
Abstract
Hardware-software co-synthesis of an embedded system

requires mapping of its specifications into hardware and
software modules such that its real-time and other constraints
are met. Embedded system specifications are generally
represented by acyclic task graphs. Many embedded system
applications are characterized by aperiodic as well as periodic
task graphs. Aperiodic task graphs can arrive for execution at
any time and their resource requirements vary depending on
how their constituent tasks and edges are allocated. Traditional
approaches based on a fixed architecture coupled with slack
stealing and/or on-line determination of how to serve aperiodic
task graphs are not suitable for embedded systems with hard
real-time constraints, since they cannot guarantee that such
constraints would always be met. In this paper, we address the
problem of concurrent co-synthesis of aperiodic and periodic
specifications of embedded systems. We estimate the resource
requirements of aperiodic task graphs and allocate execution
slots on processing elements and communication links for
executing them. Our approach guarantees that the deadlines of
both aperiodic and periodic task graphs are always met. We
have observed that simultaneous consideration of aperiodic task
graphs while performing co-synthesis of periodic task graphs is
vital for achieving superior results compared to the traditional
slack stealing and dynamic scheduling approaches. To the best
of our knowledge, this is the first co-synthesis algorithm which
provides simultaneous support of periodic and aperiodic task
graphs with hard real-time constraints. Application of the
proposed algorithm to several examples from real-life telecom
transport systems shows that up to 28% and 34% system cost
savings are possible over co-synthesis algorithms which employ
slack stealing and rate-monotonic scheduling, respectively.
1  Introduction

Architecture definition of an embedded system requires
simultaneous synthesis of the hardware and software
architectures which is usually referred to as hardware-software
co-synthesis. Finding an optimal hardware-software architecture
entails selection of processors, application-specific integrated
circuits (ASICs) and communication links such that the cost of
the architecture is minimum and all real-time constraints are met.
Hardware-software co-synthesis involves various steps such as
allocation, scheduling and performance estimation. The
allocation step determines the mapping of tasks to processing
elements (PEs) and inter-task communications to
communication links. The scheduling step determines the
sequencing of tasks mapped to a PE and sequencing of
communications on a link. The performance estimation step
estimates the finish time of each task and determines the overall
quality of the architecture in terms of its dollar cost, ability to
meet its real-time constraints, power consumption and fault
toleranceetc. Both allocation and scheduling are known to be
NP-complete [1]. Therefore, optimal co-synthesis is
computationally a very hard problem.

Many embedded systems are characterized by both aperiodic
and periodic tasks. Examples of such systems are: flight control
systems, telecom systems, command and control systems,
process control systems, automobile control systems, space
shuttle avionics systems, defense control systems,etc. Periodic
tasks arrive at regular intervals. Aperiodic tasks have random
arrival times. Periodic task graphs generally have hard real-time
constraints, whereas aperiodic task graphs can have either hard
or soft real-time constraints. Many researchers have addressed
co-synthesis of periodic task graphs. Also, there exists a large
amount of literature on scheduling of aperiodic tasks for a given
architecture which either minimizes the probability of failure to
complete an aperiodic task by its hard deadline or minimizes its
response time. In this paper, we study the problem of concurrent
co-synthesis of aperiodic and periodic task graphs with hard real-
time constraints. The problem of co-synthesis of aperiodic task
graphs is a difficult one since such task graphs arrive for
execution at any time and their resource requirements vary
depending on how each constituent task and edge is allocated. To
solve this problem, we estimate the size of execution slots and
allocate them on PEs and links of the architecture to which
constituent tasks and edges are allocated such that the deadlines
are always met. We have observed that it is important to
simultaneously consider aperiodic task graphs while performing
co-synthesis of periodic task graphs to obtain an efficient
architecture. The proposed techniques have been incorporated
into our existing co-synthesis system, COSYN [2], and the
resulting system is called CASPER (Co-synthesis of Aperiodic
SPecification of Embedded system aRchitectures). We are not
aware of any other scheduling (sub-problem of co-synthesis) or
co-synthesis algorithm which guarantees that the deadlines of
aperiodic task graphs with hard real-time constraints will always
be met. We also establish the efficacy of our deadline-based
scheduling technique with respect to two traditional techniques,
slack stealing and rate monotonic scheduling (RMS), via
experimental results.
2  Review of Related Work and Contributions

In this section, we review related previous work and describe
our contributions.
2.1 Related work

Researchers have primarily focused their interest in the last
several years on hardware-software partitioning, a major sub-
problem in co-synthesis [3,4] where target embedded systems
have one-CPU-one-ASIC architectures. Co-design frameworks
for co-specification and co-simulation have been described in
[5,6] where hardware/software partitioning is performed
manually. These systems provide an integrated environment to
manage both hardware and software in co-design projects. In the
area of distributed system co-synthesis, the target architecture
can employ multiple processors, ASICs, and field-
programmable gate arrays (FPGAs). Two distinct approaches
have been used to solve the distributed system co-synthesis
problem: optimal [7,8] and heuristic [2,9,10]. Optimal
approaches are applicable to only small co-synthesis problem
instances (10 or so tasks).

None of the above co-synthesis algorithms support co-
synthesis of aperiodic task graphs with hard real-time constraints
which are found in many embedded systems.
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There is a vast amount of literature in the area of scheduling
of soft and hard aperiodic tasks [11]-[16] for a given
architecture. A survey of scheduling techniques is provided in
[11]. These techniques address only scheduling, and not co-
synthesis. There are two possible approaches for scheduling of
aperiodic tasks: 1) static scheduling where the schedule is
defineda priori, and 2) dynamic (also referred to as "on-line")
scheduling where the decision regarding execution of aperiodic
tasks is made on-line. Static scheduling is generally used for
periodic task graphs. In case of aperiodic tasks, though static
scheduling requires some upfront knowledge of the tasks, it has
less computational overhead. Aperiodic task graphs can be soft
or hard. Soft aperiodic task graphs do not have fixed deadlines.
Algorithms proposed for scheduling aperiodic tasks in [12]-[16]
are based on the dynamic scheduling paradigm. These
approaches either minimize the probability of not meeting the
deadline during allocation of tasks on a given architecture or
minimize the response times. Although a dynamic approach does
not require prior knowledge of task characteristics, it suffers
from the following inherent disadvantages: 1) it incurs a
computational overhead in determining the most suitable PE to
allocate an aperiodic task to, such that the aperiodic task deadline
can be met, 2) it incurs an additional delay in transferring the
aperiodic task to another PE in the event a deadline cannot be
shown to be met for the aperiodic task on the PE it first arrived
at, and 3) it cannot give a guarantee that deadlines will always be
met. In [12,13], techniques are presented to handle dynamic
scheduling of soft and hard aperiodic tasks for uniprocessor
systems based on the concept of slack stealing from the existing
schedule of periodic tasks. Their limitations are: 1) they ignore
precedence among tasks,i.e. the inter-task communications, and
2) they cannot handle simultaneous scheduling of aperiodic and
periodic tasks. In [14], dynamic scheduling of aperiodic tasks is
considered for homogeneous multiprocessor systems. However,
these techniques too do not take inter-task communication into
consideration. In [15], dynamic scheduling of aperiodic task
graphs with precedence constraints is considered, however,
inter-task communication scheduling is ignored and the target
architecture is restricted to a set of homogenous processors. In
[16], deadline assignment for tasks of an aperiodic task graph is
considered for dynamic scheduling. Both static and dynamic
approaches can employ either preemptive or non-preemptive
scheduling.

To the best of our knowledge, the problem of scheduling hard
real-time aperiodic task graphs without the above-mentioned
restrictive assumptions has not been considered for distributed
heterogeneous systems.
2.2 Contributions of this paper

We propose a co-synthesis algorithm, called CASPER,
employing a static scheduling method for both hard real-time
aperiodic and periodic task graphs without the restrictive
assumptions made by previous co-synthesis and scheduling
techniques. Co-synthesis of aperiodic and periodic task graphs is
simultaneously performed. Our scheduling technique employs a
combination of preemptive and non-preemptive scheduling
approaches to provide efficient schedules. Our algorithm
guarantees that deadlines of hard real-time aperiodic and
periodic task graphs are always met. It allows multiple types and
forms of PEs and communication links, and supports both
concurrent and sequential modes of communication and
computation. It employs the concept ofassociation array [2] to
tackle the problem of multi-rate tasks. It supports task graphs
where different tasks have different deadlines. It also supports
pipelining of task graphs. The accuracy of its finish-time
estimation step is enhanced by employing a deadline-based
scheduling technique. Experimental results establish its efficacy
over the traditional slack stealing [13] and RMS [17] based
approaches.
3  The Co-Synthesis Framework

In this section, we describe the resource library, execution
model, task graph parameters, and scheduling techniques which
form the co-synthesis framework.

3.1 The resource library
Embedded system specifications are mapped to elements of a

resource library, which consists of a PE library and a link
library.

The PE library consists of various types of FPGAs, ASICs,
and general-purpose processors. Each FPGA is characterized by:
1) the number of gates/flip-flops/programmable functional units
(PFUs), 2) the boot memory requirement, 3) the number of pins,
etc. Each ASIC is characterized by: 1) the number of gates, and
2) the number of pins. Each general-purpose processor is
characterized by: 1) the memory hierarchy information, 2)
communication processor/port characteristics, 3) the context
switch time,etc.

The link library consists of various types of links such as
point-to-point, bus, local area network. Each link is
characterized by: 1) the maximum number of ports it can
support, 2) an access time vector which indicates link access
times for different number of ports on the link, 3) the number of
information bytes per packet, 4) packet transmission time,etc.
3.2 The execution model

Each application-specific function executed by an embedded
system is made up of several sequential and/or concurrent jobs.
Each job is made up of several tasks. Tasks are atomic units
performed by embedded systems. A task contains both data and
control flow information. The embedded system functionality is
usually described through a set of acyclic task graphs. Nodes of
a task graph represent tasks. Tasks communicate data to each
other, indicated by a directed edge. Task graphs can be periodic
or aperiodic as shown in Figure 1. Each periodic task graph has
an earliest start time (EST), period, and deadline (dl). Each task
of a periodic task graph inherits the task graph’s period. Each
task in a periodic task graph can have a different deadline. Hard
aperiodic task graphs have a specified deadline which must be
met. Aperiodic task graphs are characterized by a parameter,ϒ,
denoting the minimum time interval between two consecutive
instances of an aperiodic task graph. An aperiodic task graph
may start at any time.

Parameters used to characterize task graphs are described
next. Each task is characterized by:

1.  Execution time vector: This indicates the worst-case
execution time of a task on the PEs in the PE library.

2.  Preference vector: This indicates preferential mapping
of a task on various PEs (such PEs may have special
resources for the task).

3.  Exclusion vector: This specifies which pairs of tasks
cannot co-exist on the same PE (such pairs may create
processing bottlenecks).

4.  Memory vector: This indicates the different types of
storage requirements for the task: program storage,
data storage and stack storage.

A cluster of tasks is a group of tasks which is always allocated
to the same PE. Clustering of tasks in a task graph reduces the
communication times and significantly speeds up the co-
synthesis process. Each cluster is characterized by the preference
and exclusion vectors of its constituent tasks.

Each edge in the task graphs is characterized by:
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Figure 1.   Aperiodic and periodic task graphs



1.  The number of information bytes to be transferred.
2.  Communication vector: This indicates the communica-

tion time for that edge on various links from the link
library. It is computed based on link characteristics.

The communication vector for each edge is computeda
priori . At the beginning of co-synthesis, since the actual number
of ports on the links is not known, we use an average number of
ports (specified beforehand) to determine the communication
vector. This vector is recomputed after each allocation,
considering the actual number of ports on the link.

 In order to provide flexibility for the communication
mechanism, we support two modes of communication: 1)
sequential: where communication and computation cannot go on
simultaneously and 2) concurrent: where communication and
computation can go on simultaneously if supported by the
associated communication link and PEs.
3.3  Scheduling

We use a static scheduler which employs a combination of
preemptive and non-preemptive scheduling to derive efficient
schedules. Tasks and edges are scheduled based on deadline-
based priority levels (see Section 5.4). The schedule for real-time
periodic and aperiodic task graphs is defined during architecture
synthesis.
4    Co-Synthesis of Aperiodic Task Graphs

In this section, we discuss the problem of co-synthesis of hard
real-time aperiodic task graphs, associated challenges, and
techniques to address those challenges.
4.1  Problem description and challenges

The co-synthesis problem of periodic task graphs has been
addressed in the literature before. However, an embedded
system architecture must be capable of executing periodic and
aperiodic task graphs concurrently such that the real-time
constraints of all task graphs are met. Co-synthesis of aperiodic
task graphs offers the following additional challenge:
• Aperiodic task graphs can arrive at the embedded system for

execution at any time. Therefore, the architecture must have
sufficient resources available at the required time to meet the
deadline. Therefore, the resource requirements of such task
graphs must be considered during architecture synthesis.

We formulate the above problem as an execution slot
allocation problem. Execution slots are allocated to aperiodic
task graphs similar to periodic task graphs on the architecture
being synthesized such that their deadlines can always be met.
There are two possible approaches for execution slot allocation:
1) determine the architecture based on periodic task graphs,
follow up with execution slot allocation for aperiodic task graphs
on the given architecture, and upgrade the architecture until all
constraints of both periodic and aperiodic task graphs are met, or
2) determine the architecture by simultaneously considering
periodic and aperiodic task graphs. We use the latter approach
since simultaneous consideration of periodic and aperiodic task
graphs results in very efficient architectures. This is
demonstrated by experimental results. Another challenge is as
follows.
• Aperiodic task graphs can have more than one task and

communication edge. Tasks (edges) can potentially be
mapped to a variety of PEs (links) since the architecture and
allocation are not known beforehand. Therefore, one cannot
exactly determine the length of the execution slot required
from the start to finish of an aperiodic task graph. For exam-
ple, as shown in the aperiodic task graph of Figure 1(a),
there are several paths from the source node (t1) to the sink
nodes (t3, t7). The length of each path (in terms of the exe-
cution and communication time) varies depending on the
mapping of constituent tasks and edges, since there are
numerous allocation possibilities for each task and edge.

We view the above problem as an execution slot size
estimation problem. Next, we describe the techniques for solving
the above two problems.

4.2  Execution slot size estimation
Allocation of periodic and aperiodic tasks is done

simultaneously during the inner loop of the co-synthesis
algorithm (see Section 5.3). We execute the aperiodic tasks at the
next available execution slot. The hyperperiod of the system is
computed as the least common multiple (LCM) of the periods of
the various periodic task graphs in the specification. According
to traditional real-time computing theory, a set of periodic task
graphs has a feasible schedule if and only if it is schedulable in
the hyperperiod [18]. We position execution time slots for
aperiodic task graphs throughout the hyperperiod,Γ, such that
the real-time constraints of both periodic and aperiodic task
graphs are met irrespective of when the aperiodic task graph
arrives for execution. Such a task graph can have one or more
tasks. Since the architecture is not knowna priori, the length,µ,
of the execution time slot needs to be determined upfront in order
to properly position these slots throughout the hyperperiod. We
allow the user to specifyµ based on his/her experience from
existing designs or system specifications. Ifµ is not specifieda
priori , we use the following procedure to determine its value.

Let an aperiodic task graph Tj have m tasks, deadlinedlj
(relative toEST of the task graph), minimum inter-instance time
interval ϒj, and let there ben PEs in the resource library.πis
represents the execution time of taski on PEs. We form clusters
of tasks inTj (using the method given in Section 5.2) and set the
communication times of all intra-cluster communication edges
to zero (this is based on the traditional assumption made in
distributed computing that intra-PE communication takes zero
time). We obtain the length of the longest path,ℑ, in the
clustered task graph using the maximum execution and
communication times (from the corresponding execution/
communication time vectors) for the associated tasks and edges,
respectively. If the value ofℑ is greater thandlj, we set its value
equal to the length of the longest path which is less than or equal
to dlj. Next, we determineΘ andµ as follows (if taski is not
allocatable to PEk based on an indication in the preference
vector, thenπik is set equal to zero to deriveΘ).

Sk represents the total time taken to execute task graphTj on
PEk assuming all tasks inTj are allocated to PEk. If Sk > dlj, then
PE k cannot be chosen for allocating tasks fromTj since the
deadline cannot be met. For this case,Sk is made zero so that PE
k does not play a role in computingΘ andµ. If even one task of
Tj cannot be allocated to PEk (based on the preference vector)
then again PEk cannot be considered further. Thus,Sk is made
zero for this case too.Θ represents the execution time ofTj on
the PE on which it takes the most time to execute, while still
ensuring that the deadline ofTj is met (usually such a PE would
be the cheapest among the feasible PEs).ℑ represents the
schedule length ofTj when not all of its tasks are allocated to the
same PE. Note that different task clusters inTj could potentially
get allocated to different PEs and such PEs would be connected
with various links. However, the schedule length forTj cannot be
allowed to exceeddlj. Based on the above discussion,µ can be
seen to be a large enough time interval to allow the co-synthesis
algorithm to find a feasible single-PE or distributed architecture
for Tj so that its deadline is guaranteed to be met.µ is used to
determine theEST of each aperiodic task graph instance, as
shown in the next section.

Sk πik
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Sk = 0 if Sk > dlj or πik = 0



4.3  Execution slot allocation
In this section, we show how time slots of lengthµ can be

distributed in the hyperperiod to tackle the aperiodic task graph
no matter when it arrives. For the caseµ ≠ dlj , the minimum
number of time slots in the hyperperiod required to tackle
aperiodic task graphTj with deadlinedlj is equal toφ = Γ÷ (dlj
− µ). Whenµ = dlj , all the time slots on the PE(s) the aperiodic
task graph is allotted to should be available for it since the
processing of such a task graph needs to start immediately. We
assume the minimum inter-instance time interval,ϒj, of Tj is
greater than or equal todlj for the time being for simplicity of
exposition. Whenϒj < dlj, we need to employ the concept of task
graph pipelining (this is explained in Section 5.1). The allocated
time slot has the form {y, z}, wherey andz indicate its start- and
finish-times, respectively. If the time slot is not available at the
desired instant, we may need more execution time slots thanφ.
We position the first slot, assumingEST= 0, at {dlj − µ, dlj}.
Then, successive slots are positioned at {i(dlj − µ), i(dlj)−(i−1)µ}
throughout the hyperperiodΓ, wherei = 2, 3,....,φ. Consider the
required slot {r, s}. If r ≥ Γ ands > Γ, then we allocate a time slot
at {r-Γ, s-Γ} at the beginning of the hyperperiod. However, ifr
< Γ ands > Γ, then allocated slots are {r, Γ} and {0, s−Γ}. If the
execution time slot is not available at the desired instant, say {w,
z}, but is available earlier at {p, q}, then we allocate the
execution time slot at {p, q}, the next slot at {p + dlj − µ, p + dlj},
then at {p + 2(dlj − µ), p + 2dlj − µ}, and so on. If two slots
overlap in time, they are merged into a larger slot.

Consider the task graphs in Figure 2(a), wheret1 is periodic
andt2 is aperiodic. For simplicity, assume that there is only one
task in each graph.π1 andπ2 are the corresponding execution
times on the sole PE in the resource library. Assume that both t1
andt2 are allocated to the same PE. The hyperperiod is 10. Since
the aperiodic task graph has only one task,µ is equal to its worst-
case execution time, which is equal to 2. The deadline oft2 is
equal to 8. Therefore, the number of execution time slots
required by t2 in the hyperperiod is10 ÷ (8−2) = 2. The first
execution time slot is required at {6, 8}. The second execution
time slot is required at {12, 14}, which exceeds the hyperperiod.
Thus, this slot is converted to {12−10, 14−10} = {2, 4}. Since
this slot is available, it is allocated in the hyperperiod, as shown
in Figure 2(b). Allocation of these two slots in the hyperperiod
for t2 guarantees that the deadline oft2 is always met,
irrespective of its arrival time, as long as two successive

instances oft2 are separated byϒ2. If t2 arrives before or at
instant 2, it will be served by slot {2,  4}. If it arrives after instant
2 and before or at instant 6, it will be served by slot {6, 8}.
Similarly, if it arrives after instant 6 and before or at instant 12,
it will be served by the first slot of the next hyperperiod, and so
on. Consider another example whereπ = 4,dl = 10, andΓ = 15.
In this case, three slots are required as follows: {6, 10}, {12,
16}={12, 15}{0, 1}, and {18, 22} = {18-15, 22-15} = {3, 7}.
Since slots {6, 10} and {3, 7} overlap, they are merged into one
slot as {3, 10}.

Next, consider the more complex example shown in Figure
3(a). The specification consists of an aperiodic task graphT1 and
a periodic task graphT2. Suppose that the PE library consists of
two PEs and the link library consists of a single link. The
execution (communication) times of the different tasks (edges)
on members of the PE (link) library are also shown in Figure
3(a). Since there is only one periodic task graph, its period is
equal to the hyperperiod. Thus,Γ = 100. Suppose, for simplicity,
that no task clustering is done. From the equations in Section 4.2,
µ can be seen to be equal to 6. Therefore,φ = 100÷ (50− 6) =
3. Let the three instances ofT1 be labeled asT11, T12 andT13.
The constituent tasks ofT1 are similarly labeled. The execution
slots for the aperiodic task graph are allocated at {44, 50}, {88,
94} and {132− 100, 138− 100} = {32, 38}. Figure 3(b) shows
a feasible architecture along with its task and edge allocation.
Figure 3(c) shows the PE/link schedule for this architecture.
5   The CASPER Algorithm

 In this section, we first provide an overview of CASPER and
then follow up with details on each step. Figure 4 presents one
possible co-synthesis process flow which we follow in our work.
This flow is divided up into two parts: pre-processing and
synthesis. During pre-processing, we process the task graph,
system constraints and resource library, and create necessary
data structures. In traditional real-time computing theory, if
periodi is the period of task graphi then [hyperperiod÷ periodi]
copies are obtained for it [18]. However, this is impractical from
both co-synthesis CPU time and memory requirements point of
view, specially for multi-rate task graphs where this ratio may be
very large. We tackle this problem by using the concept of
association array [2]. Theclustering step involves grouping of
tasks to reduce the search space for the allocation step [2]. Tasks
in a cluster get mapped to the same PE. This significantly reduces
the overall complexity of the co-synthesis algorithm since
allocation is part of its inner loop. At this point, an initial
schedule length is derived for the aperiodic task graphs. Then
clusters are ordered based on their importance/priority.

The synthesis step determines the allocation for both periodic
and aperiodic task graphs. The synthesis part has two loops: 1)
anouter loop for allocating each cluster, and 2) aninner loop for
evaluating various allocations for each cluster. For each cluster,
anallocation array consisting of the possible allocations at that
step is created. While allocating a cluster to a hardware module
such as an ASIC or FPGA, it is made sure that the module
capacity related to pin count, gate count,etc., is not exceeded.
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Similarly, while allocating a cluster to a general-purpose
processor, it is made sure that the memory capacity of the PE is
not exceeded. Inter-cluster edges are allocated to resources from
the link library.

The next step isscheduling which determines the relative
ordering of tasks/edges for execution and the start and finish
times for each task and edge. We employ a combination of both
preemptive and non-preemptive static scheduling. Preemptive
scheduling is used in restricted scenarios to minimize scheduling
complexity (see Section 5.4). For task preemption, we take into
consideration the operating system overheads such as interrupt
overhead, context-switch, remote procedure call (RPC),etc.,
through a parameter called preemption overhead (this
information is experimentally determined and provideda
priori ). Incorporating scheduling into the inner loop facilitates
accurate performance evaluation.Performance evaluation of an
allocation is extremely important in picking the best allocation.
An important step of performance evaluation isfinish-time
estimation. In this step, with the help of the scheduler, the finish
times of each task and edge are estimated using the longest path
algorithm [2]. After finish-time estimation, it is verified whether
the given deadlines in the task graphs are met. The allocation
evaluation step compares the current allocation against previous
ones based on total dollar cost of the architecture.
5.1 The association array

Traditionally, as mentioned before, each task graph is
replicated the requisite number of times in the hyperperiod. This
is the approach used in the co-synthesis algorithms in [10]. We
use the concept of association array [2] to eliminate the need for
replication of task graphs in the hyperperiod. An association
array contains limited information about each copy of the task
graph. Our experience from COSYN [2] shows that up to 8-fold
reduction in co-synthesis CPU time is possible for medium-sized
task graphs (with tasks numbering in the hundreds) with less than
1% increase in system cost. It not only eliminates the need to
replicate task graphs, but it also allows allocation of different
task graph copies to different PEs, if desirable, to derive an
efficient architecture. This array also supports pipelining of task
graphs. This is explained next.

There are two types of periodic task graphs: 1) those with a
deadline less than or equal to the period, and 2) those with a
deadline greater than the period. In order to address this fact, the
association array can have two dimensions. If a task graph has a

deadline less than or equal to its period, it implies that there will
be only one instance of the task graph in execution at any instant.
Such a task graph needs only one dimension in the association
array, called the horizontal dimension. If a task graph has a
period less than its deadline, it implies that there can be more
than one instance of this task graph in execution at some instant,
e.g. MPEG frame processing. For such tasks, we create a two-
dimensional association array, where the vertical dimension
corresponds to concurrent execution of different instances of the
task graph. For aperiodic task graphs,ϒ is used akin to period for
determining concurrent instances.

Concurrent instances of task graphs are allocated to the same
set of PEs to achieve pipelining. For example, consider the
aperiodic task graph, resource library and execution/
communication time vectors shown in Figure 5(a). Since its
deadline is 90 and minimum inter-instance time interval is 30,
three concurrent instances of the task graph may be running, as
shown in Figure 5(b). These concurrent aperiodic task graphs
could be allocated as shown in Figure 5(c) to achieve a pipelined
architecture (PE11 and PE12 are two instances of the PE library
element PE1).

Tasks, which do not start atEST= 0, may have the execution
interval of their last copy exceed the hyperperiod. The portion of
the execution interval, which exceeds the hyperperiod, is termed
as hyperperiod spill. In order to ensure that the resulting
schedule is feasible and resources are not overused, we must
make space for the required hyperperiod spill at the beginning of
the hyperperiod (since the schedule derived for a hyperperiod is
repeated for successive hyperperiods). Hence, for such tasks we
reassign their priority level by adding the hyperperiod to it (the
concept of priority level is described in Section 5.2). Doing this
gives such tasks much higher priority than other tasks in the
system, enabling them to find a suitable slot at the beginning of
the next hyperperiod. We use this reassigned priority level
during scheduling. If the required spill is still not available after
the priority level reassignment (this could be due to competing
tasks which either required a spill or must start at the beginning
of the hyperperiod), we upgrade the allocation.
5.2  Task clustering

Clustering involves grouping of tasks to reduce the
complexity of allocation. Our clustering technique addresses the
fact there may be multiple longest paths through the task graph
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and the length of the longest path changes after partial clustering.
We use the critical path task clustering method given in [2]. In
order to cluster tasks, we first assign deadline-based priority
levels to tasks and edges using the procedure from [2]. The
priority level of a task is an indication of the longest path from
the task to a task with a specified deadline in terms of
computation and communication costs as well as the deadline. In
the beginning, when allocation is not defined, we sum up the
maximum execution and communication times along the longest
path and subtract the deadline from the sum to determine the
priority levels. However, priority levels are recomputed after
each allocation as well as task clustering steps. In order to reduce
the schedule length, we need to decrease the length of the longest
path. This is done by forming a cluster of tasks along the current
longest path. This makes the communication costs along the path
zero. Then the process can be repeated for the longest path
formed by the yet unclustered tasks, and so on. Our experience
from COSYN [2] shows that task clustering results in up to
three-fold reduction in co-synthesis CPU time for medium-sized
task graphs with less than 1% increase in system cost.
5.3  Cluster allocation

Once the clusters are formed, we need to allocate them to PEs.
We define the priority level of a cluster as the maximum of the
priority levels of the constituent tasks and incoming edges.
Clusters are ordered based on decreasing priority levels. After
the allocation of each cluster, we recalculate the priority level of
each task and cluster. We pick the cluster with the highest
priority level and create an allocation array. This is an array of
the possible allocations for a given cluster at that point in co-
synthesis. It is formed considering preference vectors, upgrade
of PEs, upgrade of links, addition of PEs and links,etc. Limiting
the number of PEs and links that can be added at any step helps
keep the allocation array size at manageable levels. We order the
allocations in the allocation array in the order of increasing value
of dollar cost. Once the allocation array is formed, we use the
inner loop of co-synthesis to evaluate the allocations from this
array. During this loop, we pick the allocation with the least
dollar cost and perform scheduling and allocation evaluation. If
deadlines are met, we pick the next cluster, otherwise we repeat
the process with another allocation from the allocation array.
5.4  Scheduling

To determine the order of scheduling, we prioritize tasks and
edges based on the decreasing order of their priority levels. If
two tasks (edges) have equal priority levels then we schedule the
task (edge) with the shorter execution (communication) time
first. While scheduling communication edges, the scheduler
considers the mode of communication (sequential or concurrent)
supported by the link and the processor. Though preemptive
scheduling is sometimes not desirable due to the overhead
associated with it, it may be necessary to obtain an efficient
architecture. The preemption overhead,ξ, is determined
experimentally considering the operating system overhead. It
includes context switching and any other processor-specific
overheads. To minimize scheduling complexity, preemption of a
higher priority task by a lower priority task is allowed only in the
case when the higher priority task is a sink task which will not
miss its deadline, in order to minimize the scheduling
complexity. For each aperiodic task, as explained before, we

position the execution slots throughout the hyperperiod after
scheduling the first execution slot. If the execution slot cannot be
allocated at the required instant, we schedule it at the earliest
possible time and reposition the remaining slots to ensure that the
deadlines are always met.
5.5  Performance estimation

We use the finish-time estimation technique using a longest
path algorithm from [2] to estimate the finish times of all tasks
with specified deadlines and check whether their deadlines are
met. The scheduler provides accurate information on the start
and finish times of the allocated tasks and edges. This, in turn,
makes our finish-time estimation method more accurate and
minimizes false rejection of an allocation. We store the start as
well as the finish times of each task and edge based on its best-
possible as well as the worst-possible allocation. When a task or
edge gets allocated, its start times converge to one number, so do
its finish times.
5.6  Allocation evaluation

Each allocation is evaluated based on the total dollar cost
which is the summation of the dollar cost of constituent PEs and
links. We pick the allocation which at least meets the deadline in
the best case. If no such allocation exists, we pick an allocation
for which the summation of the best-allocation based finish
times of all tasks with specified deadlines (recall that a task
graph can have more than one task with a specified deadline) in
all task graphs is maximum. This generally leads to the least-
expensive architecture since a larger finish time usually
corresponds to a less expensive architecture (note that we can
always upgrade the architecture at a later step, if necessary, to
meet real-time constraints). If there are more than one allocation
which meet this criterion then to break the tie we choose the
allocation for which the summation of the worst-allocation based
finish times of all tasks with deadlines is maximum.
6   Experimental Results

CASPER is implemented in C++. It was run on various Bell
Laboratories telecom transport system task graphs. These are
large task graphs representing real-life field applications. The
execution times for the tasks in these graphs were either
experimentally measured or estimated based on existing designs.
The general-purpose processors in the resource library had the
real-time operating system, pSOS+, running on them. The
execution times included the operating system overhead. For
results on these graphs, the PE library was assumed to contain
Motorola microprocessors 68360, 68040, 68060 (each processor
with and without a second-level cache), 11 ASICs, one XILINX
3195A FPGA, one ORCA 2T15 FPGA, and two optical
transmitter and receiver modules. The link library was assumed
to contain a 680X0 bus, a 1 Mb/s LAN, a 10 Mb/s LAN, a 6.176
Mb/s serial link supporting broadcast mode, and a 31 Mb/s serial
link. Telecom embedded systems contain a mix of periodic and
aperiodic task graphs. For the eight telecom examples
considered next, on an average 30% of the tasks were aperiodic.

Table 1 shows the experimental results. The first major
column in this table gives characteristics of the distributed
architecture derived by CASPER employing the slack stealing
[13] concept. In this case, hard aperiodic task graphs are
allocated after the architecture for hard periodic task graphs is
defined. Slacks from the schedules of the periodic task graphs
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are stolen to service aperiodic task graphs, and the architecture is
upgraded when necessary. The CPU times are on Sparcstation 20
with 256 MB of DRAM. The system cost is the summation of the
costs of the constituent PEs and links. The second major column
gives results for CASPER using RMS [17]. In this case,
aperiodic and periodic task graphs are handled concurrently. For
RMS, priority levels are assigned based on task graph periods,
where task graphs with a shorter period receive higher priority.
In case of an aperiodic task graph, its minimum inter-instance
time interval is treated akin to the period for assigning the
priority level. If two tasks (edges) have the same priority level,
we schedule the task (edge) with the smaller execution
(communication) time first. The third major column gives the
results with CASPER employing the scheduler using deadline-
based priority levels, and invoking concurrent co-synthesis of
aperiodic and periodic task graphs.

CASPER realizes on an average (average of individual cost
reductions) 22.9% architecture cost savings over the slack
stealing algorithm and 29.4% over RMS.

When no aperiodic tasks are present, CASPER reduces to
COSYN [2]. The efficacy of COSYN with respect to other co-
synthesis systems which handle periodic task graphs has been
established in [2].
7   Conclusions

We have presented an efficient co-synthesis algorithm for
synthesizing distributed embedded system architectures for hard
real-time aperiodic and periodic task graphs. Experimental
results for various large real-life telecom system examples are
very encouraging. We have also demonstrated the efficacy of
using our scheduling technique in the co-synthesis algorithm as
opposed to slack stealing or RMS. This is the first work to
provide simultaneous support of periodic and aperiodic task
graphs with hard deadlines during co-synthesis that provides a
guarantee that the real-time constraints will always be met.
Currently, CASPER is being applied to several next generation
telecom transport system projects at Lucent Technologies.
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Table 1: Experimental results for telecom transport system examples

Example/
(No. of tasks)

CASPER with slack stealing CASPER with RMS CASPER

No.
 of
PEs

No.
 of

links

CPU
time
(sec.)

Cost
($)

No.
 of
PEs

No.
 of

links

CPU
time
(sec.)

Cost
($)

No.
 of
PEs

No.
of

links

CPU
time

 (sec.)

Cost
($)

Cost
savings

over
slack

stealing
%

Cost
savings

over
RMS

%

CATS1/(112) 4 2 106.2 665 5 3 117.5 725 3 2 94.6 520 21.8 28.3

CATS2/(178) 7 4 187.1 1504 8 5 211.4 1635 5 3 136.2 1135 24.5 30.6

CATS3/(324) 10 4 1619.7 1965 12 5 1880.5 2355 8 4 1400.1 1580 19.6 32.9

CHAS1/(539) 15 11 1938.5 1945 14 11 2014.6 1830 12 10 1720.5 1460 24.9 20.2

CHAS2/(712) 22 9 4940.1 9080 24 10 5160.2 10865 18 7 4218.1 7128 21.5 34.4

CHAS3/(848) 19 9 7195.3 8070 22 11 7610.6 9150 15 6 5890.6 6560 18.7 28.3

CHAS4/(1018) 37 14 19956.3 13930 39 16 21060.1 14910 29 8 16928.3 9980 28.4 33.1

CHARS/(1241) 46 16 20390.2 16780 45 15 19830.1 17610 34 10 17140.2 12820 23.6 27.2
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