
An E�cient Algorithm to Integrate Scheduling and Allocation in

High-Level Test Synthesis �

Tianruo Yang and Zebo Peng

Department of Computer and Information Science

Link�oping University, S-581 83, Link�oping, Sweden

Abstract

This paper presents a high-level test synthesis algo-

rithm for operation scheduling and data path alloca-

tion. Contrary to other works in which scheduling and

allocation are performed independently, our approach

integrates these two tasks by performing them simulta-

neously so that the e�ects of scheduling and allocation

on testability are exploited more e�ectively. The ap-

proach is based on an algorithm which applies a se-

quence of semantics-preserving transformations to a

design to generate an e�cient RT level implementation

from a VHDL behavioral speci�cation. Experimental

results show the advantages of the proposed algorithm.

1 Introduction
The main objective of this paper is to develop a

systematic technique to integrate testability consider-
ation into high-level synthesis and make it possible for
an automatic synthesis tool to predict testability of the
synthesized circuits accurately in the early stage and
optimize the designs in terms of test cost as well as
performance and area cost. Our high-level test syn-
thesis system takes a VHDL behavioral speci�cation
of a digital system and a set of design constraints as
input and generates a Register-Transfer Level (RTL)
hardware implementationwhich consists of a data path
and a controller. In this paper, we mainly deal with
data path testability improvement, assuming that the
controller can be modi�ed to support the test plan.

There are several approaches to high-level test syn-
thesis. Papachristou et al. [10] present a data path
synthesis technique for self-testable design in which the
built-in self-test (BIST) technique is employed. Two
allocation techniques are presented that map a giv-
en scheduled dataow graph into a self-testable data
path. The �rst one is based on a graph-heuristic algo-
rithm while the second one is based on integer linear
programming formulation. Flottes et al. [2] have de-

�This work has been partially sponsored by the Swedish
National Board for Industrial and Technical Development
(NUTEK).

veloped a high-level test synthesis system to generate
testable data path in which as many modules (memo-
ry elements, functional units, muxes, and even wires)
as possible will be testable using parallel test patterns
propagated from primary data input ports. The goals
of their system are to take advantage of synthesis pos-
sibilities in order to establish test paths of each mod-
ule and to generate designs that are easily testable.
Mujumdar et al. [8] present a technique to eliminate
as many self-loops as possible by altering the register
and module binding during high-level synthesis. All
the above approaches and even Avra's technique on
self-testable data path synthesis [1] are based on the
assumption that the schedule of operation has been
decided. Such an assumption limits the possibility of
enhancing testability of the design. To address this
problem, Papachristou [9] presents several reschedul-
ing transformations to locally transform a given sched-
ule to improve the testability of a data path when the
BIST technique is used.

Recently in [6, 7], Lee et al. propose several new da-
ta path allocation scheduling methods for testability.
Two heuristic rules are used to guide data path alloca-
tion and scheduling, which are: (1) whenever possible,
allocate a register to at least one primary input or
primary output variable, and (2) reduce the sequen-
tial depth from a controllable register to an observable
register. They develop a scheduling called mobility
path scheduling which takes these two rules into ac-
count. Once a schedule is obtained by the mobility
path scheduling algorithm, a modi�ed left-edge algo-
rithm is used for register and module allocations. In
this way, scheduling and module/register allocation are
carried out in separate steps, and the possibility of
testability enhancement can not be fully exploited.

Our high-level test synthesis approach di�ers from
the prior work in which the scheduling and alloca-
tion tasks are performed independently. It introduces
scheduling constraints imposed by data path allocation
and performs scheduling and allocation simultaneously
in an iterative fashion so that their e�ects on testabil-

ity are exploited more e�ectively. A similar approach
to integrate scheduling and allocation has been used
by Kim [4] without testability enhancement.

The paper is organized as follows. Section 2 de-
scribes briey the high-level test synthesis system with
emphasis on the design representation and the testabil-
ity analysis algorithm. The controllability/observabi-
lity balance allocation technique for operation modules
and registers is presented in section 3. The stepwise
re�nement synthesis algorithm and the introduction of
scheduling constraints imposed by the process of data
path synthesis is described in section 4 . Finally, sec-
tion 5 describes some experimental results and section
6 contains our conclusions and remarks.

2 Preliminaries
The kernel of our high-level test synthesis system

is an intermediate design representation, called Ex-
tended Timed Petri Net (ETPN), which can be used
both for testability analysis and high-level synthesis.
In ETPN, the structural properties of the data path
and controller are explicitly captured in order to fa-
cilitate accurate analysis of the intermediate design in
term of performance, area and testability.

The ETPN design representation consists of two
parts: data path and control part. The data path
is a directed graph with nodes and arcs. The node
represents storage (registers) and manipulation of da-
ta. The arc connecting two nodes represents the ow
of data. The control part, on the other hand, is cap-
tured as a timed Petri net with restricted transition
�ring rules [14]. These two parts are related through
the control states in the control part controlling the
data transfers in the data path, and the condition sig-
nals in the data path controlling some transitions in
the control part.

Given a design represented in ETPN, its testability
can be estimated accurately, assuming that it is go-
ing to be implemented directly. Our testability anal-
ysis is mainly based on Gu et al. [3]. The testability
de�nition assumes that a stuck-at fault model is used
and ATPG is random and/or deterministic. These as-
sumptions are made based on the observation that the
stuck-at fault model is the mostly used fault model and
many ATPG's start by using random test generation
to cover as many faults as possible and then switch to
deterministic test generation.

The testability of a circuit is mainly measured by
its controllability which reects the cost of setting up
any speci�c value on a line and its observability which,
on the other hand, measures the cost of observing any
speci�c value on a line. They are used to measure the
fault sensitization and fault propagation costs respec-

tively during test generation and application proce-
dures. Further the controllability/observability is de-
�ned by a combinational factor which is used mainly to
reect the cost of generating a test and fault coverage,
and a sequential factor which is used to measure the
sequential complexity of using a sequential test gen-
eration algorithm and the cost (time and memory) of
executing the test. Our testability metric consists of,
therefore, four measures: combinational controllability
(CC), sequential controllability (SC), combinational
observability (CO) and sequential observability (SO).
The testability metrics (CC; SC;CO; SO) can be ob-
tained by the testability analysis algorithmgiven in [3].
It assigns �rst ones to CCs and zeros to SCs for all
primary inputs in the data path of the ETPN. These
values will then be propagated according to the algo-
rithm proposed in [3] until the primary outputs are
reached. A similar approach can be used for calculat-
ing observability in the reverse direction.

3 Data Path Allocation Principle
Our approach uses a controllability/observability

balance allocation [13] technique to perform the date
path allocation task. We begin with a default alloca-
tion generated by the VHDL compiler which assumes
that each operation instance in the VHDL speci�cation
is mapped into an individual data path node. Then
re-allocation is mainly carried out by merger transfor-
mation which compacts the data path nodes until a
one-by-one mapping to physical hardware is feasible.

Conventional allocation approaches often select and
merge the data path nodes according to their connec-
tivity or closeness, which aims to minimize intercon-
nections and multiplexors. This usually results in a
very hard to test design because many loops, especial-
ly self-loops, are generated. Further, nodes with good
controllability and bad observability are merged to-
gether since they are very close to the primary inputs.
Similar merger for nodes with good observability and
bad controllability will also occur. As a result, the da-
ta path consists of many nodes which are very di�cult
either to control or observe.

In our approach, the selection of nodes to be merged
is based on the testability measures generated by the
testability analysis algorithm. The main goal is to gen-
erate a data path with good controllability and ob-
servability for all the nodes and with as few loops as
possible. The basic idea is to fold nodes with good con-
trollability and bad observability to nodes with good
observability and bad controllability. Note that the
controllability of a node is de�ned as the best control-
lability of any of its input lines. While the observability
of a node is the best observability of any of its output

lines. In this way, the new node will inherit the good
controllability from one of the old nodes and the good
observability from the other.

4 The Test Synthesis Algorithm

4.1 The basic algorithm

Our synthesis algorithm accepts an unscheduled
ETPN design representation as input and generates a
highly testable data path. It iteratively applies trans-
formation to the current ETPN. In each iteration, the
algorithm selects pairs of modules and registers in the
data path and merges them to generate a new data
path. Here merging two modules into one implies that
all the operations which were assigned to the two mod-
ules are reassigned into one single module. Therefore,
merging two modules into one imposes a scheduling
constraint that all the operations which were assigned
to these modules must be scheduled in di�erent con-
trol step. A similar argument holds for the case of
register merger. Merging two registers into one im-
poses a scheduling constraint that the lifetime of all
variables which were assigned in these registers must
be disjoint. Note that merger of nodes (modules and
registers) leads to a reduction in the number of hard-
ware components in the design, whereas the additional
scheduling constraints may lead to an increase in the
execution time of the data path. The iterative synthe-
sis algorithm is described as Algorithm 1.

Algorithm 1 The Synthesis Algorithm

1: Perform a simple default scheduling/allocation
2: repeat

3: for all modules and registers do
4: Run the testability analysis algorithm
5: end for

6: Select k pairs of mergable nodes according to the
controllability/observability balance principle

7: for k pairs modules or registers do
8: Estimate the incremental execution time cost

�E
9: Estimate the incremental hardware cost �H
10: end for

11: Select the pair with smallest �C = � ��E+ � �

�H
12: Merge the selected pair and modify the data

path
13: Do lifetime analysis of variables
14: Perform rescheduling imposed by data path syn-

thesis using a merge-sort algorithm based on
a controllability and observability enhancement
strategy

15: until no merger exists

In each iteration, our algorithm runs the testabil-
ity analysis algorithm to select k pairs modules and
registers according to the controllability/observability
balance allocation principle. Here k is a number chosen
by the user which is used to control the trade-o�s be-
tween the testability and execution time and hardware
cost. A small value of k means that more emphasis is
placed on improving the testability measure. For each
of k pairs of modules and registers, we will estimate
the incremental execution time cost �E and the incre-
mental hardware cost �H. Then we choose the pair
with the smallest value of �C = ��E + ��H, where
� and � are two user-controlled parameters. We will
present the details of estimation the execution time
and hardware cost later. The selected pair is merged
and the data path is modi�ed accordingly. Reschedul-
ing if needed is performed by a merge-sort algorithm
based on a controllability and observability enhance-
ment strategy, to be presented later, after we �nish
the lifetime analysis of variables. This process is then
repeated until no merger is possible in the data path.

4.2 Estimation of performance and cost

For a given data path, the minimum execution time
E is equal to the length of the critical path which
consists of a sequence of control places which domi-
nating the time needed for a token to ow from the
initial place to the �nal place. The method to detect
the critical path is based on the reachability tree of
the Petri net model [15]. A reachability tree repre-
sents the reachability set of the given Petri net. That
is, it shows all markings which can be reached from
the initial markings. The critical path algorithm �rst
constructs such a reachability tree and, analyzing the
reachability tree, extracts the critical path.

The hardware cost H is based on calculation of the
cost of the data path. The cost of data path is cal-
culated according to the cost of each data path unit.
The cost of data path units which performs logic, arith-
metic, or storage operations is given by the correspond-
ing module parameters stored in the module library.
The cost of data path units for communication such
as arcs and bus vertices depends on the placement of
the components as well. To make a more accurate
estimation, we follow the oorplanning algorithm pro-
posed by Peng et al. [14] to estimate the hardware
cost which takes into account the geometrical informa-
tion. This algorithm basically makes use of a simple
heuristics based on the connectivity between the da-
ta path vertices. These heuristics provide a relatively
precise indication of how much it will cost in hardware
implementation.

Given a oorplan, the cost for an ETPN data path

R1(w) R2(v)

R1(x)

R3(s)

R2(y)

R3(u)

R2(z)

R1(w)

R3(s)
R1(x)

R3(u) R2(y)

R2(v)

R2(z)

* N1 * N2

- N3

+ N4

* N1

- N3 * N2

+ N4

R1 R3 R2

R3

R2

(b)(a)

Sequential depth = 1 Sequential depth = 2

R1

Figure 1: An example of controllability/observability enhancement strategy

is estimated as follows:

H =
X

i

Area(Vi) +
X

j

Len(Aj)�Wid(Aj);

where

� Area(Vi) is the area cost of the module corre-
sponding to a data path node Vi.

� Len(Aj) is the length of the connection represent-
ed as a data path connection Aj .

� Wid(Aj) is the width of the connection represent-
ed as Aj, which is the bit width of the connection
multiplied by a given weighted factor.

Based on the above estimations, when a pair of
modules or registers is merged, �E is equal to the in-
crease in the critical path length and correspondingly
�H is equal to the increase in data path area cost.

4.3 Operation scheduling

As pointed out before, when two modules are
merged, the operations executed on these modules
must be scheduled in di�erent control steps so that
they can share the same component. Similar for reg-
isters, the variables stored in these registers must be
disjoint. We will present the rescheduling transfor-
mation which is performed by a merge-sort algorithm
based on a controllability/observability enhancement
strategy. These transformations change locally the ex-
ecution orders of some operations in the current sched-
ule in order to improve the testability and satisfy the
scheduling constraints imposed by the merger.

4.3.1 Rescheduling by module merger

Suppose we would like to merge two modules mi

and mj . Assume the s operations scheduled for ex-
ecution in module mi are oi1 ; oi2; � � � ; ois and t op-
erations scheduled for execution in module mj are
oj1 ; oj2 ; � � � ; ojt. Let us �rst consider the simplest case
where s = t = 1, then operations oi1 and oj1 must be
scheduled in di�erent control steps for execution. If
they have been scheduled already in di�erent control
steps, we do not need to introduce any scheduling con-
straints. Otherwise, we have to consider two possibili-
ties: (1) execute oi1 before oj1 , or (2) execute oj1 before
oi1 . To decide the order, we can use the controllability
and observability enhancement strategy suggested by
Lee et al. [6]. They propose an e�ective allocation rule
for good testability:

� SR1: reduce the sequential depth from a control-
lable register to an observable register.

We will arrange the order of oi1 and oj1 , to support
the application of SR1 using the following rule:

� SR2: schedule operations to support the applica-
tion of SR1.

These two heuristic rules are called controllabili-
ty/observability enhancement strategy. If these two
rules can not be applied, we will select the pair which
results in the smallest increase in the length of the crit-
ical path of data path. Rescheduling is performed by
introducing dummy control steps (places in Petri net)
[14] if necessary so as to change the default scheduling
of operations.

In Figure 1, we give an example to illustrate these
heuristic rules. Suppose register R1 is used for vari-
ables w and x, R2 for variables v, y and z, and R3
for s and u as described in Figure 1(a). Also suppose
we want to merge operation nodes N1 and N2. Since
they are in the same control step, we have to introduce
a scheduling constraint. If we take the execution or-
der N1 before N2 as described in Figure 1(b), where we
reschedule operation node N2 to the next step. The se-
quential depth from register R1 to R2 is reduced from
2 to 1 by sharing nodes N1 and N2.

For the general case in which operations
oi1 ; oi2 ; � � � ; ois are scheduled for execution in module
mi and oj1 ; oj2; � � � ; ojt for execution in module mj ,
respectively, we know that there is a sequential order
among oi1 ; oi2 ; � � � ; ois because they already share the
module mi. Without loss of generality, we assume
the order to be oi1 ! oi2 ! � � � ! ois . Similarly,
let the sequential order for operations in module mj

to be oj1 ! oj2 ! � � � ! ojt . The main goal is to
merge these two sequential orders into one. First we
examine the pair of operations oi1 and oj1 using the
controllability/observability enhancement strategy to
decide the most suitable order for testability. Then we
decide the rest using a merge-sort heuristic to achieve
a single execution order for testability.

4.3.2 Rescheduling by register merger

With regards to the scheduling constraints imposed
by a register merger, we can use a similar merge-sort
algorithm helped with the controllability and observ-
ability enhancement strategy. For this case, we sup-
pose we want to merge two registers ri and rj. Let
vi1 ; vi2 ; � � � ; vis denote the s variables which are stored
in register ri and vj1 ; vj2 ; � � � ; vjt denote the t variables
which are stored in register rj. Let us also �rst consider
the simplest case where s = t = 1, then the operations
which determine the lifetimes of variables vi1 and vj1
must be scheduled in a way that the lifetimes of vi1
and vj1 do not overlap.

First we should examine whether some operations,
which determine the lifetime of vi1 and vj1 , have been
scheduled to be executed in a certain order. Based
on our observations, it is very natural to check �rst
whether these operations are scheduled such that two
lifetimes are never disjoint. There are two cases: (1)
there are two arcs, one is from some of the operations
that determine the lifetime of vi1 to the operations that
determine the lifetime of vj1 , the other is from some
of the operations that determine the lifetime of vj1 to
the operations that determine the lifetime of vi1 . or
(2) there is an operation which uses both of the value

u N15 v N16 3 N21 z N17 5 N26 y N18

 * N21
* N22 - N25 + N30

* N24
* N28

- N27

- N29

x w

a b b d

u

c

e

f

Figure 2: The schedule for the Ex benchmark

of vi1 and vj1 as inputs.

If both cases do not hold, a scheduling constraint to
ensure that the lifetime of vi1 and vj1 will be disjoint is
added to the representations. If there are no arcs be-
tween any of the operations which determine the life-
time of vi1 and any of the operations which determine
the lifetime of vj1 , we consider two possibilities: (1)
variable vi1 expire before variable vj1 is created. (2)
variable vj1 expire before variable vi1 is created. Our
algorithm selects, between the two possibilities, the
one which results in a shorter sequential depth from
a controllable register to an observable register based
on the controllability and observability enhancement
strategy described above.

For the general case in which variables
vi1 ; vi2 ; � � � ; vis and vj1 ; vj2 ; � � � ; vjt share registers
ri and rj , respectively, the procedure for adding
lifetime disjoint arcs is similar to that of the case of
module merger.

5 Experimental Results

We have tested our synthesis algorithmmanually on
Di�eq [12], DCT [5], Ex [6, 7], EWF [6, 7], Paulin [12]
and Tseng [16] benchmarks with di�erent parameters
k, �, � carried out on MentorGraphics. We also have
compared the experimental results concerning control
steps, module and register allocation, and numbers of
multiplexers with the schedule and allocation schemes
produced by other approaches. The selected results
(due to the space limitation) are summarized in Table
1, 2 and 3, where the rows denoted Approach 2 are
results produced by Lee's algorithm [6, 7]. The rows
denoted Approach 1 present results given by the force-
directed scheduling (FDS) [11] without testability con-
sideration followed by the same allocation algorithm as
in Approach 2 [7]. The last results are generated by

p1 N20 p2 N21 p3 N22 p4 N23

+ N27 - N28 + N29 - N30

* N31 * N33 + N37

* * N40 * N38

+ N44 + N43 + N42

2 2

2 2
2

a

b

c
b d

d

h

e f

g j j i

q2 q3 q4

N35

(a) The Dct benchmark

xin N5

N1
x N11

dx N2 3

uin N7

u N13

yin N6

y N12

+ *

* *

* -

+ -

youtu1
N16y1

 N15C1N31C1N30

a

<

N9

y u

b

a1

c

u

g

d

fe

3

N10
uoutx1

N14
x

xout
N8

N28 N32

N24 N25

* N27
N26

N29 N31

N35 N30 * N33

N36 N34

(b) The Di�eq benchmark

Figure 3: The schedules for Dct and Di�eq benchmarks

the CAMAD high-level synthesis system [14] without
testability consideration. The corresponding fault cov-
erage, test generation time, test generated cycle for 4,
8, 16-bit implementations and area (hardware cost) are
compared. Our main experimental results are based
on the chosen parameters which achieve the same al-
location and scheduling where (k; �; �) are equal to
(3; 2; 1), (3; 10; 1) and (3; 1; 10) respectively for 4, 8, 16-
bit implementations. From the following experimental
descriptions, it seems that the chosen parameters do
not inuence so much the �nal results.

The �rst area-optimized benchmark, denoted as Ex,
shows the e�ect of scheduling and allocation on testa-
bility in term of fault coverage, test generation time,
and test generated cycle in Table 1. Figure 2 shows the
schedule after our synthesis algorithm for this bench-
mark. In Figure 2, since operation node pairs for ex-
ample, (N21, N24), (N22, N28), and (N25, N27, N29),
can share the same ALU and are scheduled in di�er-
ent control steps, they can be merged to a common
functional module respectively. Correspondingly those
variable pairs such as, (a, c, x), (b, f, v), (d, e, z) and
(y, w) can also share the same register respectively.
We can see that for the 4, 8, 16-bit implementations,
our synthesis algorithm can result in Ex benchmark
the highest fault coverage with smaller total test gen-
eration time. In addition, an interesting observation
is that our synthesis approach requires fewest registers
as Approach 2.

The second selected example, denoted as Dct, is
taken from a portion of an 8-point DCT signal ow
graph. The experimental results on the area-optimized
benchmark compared with other approaches in term

of fault coverage, test generation time, area (hard-
ware cost), and test generated cycle are given fully for
4, 8, 16-bit implementations in Table 2. Figure 3(a)
shows the schedule after our synthesis algorithm for
this benchmark. In Figure 3(b), since the operation
nodes in the groups, (N31, N40), (N33, N38), (N27,
N44), and (N29, N37, N43), can share the same ALU
and are scheduled in di�erent control steps, they can
be grouped into a common functional module respec-
tively. Similarly the variables in the groups, (a, j, q2),
(c, h, q3), (f, p1), (e, p2), (b, i, p3) and (d, g, p4,
g4) can also share the same register respectively. We
also can observe that the schedule and allocation pro-
duced by our synthesis algorithm achieve better fault
coverage and area (hardware cost) with shorter test
generation time than other approaches listed in Table
2.

The third selected example is the benchmark Dif-
feq. Figure 3(b) depicts its schedule determined by
our proposed synthesis algorithm. Table 3 also shows
the experimental results for the area-optimized bench-
mark concerning fault coverage, test generation time,
area (hardware cost) and test generated cycle where
the bit width of the data path are 4, 8 and 16 bits re-
spectively. In Figure 3(a), since the operation nodes in
the groups, (N26, N31, N35), (N27, N29, N33), (N25,
N36), and (N30, N34), can share the same ALU and
are scheduled in di�erent control steps, they can be
grouped into a common functional module respective-
ly. Similarly the variables of the groups, (u, u1, e), (x,
a1, d, g), and (y1, b, c, f), can also share the same
register respectively. With the same module alloca-
tion and scheduling but di�erent register allocation,

Table 1: Experimental results on the area-optimized Ex benchmark

Different Module Register
#Mux #Bit

Fault Test Test
Synthesis allocation allocation coverage generation time generated cycle

CAMAD

(*): N21, N22 R: a, R : b

4

4 81.27% 27 1081
: N24, N28 R: c, R : d

(�): N25, N27 R: e, R : f
8 89.89% 81 912

: N29, N30 R: u, R : v
R: w, R : x

16 93.74% 279 691
R: y, R : z

Approach 1

(*): N21, N24 R: d, f, x

10

4 86.41% 24 707(*): N22, N28 R: b, y
(-): N25, N27, N29 R: v

8 90.87% 74 943
(+): N30 R: a, c, e, w

R: u
16 92.58% 191 1070

R: z

Approach 2

(*): N21, N24 R: y, d, f, x

10

4 88.19% 11 824
(*): N22, N28 R: w
(-): N25, N27, N29 R: u

8 92.49% 37 1654
(+): N30 R: a, c, e, v

R: b, z
16 93.91% 115 1054

Ours

(*): N21, N24 R: a, c, x

10

4 90.66% 13 366
(*): N22, N28 R: u
(-): N25, N27, N29 R: b, f,v

8 94.48% 43 1383
(+): N30 R: d, e, z

R: y, w
16 96.11% 112 1122

our synthesis algorithm produces the design not only
with fewer registers and area (hardware cost) but also
with better testability properties such as fault coverage
and shorter test generation time.

6 Conclusion

In this paper, we present a high-level test synthesis
system which carries out the scheduling and allocation
tasks in an integrated fashion. A data path alloca-
tion, namely controllability/observability balance allo-
cation technique which is based on testability analysis
at register-transfer level is proposed. Contrary to oth-
er works in which the scheduling and allocation tasks
are performed independently, our approach introduces
scheduling constraints imposed by the data path allo-
cation and performs them simultaneously so that the
e�ects of scheduling and allocation on testability are
exploited more e�ectively. Experimental results eval-
uating our algorithm on benchmarks are given and in-
dicate that our algorithm produces good designs with
respect to testability and hardware costs.

References
1. L. Avra. Allocation and assignment in high level synthesis

for self-testable data paths. In Proceedings of the Interna-

tional Test Conference, pages 463{472, 1991.

2. M. L. Flottes and B. Rouzeyre. Testability driven synthesis
of non-scan data pths. In IEEE European Test Workshop,
pages 136{142, Montpellier, France, 1996.

3. X. Gu, K. Kuchcinski, and Z. Peng. Testability analysis and
improvement from VHDL behavioral speci�cations. In Pro-
ceedings of the European Design Automation Conference

with EURO-VHDL, 1994.

4. T. Kim. Scheduling and allocation problems in high level

synthesis. PhD thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1993.

5. G. Krishnamoorthy and J. A. Nestor. Data path allocation
using an extended binding model. In Proceedings of the

Design Automation Conference, pages 279{284, June 1992.

6. T. C. Lee, W. H. Wolf, and N. K. Jha. Behavioral synthesis
for easy testability in data path scheduling. In Proceed-

ings of the International Conference on Computer-Aided

Design, pages 616{619, 1992.

7. T. C. Lee, W. H. Wolf, N. K. Jha, and J. M. Acken. Behav-
ioral synthesis for easy testability in data path allocation. In
Proceedings of the International Conference on Computer

Design, pages 29{32, 1992.

8. A. Mujumdar, R. Jain, and K. Saluja. Incorporating testa-
bility considerations in high level synthesis. Journal of Elec-
tronic Testing: Theory and Applications, 5:43{55, 1992.

9. C. A. Papachristou. Rescheduling transformation for high
level synthesis. In Proceedings of the International Sympo-

sium on Circuits and Systems, pages 766{769, 1989.

10. C. A. Papachristou, S. Chiu, and H. Harmanani. A data
path synthesis method for self-testable designs. In Proceed-

ings of 28th Design Automation Conference, pages 378{384,
1991.

11. P. G. Paulin and J. P. Knight. Forced-directed scheduling
for the behavioral synthesis of ASIC's. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Sys-

tems, 8:661{678, June 1989.

12. P. G. Paulin, J. P. Knight, and E. F. Girczyc. HAL: a multi-
paradigm approach to automatic data path synthesis. In
Proceedings of Design Automation Conference, pages 263{
270, June 1986.

13. Z. Peng. High-level test synthesis using design transfor-
mations. The 2nd International Test Synthesis Workshop,
1995. Santa Barbara.

14. Z. Peng and K. Kuchcinski. Automated transformation
of algorithms into register-transfer level implementations.
IEEE Transactions on Computer-Aided Design of Integrat-

ed Circuits and Systems, pages 150{166, 1994.

15. J. Peterson. Petri Net Theory and the Modeling of System.
Prentice-Hall, Englewood Cli�s, New Jersey, 1981.

16. C. Tseng and D. P. Siewiorek. Automated synthesis of data
path in digital systems. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 5:379{395,
July 1986.

Table 2: Experimental results on the area-optimized Dct benchmark

Different Module Register
#Mux #Bit

Fault Test Test
AreaSynthesis allocation allocation coverage generation time generated cycle

CAMAD

(*): N31, N33 R: a, R : b

4

4 70.44% 49 846 0.607mm2: N35, N38 R: c, R : d
: N40 R: e, R : f

R: g, R : h
8 81.60% 121 841 1.488mm2(�): N27, N28 R: i, R : j

: N29, N30 R: p1, R : p2
: N37, N42 R: p3, R : p4

16 85.00% 785 604 3.320mm2: N43, N44 R: q2, R : q3
R: q4,

Approach 1

(*): N31, N35 R: c, f, p1, q3

14

4 88.96% 32 552 0.592mm2(*): N33, N38 R: p2
(*): N40 R: d, h, j, q2
(+): N27, N37 R: g, p3

8 95.15% 52 2902 1.388mm2: N44 R: a, b, e, q4
(+): N29, N43 R: i, p4
(+): N42

16 94.73% 286 10283 2.634mm2(-): N28
(-): N30

Approach 2

(*): N31, N35 R: a, e, p1, q4

14

4 91.73% 16 602 0.575mm2(*): N33, N38 R: b,h,j,p2,q2
(*): N40 R: d, i, p4
(+): N27, N37 R: g, p3

8 93.36% 110 1088 1.363mm2: N44 R: c, f, q3
(+): N29, N43
(+): N42

16 96.11% 177 8149 2.584mm2(-): N28
(-): N30

Ours

(*): N31, N40 R: a, j, q2

14

4 93.13% 16 802 0.571mm2(*): N33, N38 R: c, h, q3
(*): N35 R: f, p1
(+): N27, N44 R: e, p2

8 96.01% 47 2278 1.336mm2(+): N29, N37 R: b, i, p3
: N43 R: d, g, p4, q4

(+): N42
16 96.99% 118 6753 2.531mm2(-): N28

(-): N30

Table 3: Experimental results on the area-optimized Di�eq benchmark

Different Module Register
#Mux #Bit

Fault Test Test
AreaSynthesis allocation allocation coverage generation time generated cycle

CAMAD

(*): N26, N27 R: dx, R : x

7

4 72.40% 143 304 0.573mm2: N29, N31 R: y, R : u
: N33, N35 R: u1, R : a1

R: e, R : g
8 87.15% 311 2321 1.366mm2(�): N25, N30 R: x1, R : y1

: N34, N36 R: b, R : c
R: f, R : d

16 88.40% 2091 1827 3.064mm2(<): N24

Approach 1

(*): N26, N31 R: y1, b, d, g

13

4 90.51% 9 350 0.559mm2: N35 R: x, x1
(*): N27, N29 R: dx

: N33 R: u1, a1, c, f
8 92.79% 49 959 1.161mm2(+): N25, N36 R: u, e

(-): N30, N34 R: y
(<): N24

16 94.11% 162 676 2.124mm2

Approach 2

(*): N26, N31 R: x, y1, b,d,g

12

4 91.11% 15 504 0.521mm2: N35 R: x1
(*): N27, N29 R: dx

: N33 R: u1, a1, c, f
8 95.56% 55 920 1.112mm2(+): N25, N36 R: u, e

(-): N30, N34 R: y
(<): N24

16 94.64% 164 1546 2.150mm2

Ours

(*): N26, N31 R: u, u1, e

12

4 95.28% 11 510 0.470mm2: N35 R: x, a1, d, g
(*): N27, N29 R: y

: N33 R: y1, b, c, f
8 97.31% 46 982 1.054mm2(+): N25, N36 R: x1

(-) : N30, N34
(<): N24

16 99.79% 141 1663 2.045mm2

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

