
Abstract

A tool for the synthesis of fuzzy controllers is pre-
sented in this paper. This tool takes as input the behavioral
specification of a controller and generates its VHDL
description according to a target architecture. The VHDL
code can be synthesized by means of two implementation
methodologies, ASIC and FPGA. The main advantages of
using this approach are rapid prototyping, and the use of
well-known commercial design environments like Synop-
sys, Mentor Graphics, or Cadence.

1: Introduction

The two main factors that limit the realization of an
electronic system are its complexity and its development
time. The use of computer aided design environments
including synthesis tools eases the design process and
accelerates the introduction in the market of the final prod-
uct. Concerning the design flow of a fuzzy logic controller
(FLC), two different levels may be considered. The algo-
rithmic level specifies the functional behavior of the con-
troller. The objective within this level is to define the shape
of the membership functions, the implication mechanism,
and the defuzzification strategy that better achieve the pro-
posed control task. At the circuit level, the designer has to
select an efficient controller architecture, design the
required building blocks, and verify the temporal behavior
of the system.

The use of VHDL as a language to support the data
structures and functions required for simulation of fuzzy
systems has been introduced in different references [1] [2].
In a previous paper, the authors presented a VHDL package
which allows formal description and simulation of fuzzy
controllers, thus easing the algorithmic design of FLCs [3].
In this occasion our work is focused towards the implemen-
tation of FLCs as microelectronic circuits, making use of
the capability of VHDL as input language for most of the
currently available synthesis tools.

This paper describes a synthesis tool, Xfvhdl, that
translates the high level representation of a fuzzy controller
in a synthesizable VHDL description suitable for being
implemented as a semi-custom application specific inte-
grated circuit (ASIC), or as a field programmable gate array
(FPGA). In the second case, the tool also provides script
files to drive the synthesis process.

2: Implementation of fuzzy controllers

Since fuzzy logic started to be applied to solve control
problems, an increasing number of new applications
directed to both industrial and consumer products has
emerged [4]. However, the use of fuzzy technologies in
real-time control problems demands the development of
new processing structures which allow the efficient hard-
ware implementation of inference mechanisms [5].

A low-cost high-speed architecture for fuzzy control-
lers was proposed by the authors in [6]. The keys for
achieving these requirements are the adoption of some
restrictions in the shape of membership functions, the use
of simplified defuzzification methods, and the use of an
active-rule driven inference mechanism.

The block diagram of this architecture is depicted in
Fig. 1, showing the three typical components of a fuzzy
inference system. Membership function circuits (MFCs) at
the fuzzifier stage calculate the degrees of membership for
the controller inputs to the fuzzy sets that represent the
antecedents of the control rules. Each MFC provides as
many pairs “label-activation degree” as overlapping degree
has been fixed for the system. The inference stage is com-
posed of an active-rule selection circuit (a counter-con-
trolled multiplexer array is used for this purpose), a multi-
input Min circuit that evaluates the rule activation degree
by combining the antecedent activation degrees provided
by the MFCs, and a rulebase that stores the parameters
which define the rule consequents.

There are different options when designing each of the
building blocks, with regard to the physical implementa-
tion of fuzzy controllers based in the herein described

XFVHDL: A Tool for the Synthesis of Fuzzy Logic Controllers

E. Lago, C. J. Jiménez, D. R. López, S. Sánchez-Solano and A. Barriga

Instituto de Microelectrónica de Sevilla. Centro Nacional de Microelectrónica,
Edificio CICA, Avda. Reina Mercedes s/n, 41012-Sevilla, SPAIN.

architecture. MFCs can be implemented resorting to either
a vectorial or arithmetic approach. Memory based MFCs
(Fig. 2a) allow a definition of unrestricted membership
shapes, but arithmetic approaches (Fig. 2b) provide, in gen-
eral, better results in terms of silicon area. The rule memory
at the inference stage can be implemented by a RAM, in
order to improve the controller programmability, or by
means of a ROM or a combinational circuit to reduce the
area consumption. Lastly, different defuzzification strate-
gies can be considered in the final stage of the controller
[7]. The hardware realization of most simplified defuzzifi-
cation methods (Fuzzy Mean, Weighted Fuzzy Mean,
Yager, Center of Sums) requires one of the four structures
depicted in Fig 3. Note that sections enclosed by dotted
lines are common to all the structures, enabling the con-
struction of a multifunctional defuzzification circuit [6].

The choice among these design options depends on

the application domain of the fuzzy controller and the
implementation technique used to build the integrated cir-
cuit. RAM implementations of MFCs and the rulebase may
be a good alternative for a general purpose programmable
fuzzy controller. Conversely, the use of ROM or combina-
tional blocks to store the knowledge base is better suited
when the controller specifications are well established, or
when the programmability is directly achieved by the
implementation technique (as in the case of FPGAs). On
the other hand, the number of circuits can affect the tech-
nology to be employed. FPGAs are a good solution for fast
prototyping, while the cost of a high-volume production
should suggest the use of semi-custom ASICs.

In order to accelerate the design process, it is helpful
to have a design environment which allows the exploration
of the design space and eases the automatic synthesis and
verification of fuzzy hardware.

Fig. 1: Active-rule architecture for fuzzy controllers.

Input1

OutputInput2

Input3

Fuzzifier DefuzzifierInference

αi

ci

wi

MFC

MFC

MFC

MUX

MUX

MUX

Counter

RULE

MEMORY

Rule-Select

MIN

DEFUZZIFIER

Fig. 2: Implementation of MFCs by vectorial (a), and arithmetic (b) approaches.

Count xι

- RegX

Not
mι

Clock

Input

Li

αi-1

αi

x1 x2 x3 x4 x5 x6 x7

L1 L2 L3 L5 L6 L7L1 L2 L4 L5

Label

MEM-0

MEM-1

L1 L2 L3 L4

x

(b)(a)

3: The Xfvhdl tool

Xfvhdl generates a synthesizable VHDL description
of a fuzzy controller from its high-level representation in
the XFL language [8]. The XFL specification (Fig. 4)
includes information about the behavior of the FLC
(knowledge base, inference mechanism and defuzzification
method).

The design flow of FLCs using Xfvhdl is illustrated in
Fig 5. Xfvhdl uses a cell library containing the parameter-
ized VHDL description for the basic building blocks. There

are two kind of blocks: data path building blocks (imple-
menting the inference algorithm) and control blocks (con-
trolling the memory write/read operations, and the signals
that control the operation scheduling). The code used in the
description of the cell library is compatible with the
restricted VHDL implementations of Synopsys and Mentor
Graphics tools. The architectural options and the number of
bits of precision are defined by the user when the Xfvhdl
command is run.

Xfvhdl produces as output the following files describ-
ing the FLC:

Fig. 3: Block diagrams for different defuzzification methods: a) Fuzzy Mean. b) Weighted Fuzzy Mean. c) Yager.
d) Center of Sums with min implication. Whereαi is the activation degree, ci is the crisp consequent,
wi is a weight parameter, pi and qi are shaping factors, andβi = 1 -αi.

yαi

ci
wi X X Σ

Σ
/

αi

(a)

ci

y y

y

αi
qi
pi

αi

ci

(d)

(c)

(b)

X Σ
/

Σ

X X Σ

Σ
/

+

-1 X X Σ

Σ
/-1

ŷ αi ci⋅

i 1=

r

∑ αi
i 1=

r

∑⁄=

ŷ αi wi ci⋅ ⋅

i 1=

r

∑ αi wi⋅

i 1=

r

∑⁄=

ŷ αi pi qi αi⋅+()⋅

i 1=

r

∑ αi
i 1=

r

∑⁄=

ŷ ci 1 βi
2

–
 ⋅

i 1=

r

∑ 1 βi
2

–

i 1=

r

∑⁄=

Fig. 4: XFL description of a fuzzy controller.

#and min
#composition max
#defuzzification FuzzyMean

type Terror : real [64] (-1<1) {
 NN triangle (-1.5,-1,0)
 ZZ triangle (-1,0,1)
 PP triangle (0,1,1.5)}

type Tdeltaerr : real [64] (-1<1) {
 NN triangle (-1.5,-1,0)
 ZZ triangle (-1,0,1)
 PP triangle (0,1,1.5)}

type Toutput : real [64] (0<1) {
 NG triangle (-0.5,0,0.25)
 NP triangle (0,0.25,0.5)
 ZZ triangle (0.25,0.5,0.75)
 PP triangle (0.5,0.75,1)
 PG triangle (0.75,1,1.5)}

system
(Terror ? error, Tdeltaerr ? deltaerr,Toutput ! output)

rulebase
{
 if (error is NN & deltaerr is NN) -> output is ZZ
 if (error is NN & deltaerr is ZZ) -> output is NP
 if (error is NN & deltaerr is PP) -> output is NG
 if (error is ZZ & deltaerr is NN) -> output is PP
 if (error is ZZ & deltaerr is ZZ) -> output is ZZ
 if (error is ZZ & deltaerr is PP) -> output is NP
 if (error is PP & deltaerr is NN) -> output is PG
 if (error is PP & deltaerr is ZZ) -> output is PP
 if (error is PP & deltaerr is PP) -> output is ZZ
}

Package files: Two VHDL packages are generated by
Xfvhdl. The constants file includes the declaration of the
constants used in the VHDL description. Some of these
constants are obtained directly from the parameters of the
Xfvhdl command. Others are obtained by analyzing the
XFL description. The last set of parameters is calculated
from the other two. On the other hand, theentities file con-
tains the declaration of all the blocks that make up the FLC.
The instantiation of each block depends on the architectural
options selected.

Knowledge base files: The information about antecedents,
rules and consequents is codified in a set of files. The defi-
nitions are based in tables of values by means of VHDL
“case” sentences, thus enabling logic minimization when
these blocks are implemented as combinational logic.

Controller file: This file contains the structural VHDL
description of the FLC. The controller is constructed by
concatenating a set of basic building blocks according to
the XFL description and the implementation options.

TestBench file: In addition to the files required by the syn-
thesis process, a testbench file is generated to ease the ver-
ification of the FLC. The testbench includes the

instantiation of the FLC, a process to generate a periodical
clock signal, and another process that provides the initial
reset signal and the inputs used in the simulation of the
FLC.

The files generated by Xfvhdl can be used as the start-
ing point for automatic synthesis tools which provide dif-
ferent implementation techniques for integrated circuits.
One of the primary decisions in the design process is the
selection of the target implementation style. This selection
depends on specifications or is based on economical
requirements. Later design steps are strongly affected by
this choice. Fig. 5 shows the two implementation method-
ologies marked by dotted lines. The next section describes
the realization of several prototypes of ASICs and FPGAs,
respectively. In the last case, ascript file provided by
Xfvhdl can drive the synthesis when Synopsys is the
selected tool and Xilinx the objective technology.

 Xfvhdl can be executed interactively or from the
Xfuzzy graphical environment [8]. Fig 6 shows the com-
mand line and some Xfvhdl window with its command
options. There are more options, not shown, to guide the
Synopsys synthesis step.

XFL Fuzzy System
description

Xfvhdl

Implementation
options

VHDL controller VHDL packages VHDL memories
description

VHDL components
library

VHDL
testbench

Synopsys

Synthesis
script file

“fuzzy.sxnf” file.
Controller description

“fuzzy.lca” file “fuzzy.bit” file

Xilinx

Hardware cost
report

Routing and
timing report

tools

tools

Fig. 5: Design flow for the implementation of FLCs using Xfvhdl.

Schematic.
 description

Synthesis
tools

Foundry tech-
nology library

ASICFPGA

Layout
tools

Circuit
 layout

4: Implementation examples

 The ASIC design approach for the architectural com-
ponent modelling is based on technology mapping criteria.
In this sense, FLC implementation requires standard cell
and macrocell selection. The VHDL files provided by
Xfvhdl are used by the synthesis tool to generate the sche-
matic description of the controller according to the selected
foundry library. This schematic is used by place and rout-
ing tools to obtain the circuit layout.

An important aspect in the design of ASICs is to adjust
the circuit to the required performance under cost and tim-
ing constraints. To be able to do this, the designer needs an
efficient tool to explore the design space. This is one of the
main features of Xfvhdl since its starting point is a high-
level behavioral description.

Fig. 7 shows four ASIC implementation examples of a
fuzzy controller with varying design parameters. The con-
troller requirements are: two inputs and one output, 7 mem-
bership functions, and Fuzzy Mean defuzzification method
(eq. (a) of Fig. 3). The figure shows the layout and silicon
area of four circuits (implemented in a 0.7µm CMOS tech-
nology) based on arithmetic or memory MFCs, with a
different number of bits for inputs and membership grade
coding.

Xfhvdl allows for another alternative implementation
for fuzzy controllers, based on Xilinx FPGAs. In order to
control the design steps, Xfvhdl generates ascript file for

Synopsys to select the synthesis options. The output of
Synopsys is anXNF file (Xilinx Netlist Format) named
‘ fuzzy.sxnf’ with the controller description. Optionally it is
possible to generate a report file containing routing require-
ment (number of CLBs and IOBs) and temporal con-
straints.

Finally, fuzzy.sxnf is used as the input file for Xilinx
software for mapping and routing the FPGA. Three files are
obtained as result: ‘fuzzy.lca’, ‘ fuzzy.bit’ and the report of
the implementation (in file ‘fuzzy.rpt’). The last step is to
write the FPGA using the file ‘fuzzy.bit’, to obtain the phys-
ical implementation of the fuzzy system from the behav-
ioral XFL description.

Table 1 shows FPGA implementations of the control-
lers depicted in Fig. 7. Case D exceeded the 4013PQ160-5
FPGA size. As mentioned above, the output generated by
Xfvhdl consists of a schematic VHDL for the controller.

5: Conclusions.

Hardware realizations of fuzzy controllers can be
improved by using adequate design environments which
speed up the processes of design, synthesis and verification
of these controllers. A CAD tool focused in the automatic
synthesis of fuzzy controllers has been described in this
paper. The tool is based on the standard hardware descrip-
tion language VHDL. The viability of the proposed method
is shown through its practical application.

Fig. 6: Xfvhdl graphical user interface showing its main command options.

6: References

[1] A. Zamfirescu and C. Ussery, “VHDL and Fuzzy Logic If-
Then Rules”,Proc. of Euro-VHDL’92, pp. 636-641, Ham-
burg.

[2] T. Hollstein, S.K. Halgamuge and M. Glesner: “Computer-
Aided Design of Fuzzy Systems Based on Generic VHDL
Specifications”,IEEE Trans. on Fuzzy Systems, vol. 4, no.
4, pp.403-417, Nov. 1996.

[3] D. Galán, C.J. Jimenez, A. Barriga and S. Sánchez-Solano:
“VHDL Package for Description of Fuzzy Logic Control-
lers”, EURO-VHDL’95 Brighton, pp. 528-533, Sept. 1995.

[4] T. Munakata, Y. Jani, “Fuzzy Systems: An Overview”,
Communications of the ACM, vol. 37, n. 3, pp. 69-76, Mar.
1994.

[5] D. L. Hung. “Dedicated Digital Fuzzy Hardware”.IEEE
Micro, vol. 15, n. 4, pp. 31-39, Aug. 1995.

[6] C.J. Jiménez, S. Sánchez-Solano and A. Barriga: “Hard-
ware Implementation of a General Purpose Fuzzy Control-
ler”. Proc. 6th International Fuzzy Systems Association
World Congress (IFSA’95), Sao Paulo, July 1995.

[7] H. Hellendoorn and C. Thomas, “Defuzzification in Fuzzy
Controllers”, Journal of Intelligent and Fuzzy Systems,
vol. 1, pp. 109-123, 1993.

[8] D. R. López, S. Sánchez-Solano, A. Barriga: “XFL: a
fuzzy logic systems language.”Proc. sixth IEEE Interna-
tional Conference on Fuzzy Systems, vol. 3, pp. 1585-
1591, Barcelona, 1997.

A B C

FPGA 4005PC84-5 4005PC84-5 4013PQ160-5

Number of CLBs 162 (82% used) 124 (63% used) 402 (69% used)

Number of IOBs 16 (26% used) 16 (26% used) 34 (26% used)

CLB Flip Flops 116 (29% used) 107 (27% used) 220 (19% used)

Table 1: FPGA implementation for the controllers in Fig 7.

Fig. 7: Examples of the design space evaluation of fuzzy controllers.

A) Area = 5.05 mm2 B) Area = 5.83 mm2

D) Area = 31.66 mm2C) Area = 10.96 mm2

4 bits inputs
5 bits membership grade

10 bits inputs
11 bits membership grade

Arithmetic based MFC Memory based MFC

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

