, buses and ports

Modules combine values and compute new values,
registers store values, and values are transferred via
buses. We here consider natural number values (of
course, we are also dealing with other types, but the
mechanism for this is beyond the scope of this paper).

We need two extra values representing "no value" and
"illegal". Therefore, signals representing ports of func-
tional units and buses are of type integer. Natural
number values are regular values. The special values
are introduced by:

constant DISC: Integer := -1;

constant ILLEGAL: Integer := -2;

Input ports of functional units and buses are mod-
eled by resolved signals, because they are the sinks of
transfers from several sources. The resolution func-
tion combining a list of integer values computes to
DISC, if all integers in the list are DISC. It computes

to ILLEGAL, if at least one integer is ILLEGAL or if at
least two integers are not DISC. In this manner, it only
computes to a natural number if exactly one natural
number is in the list and all other values are DISC.

2.4 Transfers

A speci�c register transfer is partitioned into trans-
fers from register output ports to buses, transfers from
buses to module input ports, transfers from module
output ports to buses, and transfers from buses to
register input ports.

Buses and input ports of the functional units (sinks)
are represented by resolved signals. Output ports of
functional units (sources) are represented by regular
signals. A transfer process assigns a source value to a
sink signal at a speci�c phase:

entity TRANS is

generic (S: Natural; P: Phase);

port (CS: in Natural;

PH: in Phase;

InS: in Integer;

OutS: out Integer := DISC);

end TRANS;

architecture transfer of TRANS is

begin

process

begin

wait until CS=S and PH=P;

OutS <= InS;

wait until CS=S and PH=Phase'Succ(P);

OutS <= DISC;

end process;

end transfer;

An instance of a transfer process is activated at
phase P of control step S and at the succeeding phase.
In the �rst activation it assigns the source value to
the sink signal. In the second phase, it assigns the
DISC value to the sink value, which indicates that the
transfer process no longer provides a value for the sink

signal.

2.5 Registers

A register fetches a new value in each phase a trans-
fer process is assigning a value to the register input
port. If no transfer assigns to the input port, the old
value is kept.

entity REG is

port (PH: in Phase;

R in: in Integer;

R out: out Integer := DISC);

end REG;

architecture transfer of REG is



begin

process

begin

wait until PH=cR;

if R in /= DISC then

R out <= R in;

end if;

end process;

end transfer;

A register process always drives its output port as
soon as the �rst value is assigned to its input port.
Registers compute in the cR phase.

2.6 Modules

We here consider pipelined arithmetical modules,
which can fetch operands in each control step and pro-
vide the results in the next control step. This can be
easily extended to other delay characteristics. Here is
the module process for the adder module used in the
example:

entity ADD is

port (PH: in Phase;

M in1, M in2: in Integer;

M out: out Integer := DISC);

end ADD;

architecture transfer of ADD is

begin

process

variable M: Integer := DISC;

begin

wait until PH=cM;

M out <= M;

if M /= ILLEGAL then

if M in1=DISC and M in2=DISC then

M := DISC;

elsif M in1 /= DISC and M in2 /= DISC then

M := M in1 + M in2;

else

M := ILLEGAL;

end if;

end if;

end process;

end transfer;

This model assumes that either both operand val-
ues are natural values or both are DISC. The pipeline
mode is established by means of the variable M.

The timing of module behavior is based on con-
trol steps. So, every combinational aspect must be
covered in the variable assignment based sections of
a module description. It is not possible to deal with
cascades of combinational circuits linked via signals,
because this would involve the usage of delta cycles
for other reasons than control step phase changes. If

we want to introduce several combinational levels then
procedures, functions, and blocks can be used to group
variable assignments associated with speci�c combina-
tional parts.

2.7 Concrete register transfer models

A concrete register transfer model consists of the
signal declarations of the control step and phase sig-
nals, the signal declarations for the ports of functional
units and the buses, register, module and transfer pro-
cesses. The design entity just introduces the external
signals. We give a partial description for the example
given in �g 1:

entity example is

port (x in,y in,z in: in Integer;

x out,y out: out Integer := DISC);

end;

architecture transfer of example is

-- timing signals

signal CS: Natural;

signal PH: Phase;

-- module ports

signal ADD in1,ADD in2: resolved Integer;

signal ADD out: Integer;

...

-- register ports

signal R1 in,R2 in: resolved Integer;

signal R1 out,R2 out: Integer;

...

-- buses

signal B1: resolved Integer;

...

begin

-- modules

ADD proc:

ADD port map (PH,ADD in1,ADD in2,ADD out);

...

-- registers

R1 proc: REG port map (PH,R1 in,R1 out);

R2 proc: REG port map (PH,R2 in,R2 out);

...

-- transfers

R1 out B1 5: TRANS

generic map (5,rA) port map (CS,PH,R1 out,B1);

B1 ADD in1 5: TRANS

generic map (5,rB) port map (CS,PH,B1,ADD in1);

R2 out B2 5: TRANS

generic map (5,rA) port map (CS,PH,R2 out,B2);

B2 ADD in2 5: TRANS

generic map (5,rB) port map (CS,PH,B2,ADD in2);

ADD out B1 6: TRANS

generic map (6,wA) port map (CS,PH,ADD out,B1);

B1 R1 in 6: TRANS

generic map (6,wB) port map (CS,PH,B1,R1 in);

-- controller



CONTROL: CONTROLLER

generic map (7) port map (CS,PH);

end transfer;

Such a register transfer VHDL model has a clear
structure and is easy to understand in the sense that
there is a strightforward way of identifying register
transfers. Because of the close relationship of control
step phases to the VHDL simulation delta cycle, simu-
lation results allow easily to locate design errors lead-
ing to resource conicts: it would result to ILLEGAL

values of resolved signals in speci�c simulation cycles
associated with a speci�c phase of a speci�c control
step.

Execution is very fast, because we need not to deal
with asynchronous handshake, as it is often be used
for exchanging values between modules when more ab-
stract timing is modeled by means of VHDL without
introducing physical time. The subset is quite useful
for simulating designs at a very early stage of register
transfer level design.

Last but not least, formal register transfer models
can be easily translated to the VHDL register transfer
model and vice versa. Our main intention when devel-
oping the VHDL subset for the register transfer level
was to map formal timing abstraction mechanisms to
transformations on VHDL subsets. For formal veri�-
cation methods it is very important to keep behavioral
models as easy as possible. The subset introduced here
perfectly supported our demands. For example, let's
consider the tuple from �g.1 representing a register
transfer. The transfer process instances are derived in
a straightforward manner (the important part of the
tuple for a transfer process instance is underlined):

(R1,B1,R2,B2,5,ADD,6,B1,R1) ! R1 out B1 5

(R1,B1,R2,B2,5,ADD,6,B1,R1) ! B1 ADD in1 5

(R1,B1,R2,B2,5,ADD,6,B1,R1) ! R2 out B2 5

(R1,B1,R2,B2,5,ADD,6,B1,R1) ! B2 ADD in2 5

(R1,B1,R2,B2,5,ADD,6,B1,R1) ! ADD out B1 6

(R1,B1,R2,B2,5,ADD,6,B1,R1) ! B6 R1 in 6

Vice versa, if we know the transfer process, the tu-
ples can be easily constructed

R1 out B1 5, B1 ADD in1 5 ! (R1, B1, -, -, 5, ADD, -, -, -)

R2 out B2 5, B2 ADD in2 5 ! (-, -, R2, B2, 5, ADD, -, -, -)

ADD out B1 6, B6 R1 in 6 ! (-, -, -, -, -, ADD, 6, B1, R1)

These easy mappings lead to simple formal seman-
tics, which form the basis for automatic veri�cation
tools, which compare register transfer level descrip-
tions with either more abstract descriptions or more
concrete descriptions. The close relationship of the

register transfer model to th VHDL simulation delta
cycle allows to prove the consistency of the dedicated
semantics sketched above with VHDL simulation se-
mantics.

3 Application

We have used our subset to model several designs
at the abstract register transfer level. As an exam-
ple, we have modeled resources (called MACC, multi-
plier/accumulator and cordic core) and register trans-
fers of an IKS (inverse kinematics solution in robotics)
chip [10], where a VHDL description only was given at
the logic level. The logic level description contains a
lot of details not relevant for the register transfer level.
First, we have identi�ed the functional units and the
buses. Fig.3 shows the resources and used transfer
paths (with some simpli�cations).

X-ADDY-ADDMULT Z-ADD

R[]

J[]

Y XM[] P Z

0 0

BusA

BusB

Figure 3: RT structure of the IKS chip [10]

The adders are not pipelined. The multiplier is a 2-
stage pipelined unit. There are transfers via BusA and
BusB, but there are also transfers between registers
and adders via direct links (e.g. from register P to the
right input port of Z-ADD) and transfers from registers
to registers via direct links (from the Z register to the
dual port R register �le). Our model is already suited
to model the scheme of the IKS chip. For example,
for the direct link from register P to module input
port Z ADD a bus P Z ADD in2 is introduced. For the
direct link from Z to the register �le R two extra buses
and one extra module, which just copies the input
to the output, are introduced. To keep the model
{ especially the timing { as simple as possible, it is
better to model more resources than to extend the
VHDL subset.

One extensions of the basic model became neces-
sary. The adders may perform several arithmetical
operations. Therefore, a register transfer also de�nes
the operation to be performed by the module.



We have extracted the register transfers from the
microcode for computing the IKS given in [10]. This
could be easily automated. We have written a C pro-
gram, that translates the microcode tables given in
[10] to transfer process instances. As an example, we
give the table entry for microprogram store address 7:
addr cycle opc1 opc2 m J R1 M/R2

1 1 3 4 0 6

For opc1 and opc2 code maps exists. We give the
code maps for opc1=20 and opc2=2:
opc1 Bus A Bus B Reg Reg

src dst src dst J R

3 J y2 r

zang z1 z2 x1 x2 y1 y2

0 0 0 0 Y 0 A

opc2 Z X Y setf

4 + + + 1

From these table entries, the transfers from regis-
ters to buses (J[6],BusA,y2,1), (Y,direct,x2,1) and the
module operations Z := 0 + 0, X := 0 + Rshift(x2,i),
Y := 0 + y2, F := 1 are derived.

4 Summary and Conclusions

We have introduced a VHDL subsets for register
transfer models not depending on clock signals and
physical delay. The simulation of the models is very
fast because of their simple timing of transfers of val-
ues between the resources.

This IKS chip was an application, where the reg-
ister transfers are derived from the microcode level.
This register transfer level description is to be veri�ed
against a description at the algorithmic level. This
is some kind of bottom-up evaluation of low level de-
scriptions in order to �nd a link to more abstract de-
scriptions.

Another application of our subset is high level syn-
thesis, where the result of scheduling and allocation
is given as a register transfer model. High level syn-
thesis results are translated into our subset and can
then be simulated at a high level before the next syn-
thesis steps translate to a more concrete implementa-
tion. We are using this method in order to verify the
correctness of high level synthesis results at an early
stage. Formal semantics of initial algorithmic descrip-
tion and resulting register transfer level description
are de�ned. An automatic proving procedure has been
implemented, that performs the veri�cation task. In
this manner, our subset has been turned out be prac-
ticable for applications dealing with a more abstract
register transfer level.

The timing of the abstract RT model is based on
control steps and control step phases. There are sev-
eral ways to translate a control step scheme into a

clock scheme based on clock signals. The transforma-
tion into a usual synthesizable RT description based
on clock signals can be performed automatically. We
are now developing such automatic translation rules
especially aiming at their formal correctness. The ver-
i�cation process is directly supported by the regular
structure of our high-level RT model.

References
[1] M. Mastretti. VHDL quality: Synthesizability,

complexity and e�ciency evaluation. In EURO-
DAC'95 [11], pages 482{487.

[2] P. J. Ashenden. The designer's guide to VHDL.
Morgan Kaufmann Publishers, Inc., 1996.

[3] J.-M. Berg�e, A. Fonkona, S. Maginot, and
J. Rouillard. VHDL Designer's Reference.
Kluwer Academic Publishers, 1992.

[4] M.S. Abrahams and A. Rushton. Translation of
VHDL for logic synthesis. Microprocessors and

Microsystems, 19(8):459{467, October 1994.

[5] A. Postula. VHDL Speci�c Issues in High Level

Synthesis, pages 117{134. Kluwer Academic Pub-
lishers, 1992.

[6] European VHDL Synthesis Working Group.
Level-0 VHDL Synthesis Subset. EVSWG, 1994.

[7] M. Selz, W. Ecker, and E. Villar. VHDL synthe-
sis description: The need for level synthesis sub-
sets. Journal of System Architecture, 42:105{116,
1996.

[8] D. D�eharbe and D. Borrione. Semantics of
a veri�cation-oriented subset of VHDL. In
Proc. CHARME'95, LNCS 987, pages 293{310.
Springer, 1995.

[9] L. Arditi and H. Collavizza. Towards verify-

ing VHDL descriptions of processors. In EURO-
DAC'95 [11], pages 414{419.

[10] S. S. Leung and M. A. Shanblatt. ASIC System

Design with VHDL: A Paradigm. Kluwer Aca-
demic Publishers, 1989.

[11] Proc. EURO-DAC'95 with EURO-VHDL'95,
Brighton (Great Britain), 1995.


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


