
Scheduling and Module Assignment for Reducing BIST Resources�

Ishwar Parulkar, Sandeep K. Gupta and Melvin A. Breuer

Department of Electrical Engineering - Systems

University of Southern California

Los Angeles, CA 90089-2562.

Abstract

Built-in self-test (BIST) techniques modify func-

tional hardware to give a data path the capability

to test itself. The modi�cation of data path regis-

ters into registers (BIST resources) that can generate

pseudo-random test patterns and/or compress test re-

sponses, incurs an area overhead penalty. We show

how scheduling and module assignment in high-level

synthesis a�ect BIST resource requirements of a data

path. A scheduling and module assignment procedure is

presented that produces schedules which, when used to

synthesize data paths, result in a signi�cant reduction

in BIST area overhead and hence total area.

1 Introduction
Built-in self-test (BIST) techniques involve the

modi�cation of the hardware on the chip such that
the chip has the capability of testing itself. How to
reduce the BIST area overhead without sacri�cing the
quality of the test is an important research problem
for test engineers. A typical data path consists of
registers and functional modules, such as adders and
multipliers that are selected from a pre-designed li-
brary, and an interconnection network of multiplexers.
One cost-e�ective BIST technique for such data paths,
called partial intrusion BIST, involves modifying ex-
isting functional registers to generate and supply test
patterns and to collect and compress test responses
on-chip [1].

Previous research has focused on incorporating
BIST resource considerations only during the assign-
ment phases of high-level synthesis [2],[3],[4],[5]. The
objectives of synthesis algorithms in all these ap-
proaches were variations on the common theme of max-
imizing sharing of registers as BIST resources and min-
imizing number of expensive BIST resources required

�This work was supported by the Advanced Research

Projects Agency and monitoredby the Departmentof the Army,

Ft.Huachuca, under Contract No. DABT63-95-C-0042. The in-

formation reported here does not necessarily re
ect the position

or the policy of the Government and no o�cial endorsement

should be inferred.

for a data path. All approaches assumed that a sched-
uled data
ow graph was available. Harris et al. pre-
sented a scheduling technique that improved test con-
currency and hence the test time required to test a
data path using partial intrusion BIST [6]. The e�ect
on the number of BIST resources was not considered in
this work. In this paper, we present a scheduling and
module assignment technique that produces schedules,
which when used to synthesize data paths, result in
smaller number of BIST resources and low BIST area
overhead. The e�ect of scheduling of operations on
the module assignment and the sharing capability of
BIST resources between various modules is studied. In
[7], a theory for lower bounds on BIST resources for
scheduled data
ow graphs is presented. The theory
has been extended to derive testability metrics that
are used as costs to guide the proposed scheduling and
module assignment algorithm. Experimental results
indicate that schedules generated using our technique
lead to data paths with better BIST solutions as com-
pared to data paths synthesized using other schedules.
When the proposed scheduling technique is followed by
register assignment that can take advantage of sharing
potential of BIST resources, further savings in BIST
area are obtained.

2 Motivation

2.1 Minimal Intrusion BIST

BIST area overhead concerns can be addressed after
synthesis by using minimal intrusion BIST. In minimal
intrusion BIST, only a subset of the functional registers
are used in the test mode. The registers are selected
such that all functional modules are tested and the
area overhead for modi�cation of the registers is min-
imum. The rest of the data path is tested using func-
tional tests. The combination of testing modules with
pseudo-random patterns and the rest of the data path
with functional patterns ensures a high fault coverage
testing scheme at very low cost. Note that in this min-
imal intrusion BIST methodology the test resources
and paths used to generate, transport and collect test

data are a subset of the functional data path. No addi-
tional data path components are added for the purpose
of testing. In the test mode, some of the registers in the
data path are recon�gured to support test pattern gen-
eration, some to support signature analysis, and some
to perform both of these test functions. Depending on
the test function required, four di�erent types of BIST
resources can be designed: 1) test pattern generation
capability only (TPG), 2) test response compression
or signature analysis capability only (SA), 3) test pat-
tern generation and response compression capability
at di�erent times (BILBO), and 4) simultaneous test
pattern generation and response compression capabil-
ity (CBILBO).

Consider a typical data path as shown in Fig. 1(a).
Any register that is connected to an input port of a
module through only multiplexers is a candidate for
supplying test patterns to that input port. Similarly
any register that collects data from the output port
of a module through only multiplexers is a candidate
to compress test responses. Fig. 1(b) shows such can-
didate registers for the adder. One choice of BIST
resources for the adder is denoted by highlighted reg-
isters and paths. The type of BIST register is deter-
mined by the function the register performs.

Generally, there are many choices of BIST resources
for testing a module. Fig. 1(c) shows an alternate se-
lection of BIST resources for the adder. This choice
is better than the one in Fig. 1(b), because R3 and
R6 can be shared as test resources with the multiplier
resulting in fewer BIST resources for the whole data
path, as shown in Fig. 1(d). Note that the multiplier
and adder have to be tested in di�erent sessions since
their test paths to R6 lie along the same multiplexer.
For minimizing BIST area overhead, a data path is an-
alyzed globally to determine BIST registers from the
various choices for each module such that all modules
are tested with a minimum total BIST register over-
head [9]. We have formulated a 0-1 ILP that models
the problem of �nding a minimal intrusion BIST solu-
tion [10].

Once a data path is synthesized there is limited free-
dom in sharing test resources. From Fig. 1(d) it can
be seen that R1 and R5 are dedicated BIST resources
for the multiplier and adder, respectively, and can-
not be shared. Traditional synthesis techniques syn-
thesize data paths without any consideration of how
input registers or output registers of modules can be
shared between modules. If the same behavior is syn-
thesized taking into account BIST resource consider-
ations, the synthesized data path may require fewer
such resources.

•

•

R1

R2
R5R4

R6

R3

✖ ✚
L R L R

(a)

✚

R3 R4

R6

L R
R2

R5

(b)

✚

R6

L R
R2

R3 R4 R5

•R1

R2
R5R4

R6

R3

✖ ✚
L R L R

(d)

•

(c)

Figure 1: Minimal intrusion BIST

2.2 Scheduling and BIST Resources

Assignment techniques that synthesize data paths
with the objective of minimizing BIST registers
required for a BIST solution have been devel-
oped [3],[4],[5]. Here a scheduled data
ow graph and a
module assignment is assumed. The schedule and the
module assignment that depends on the schedule have
a signi�cant e�ect on BIST resources of a data path.
In behaviors where there is limited freedom for opti-
mization of BIST resources in the register assignment
phase, it is bene�cial to consider more alternatives dur-
ing the scheduling and module assignment phases.

For a scheduled data
ow graph (DFG), two vari-
ables can be assigned to the same register only if their
lifetimes do not overlap. Consider the schedule and
module assignment shown in Fig. 2(a). Registers to
which variables b; c; a and f are assigned are candi-
dates for test pattern generators for module A1 and
registers to which variables d and e are assigned are
candidates for test pattern generation for A2. Because
of the lifetimes of these variables, variables d and e

have overlapping lifetimes with all the input variables
of A1. Hence A1 and A2 will require separate test pat-
tern generators, irrespective of the register assignment
chosen. Similarly variable g, the output variable of A2

overlaps with both the output variables of A1 which
results in separate registers for test response compres-
sion of A1 and A2. Note that the data path to the
right shows one possible partial register assignment
that corresponds to the best BIST solution. Now, if
operation +3 is scheduled in control step 2 instead of
control step 3, the lifetimes of the variables change. In

this case shown in Fig. 2(b), variable f which is an
output variable of A1 does not overlap with variable g
which is an output variable of A2 and they can be as-
signed to the same register as shown in the data path
to the right. This register assignment enables the shar-
ing of one register for compressing test responses of A1

and A2 resulting in savings in BIST resources. Note
that the sharing of test pattern generators cannot be
improved in this case. In Fig. 2(c), +3 is scheduled
in control step 2 as in Fig. 2(b). However operation
+2 is scheduled in control step 1 instead of 2 so that a
di�erent module assignment is possible. For the sched-
ule in Fig. 2(c), +2 and +3 are assigned to A2. Now,
output variables of A1 and A2, namely f and h, can
be assigned to the same register. Also, an input vari-
able of A1, namely c, can be assigned to the same
register as input variable f of A2. Thus a register as-
signment as shown in the data path to the right can
be achieved, which results in only 3 registers for test
pattern generation and 1 register for test response com-
pression. Fig. 2(b) and (c) demonstrate how schedul-
ing and module assignment can a�ect BIST resources.
Choosing an appropriate schedule and module assign-
ment creates possibilities for register assignment that
can be exploited by an algorithm such as [5] to further
minimize BIST area overhead.

3 Scheduling and Module Assignment

Algorithm
The behavioral description to be synthesized is as-

sumed to be given in the form of a data
ow graph G =
(V;E), where V is the set of operations fo1; o2; :::; ojVjg

and E is the set of variables (operands and results
of the operations). A schedule of G is a mapping
S : V ! f1,2,...,Lg where for operation oi 2 V; S(oi)
corresponds to the control step in which oi is sched-
uled. A valid schedule is one in which (oi; oj) 2 E)

S(oi) < S(oj). L is called the latency of the sched-
ule. The as-soon-as-possible value ASAPi of an oper-
ation oi is the earliest control step in which oi can be
scheduled and the as-late-as-possible value ALAPi of
an operation oi is the latest control step in which oi

can be scheduled. The mobilityM(oi) of an operation
oi is the interval [ASAPi; ALAPi], and the slack of an
operation oi is slack(oi) =jM(oi) j �1.

A module assignment of a scheduled DFG is de-
�ned as �M : V ! M where M is a set of modules
fM1;M2; :::;Mmg. Associated with each module is a
type of operation it can perform, such as addition or
multiplication. Two operations can be assigned to the
same module only if they are scheduled in di�erent
control steps and if they are of the same type.

In the previous section, we have shown how schedul-

R2

A2A1

c,...

R6R5 f,... g,...

R4R3

e,...

R5 f,g,...

1

2

3

a

A1

A2

+1

+3

+2

1

2

3

+2

b c d e

f

g

h

a b c d e

A1 A2

f

gh

1

2

3

+2

a b c d e
A1

A2f
g

h

A2A1

R2 f,h,...

R2R1

b,...
R3

c,f... d,...

(a) SCHEDULE 1, MODULE BINDING 1

(b) SCHEDULE 2, MODULE BINDING 1

(c) SCHEDULE 3, MODULE BINDING 2

R2R1

A1

b,... c,...

A2

R4R3

d,... e,...

R1

b,... d,...

+3

+1

+1

+3

Figure 2: E�ect of scheduling and module assignment
on BIST resources

ing and module assignment can a�ect the number of

BIST resources for a data path. In general, di�er-
ent schedules and module assignments that have a de-
sirable latency and functional area can di�er signi�-
cantly in their BIST resource requirement. We propose
a scheduling and module assignment approach that
constructs schedules and assign operations to modules
such that the desirable latency and functional resource
constraints are met and the BIST area overhead is low.
It has been shown that scheduling and module binding
simultaneously results in a more e�cient exploration
of the design space [11]. Our approach has two phases:
1) adding temporal testability constraints between se-
lected operations, and 2) performing scheduling and
module assignment of each operation in the DFG with
the modi�ed constraints. In Phase 1, pairs of opera-
tions oi and oj are selected such that it is bene�cial
(in terms of BIST area overhead) for the operations
to execute in di�erent control steps and be assigned

to di�erent modules. The scheduling of such opera-
tions is constrained to occur in di�erent control steps
by adding a temporal constraint (an edge in the DFG)
between the operations. Phase 1 can be viewed as
coarse scheduling, where only concurrency and sequen-
tiality of operations is in
uenced but the exact control
step is not assigned. In Phase 2, detailed scheduling is
performed where each operation is assigned to a con-
trol step and to a module taking into account the con-
straints added in Phase 1. Scheduling is followed by
register and interconnect assignment to synthesize the
�nal data path. After synthesis, BIST resources cor-
responding to a minimum area overhead are selected.

3.1 Phase 1: Adding Temporal Con-
straints (Coarse Scheduling)

A schedule induces a temporal sequence on opera-
tions. Operations that are executed sequentially can
share functional modules. Sequentiality of operations
is thus bene�cial to minimizing functional resources
and desirable when the objective is to minimize func-
tional area.

De�nition 1 The storage concurrency of a set of

variables Q, SC(Q), is the maximum number of vari-

ables in Q alive at the same time.

The input and output variables of a pair of sequential
operations have a high possibility of non-overlapping
lifetimes (low SC) and hence a high possibility of be-
ing assigned to the same register. Hence if sequential
operations are distributed across modules (as opposed
to sharing modules) then BIST resources and area
overhead can be minimized since there is a better pos-
sibility of synthesizing common BIST resources. We
introduce the concepts of strictly sequential, strictly

concurrent and weakly sequential (or weakly concur-

rent) pairs of operations for an unscheduled DFG. Two
operations are called strictly sequential if they have
to be scheduled in di�erent control steps for all valid
schedules with minimum latency (Lmin), and they are
called strictly concurrent if they have to be scheduled
in the same control step for all valid minimum latency
schedules. Weak sequentiality, on the other hand, im-
plies that it is possible but not necessary to schedule
the two operations in the same control step for a mini-
mum latency schedule. In the DFG shown in Fig. 3(a),
operations �1 and �3 are strictly sequential, operations
�1 and �2 are strictly concurrent, and operations �5
and +1 are weakly sequential.

The temporal (order of execution) and spatial (as-
signment to modules) relationships of a pair of opera-
tions determines the nature of the data path as shown
in the Table 1. Two operations executing in the same

Table 1: Temporal-spatial relation of operations

Control steps

Modules Same Di�erent

Same - Does not a�ect
BIST resources

Di�erent I/O variables I/O variables
have high SC have low SC

(cannot share (can share

BIST resources) BIST resources)

control step cannot be assigned to the same module.
The other three cases are functionally possible. If two
operations are strictly concurrent, they fall in the �rst
column (same control step) and BIST resource reduc-
tion is not possible. Strict sequentiality falls in the
second column (di�erent control steps). If minimum
latency is desired, the
exibility in scheduling cannot
be utilized to change the relationship between strictly
concurrent or strictly sequential pairs of operations.
Strict sequentiality, however, can be leveraged to re-
duce test resources by deciding an appropriate control
step and assigning the operations to di�erent mod-
ules. This �ne (i.e. detailed) scheduling is addressed
in Phase 2. The case of interest in Phase 1 is weak se-
quentiality which spans the whole table. Weak sequen-
tiality can be exploited and the
exibility in scheduling
can be used to add temporal constraints so that the op-
erations fall in the second column. Phase 2 can then
take advantage of the constraints to push the opera-
tions in the direction of the lower right hand box in
Table 1.

A temporal constraint is a special edge added be-
tween two operations to ensure that they are sched-
uled in di�erent control steps. In Phase 1 of our ap-
proach, pairs of weakly sequential operations are iden-
ti�ed and testability temporal constraints are added
to selected pairs. The minimum latency of the DFG is
not a�ected by adding temporal constraints between
weakly sequential operations. The number of registers
required for the DFG is also not a�ected because it has
been shown to be insensitive to di�erent schedules [12].
But two other e�ects need to be considered: 1) e�ect
on the mobility of other operations, and 2) e�ect on
the number of modules required. For a weakly sequen-
tial pair of operations, the e�ect of adding a temporal
constraint on the mobility of other operations is quan-
ti�ed as the total change in slack of operations, �slack.
All weakly sequential operation pairs are considered in
an increasing order of the value of �slack. If a tem-
poral constraint between a pair of operations violates
the constraint on the number of modules, the pair is

+
*2

1
[1,1]

[2,2]

[3,3]

[4,4]

[1,2]

[2,3]

[1,3]

[2,4]

[1,4]

[1,1]

(a)

*3 *4

*5
*6

*1

+22-

1-

*2
[1,1]

[2,2]

[3,3]

[4,4]

[1,2]

[2,3]

[1,3]

[2,4]

[1,1]

*3 *4

*5

*6

*1

+2

2-

1-

[3,4]

(b)

+
*2

1
[1,1]

[2,2]

[3,3]

[4,4]

[1,2]

[2,3]

[1,3]

[1,4]

[1,1]

(c)

*3 *4

*5
*6

*1

+22-

1-

[3,4]

+
*2

1
[1,1]

[2,2]

[3,3]

[4,4]

[1,2]

[3,3]

[1,1]

[1,4]

[1,1]

(d)

*3 *4

*5
*6

*1

2-

1-

[2,2]

+1

+2

Figure 3: Phase 1 - Adding temporal constraints

dropped from consideration. Of the remaining candi-
dates, a pair is selected such that it is most bene�cial
for reducing BIST resources. Note from Table 1 that
operations in the lower right hand box of the table are
most bene�cial in this regard. Hence, candidate pairs
that have a high probability of being assigned to di�er-
ent modules are selected [10]. A temporal constraint
is added to a pair of operations selected in this man-
ner. The ALAP and ASAP values of all operations are
updated after addition of a temporal constraint.

Fig. 3 demonstrates addition of temporal con-
straints to the unscheduled DFG of the di�eq bench-
mark [14]. The [ASAPi; ALAPi] values of each oper-
ation oi are indicated in Fig. 3(a). Consider the pair
or weakly sequential operations (�5;+1). A temporal
constraint between these operations and the new mo-
bilities are shown highlighted in Fig. 3(b). The total
change in slack of operations, �slack, is 2. If a tempo-
ral constraint is added to the operation pair (�5;+2),
as shown in Fig. 3(c), �slack = 1 and hence this con-
straint is preferred. Note that a temporal constraint
has a preferred precedence relationship. The tempo-
ral constraint in Fig. 3(c) with the opposite prece-
dence relationship is shown in Fig. 3(d). In this case,
�slack = 5. This constrains the schedule severely and
hence the precedence order in Fig. 3(c) is preferred.

3.2 Phase 2: Detailed Scheduling and
Module Assignment

The proposed scheduling procedure of Phase 2 is
based on classical list scheduling techniques [11]. List
scheduling techniques are widely used in high-level
synthesis because of low computation complexity and
near-optimum solutions. We use the slack of an op-
eration as the priority function in picking an opera-
tion to be scheduled since we desire minimum latency
schedules. In addition to assigning operations one by
one to a control step, the procedure simultaneously
assigns them to the available modules. The types of
modules and the number of instances of each type can
be computed before scheduling and are known to the
procedure.

INPUT: DFG, Lmin and M = fM1;M2; :::;Mmg

Step 1: Pick an unscheduled oi with least slack

Step 2: Find all possible tuples Tj =<CStep;Mod>

s.t. oi can be assigned control step CStep

and module Mod

Step 3: For each tuple Tj s.t. Mod already

has an operation assigned to it
Step 3.1: Calculate Cost(Tj)

Step 4: If there exists Tj s.t. Cost(Tj) is positive

Step 4.1: then select Tj with highest cost

Step 4.2: else select Tj s.t. Mod has

no operation assigned to it
Step 5: Assign oi to selected Tj

Step 6: Go to Step 1

Procedure for Phase 2 - Schedule and Assign()

The procedure is iterative and at every step from
the operations that have not yet been scheduled and
assigned, an operation oi with the smallest slack is
selected. The set of all control step and module as-
signment tuples (Tj = < CStep;Mod >) is then de-
termined such that oi can be scheduled in control
step CStep and assigned to module Mod from the set
of available modules M = fM1;M2; :::;Mmg. Note
that while considering such tuples for oi, other oper-
ations have already been scheduled and assigned to
modules. A cost function, Cost(Tj), is computed for
each tuple Tj to determine the control step and the
module to which the operation should be assigned.
Cost(Tj) has two components. The primary compo-
nent of the cost is �BIST , the decrease in BIST area
overhead corresponding to the assignment as de�ned
by the tuple. A decrease in the number of BIST

resources can adversely a�ect the multiplexing com-
plexity [10]. Hence another component of Cost(Tj) is
�MUX , the increase in multiplexer area correspond-
ing to the assignment de�ned by Tj. A tuple Tj is
chosen such that the decrease in BIST area overhead
after compensating for an increase in multiplexer area
(Cost(Tj) = �BIST � �MUX), is maximum. A de-
scription of �BIST is given next.

4 Estimating BIST Cost
Testability metrics based on the theory for lower

bounds on BIST resources [7] have been developed in
this work to guide the scheduling and module assign-
ment process. The metrics correspond to an estimate
of the best optimum BIST area overhead that can be
achieved.

De�nition 2 Given a scheduled DFG and a set of

modules fM1, M2,...,Mmg to which the scheduled op-

erations have been assigned, a maximal concurrent

operation set V i
Cmax

is a set of m operations, each

of which is assigned to a di�erent module.

Let IV ari be the set of input variables of all oper-
ations in V

i
Cmax

and OV ar
i be the set of output vari-

ables of all operations in V i
Cmax

. Since V i
Cmax

contains
exactly one operation from each module, the registers
to which variables of IV ari are assigned correspond
to a BIST solution, where these registers generate test
patterns for all modules in the data path. Similarly,
the registers to which the variables of OV arj have
been assigned correspond to one BIST solution where
these registers compress test responses of all modules.
The actual type of the BIST register is determined by
how the variables in IV ar

i [OV ar
j are distributed

across the BIST registers. It has been shown that

the lower bound on the number of registers required
to generate test patterns for all modules is given by
miniSC(IV ar

i) and the lower bound on the num-
ber of required to compress test responses is given by
miniSC(OV ar

i), where the minimum is over all max-
imal concurrent operation sets [7]. (Recall from De�-
nition 1 that SC is the minimum number of registers
required for a set of variables.) Let IV ari [OV ar

j

be denoted by TestV ar
i;j, the set of test variables.

For a given schedule and module assignment, each
TestV ar

i;j(1 � i; j � l, where l is the number of
maximal concurrent operation sets) corresponds to a
minimal intrusion BIST solution.

Estimation of BIST cost in Phase 2 is described next
using the unscheduled DFG in Fig. 4(a). The DFG re-
quires 4 modules to implement it - 2 multipliers M1

and M2, one subtractor M3 and one adder M4. Op-
erations �1; �2; �3;�1 and �2 have a slack of 0 for a

minimum latency schedule. Hence they get scheduled
in control steps 1, 1, 2, 3, and 4, respectively. Op-
erations �1 and �3 are assigned to multiplier M1 and
�2 to multiplier M2. The unscheduled operation �4
has a slack of 1 and is considered next. Assigning it
to control step 1 would require an additional multi-
plier, hence it is assigned to control step 2 and module
M2 (since �3 is already assigned to M1). The next
unscheduled operation is �5 and that case is shown in
Fig. 4(b). The possible tuples for �5 are T1 =<3;M1>

and T2 =< 3;M2 >. For T1, miniSC(IV ar
i) = 3,

miniSC(OV ar
i) = 1 and mini;jSC(TestV ar

i;j) = 4.
For tuple T2, miniSC(IV ar

i) = 2,miniSC(OV ar
i) =

1 and mini;jSC(TestV ar
i;j) = 3. Tuple T2 is prefer-

able since it corresponds to a data path with a smaller
requirement of BIST resources. Hence �5 is assigned to
control step 3 and moduleM2. Fig. 4(c) shows the next
scheduling step, that of scheduling operation +1. The
operation can be assigned only to the adder module
M4. However, there is a choice in terms of the control
step in which it can be scheduled. The possible tuples
are T1 =< 1;M4 >, T2 =< 2;M4 >, T3 =< 3;M4 >

and T4 =<4;M4>. Depending upon the tuple chosen
the lifetimes of the input and output variables of +1

change which in turn a�ects the BIST resources. For
T1, miniSC(IV ar

i) = 2 and miniSC(OV ar
i) = 2,

and for the rest of the tuples miniSC(IV ar
i) = 4 and

miniSC(OV ar
i) = 4. Hence tuple T1 is preferred and

+1 is scheduled in control step 1 and assigned to M4.

The actual cost function used in scheduling to se-
lect a tuple is a more accurate estimation of BIST
area overhead. The exact assignment of the vari-
ables is TestV ari;j to registers determines the num-
ber and type of BIST resources and hence the cost of
the BIST solution. Assuming complete
exibility in
register assignment, a lower bound lbBIST (i; j), corre-
sponding to TestV ari;j can be found. The minimum
of the lower bounds over all TestV ari;j gives a lower
bound on the optimum BIST solution of the �nal data
path. Using area overheads of BIST registers from the
component library, an accurate metric is used in the
scheduling algorithm [8]. The cost Cost(Tj) in proce-
dure Schedule and Assign(), corresponds to a decrease

in the BIST area overhead metric and hence a move
with a high cost is preferred. A detailed description
of the metric is beyond the scope of this paper and is
presented in [10].

5 Experimental Results
The proposed scheduling and module assignment

procedure has been integrated into the Stanford CRC
synthesis-for-test tool, TOPS [13]. To demonstrate the
use of the proposed scheduling technique in synthesiz-

+1

+1* *

*

* *1 2

3 4

51

2

a b c d e f g

i j

l m

n o

p

1

2

3

4

(b)

*

*

4

5

a b c d e f g h

i j q

m

n o

1

2

3

4

(c)

+
*

*

*

* *1 2

3

4

5

1

1

2

a b c d e f g h

i j

q

l m

n o

p

(a)

+1

+1

M1

M2

M3

1

2
p

M3

*1

3

l
*

M1
*2

M2

Figure 4: Phase 2 - Detailed scheduling and module assignment

ing data paths with low BIST area overhead, experi-
ments were conducted on the following benchmarks: 1)
the 2nd order di�erential equation - DIF, 2) the auto
regression �lter element - ARF, 3) an 8-point FIR �lter
- FIR, and 4) the elliptic wave �lter - EWF [14]. Dif-
ferent synthesis
ows were considered using combina-
tions of two scheduling techniques and two register as-
signment techniques shown in Table 2 - Flow I (SWT-
AWT), Flow II (SFT-AWT), and Flow III (SFT-AFT).

Table 3 shows the characteristics of all the synthe-
sized data paths. The module requirements used in
Flow II and Flow III that use the proposed SFT ap-
proach were derived from the requirements of Flow I. It
can be seen from the results that the latency, number
of functional modules and registers in all the three syn-
thesis
ows are preserved for all the benchmarks (the
exception is EWF in which case the number of reg-
isters decreases in Flows II and III). However, there
is an increase in the multiplexer complexity as BIST
considerations are incorporated into the various stages
of synthesis.

The data paths synthesized by each synthesis
ow
were made self-testable using minimal intrusion BIST.
The last �ve columns of Table 3 compare the areas of
synthesized data paths, both, before and after mak-
ing them self-testable. Components designed using a
macro-cell library supplied by LSI Logic Corp. were
used for synthesis and the area is given in cell units [8].
It can be observed that for all four benchmarks, the
BIST area overhead in the case of Flow II is less than
that of Flow I and the BIST area overhead for Flow III
is less than that for Flow II. This decrease in BIST area
overhead is accompanied by an increase in the area of
the original data paths (before BIST). The increase in
the non-BIST version of data paths is due to the in-
crease in the number of multiplexers. Even in the case

Table 2: Synthesis algorithms used in experiments

TASK TYPE DESCRIPTION

Scheduling Traditional scheduling
SWT Without Testability

(such as ASAP)
Scheduling

SFT For Testability
(proposed in this paper)

Assignment Traditional register and/or
AWT module assignment

Without Testability
Register assignment

AFT For Testability
(such as in [7])

of EWF where the area of non-BIST version actually
decreases, the multiplexer area increases as the BIST
overhead decreases. The total area of the self-testable
data path (area before BIST + BIST ovhd.) decreases
from Flow I to Flow II and from Flow II to Flow III.
The last column in Table 3 indicates the percentage
decrease in total area of the self-testable versions of
the data paths with respect to the self-testable version
of the data path synthesized without any BIST consid-
erations (Flow I). It can be seen that in the case of DIF
and EWF, most of the reduction in total area comes
from SFT and in the case of FIR most of it comes from
AFT. The results indicate that the proposed schedul-
ing and module assignment technique give a reduction
of 30-50% in BIST area overhead an up to 10% in total
area over traditional high-level synthesis techniques.

6 Conclusions
For minimizing BIST area overhead, it is desirable

to share BIST resources across modules. In this paper
we have shown how scheduling and module assignment

Table 3: Characteristics of synthesized data paths

#Mod # (n : 1) Muxes Area BIST % Total %red.
DFG Flow L Reg type = n = before ovhd. BIST area in

+ � - 2 3 4 5 6 7 BIST ovhd. area

I 4 5 1 3 1 6 4 - - - - 5306 1552 29.25 6858 -
DIF II 4 5 1 3 1 8 3 - - - - 5306 1136 21.40 6442 5.50

III 4 5 1 3 1 9 3 - - - - 5402 1008 18.66 6410 6.53

I 8 16 4 8 - 11 2 2 - 3 - 14496 2560 17.66 17056 -
ARF II 8 16 4 8 - 11 4 2 3 - - 14748 1792 12.15 16540 3.03

III 8 16 4 8 - 14 5 3 3 - - 15137 1072 7.08 16209 4.97

I 5 8 4 4 - 6 1 - 1 - - 7363 3392 46.06 10755 -
FIR II 5 8 4 4 - 6 2 2 1 - - 8099 2592 32.00 10691 0.60

III 5 8 4 4 - 7 2 - 2 - - 8110 2224 27.42 10334 3.92

I 14 10 5 3 - 8 3 2 2 1 1 10905 1776 16.28 12681 -
EWF II 14 8 5 3 - 6 7 6 2 - - 10608 736 6.94 11344 10.54

III 14 8 5 3 - 5 6 7 1 1 - 10661 736 6.90 11397 10.13

can a�ect the number of BIST resources required for
a data path. The properties of schedules and module
assignments that in
uence BIST resources have been
incorporated into a 2-phase scheduling technique. In
Phase 1, coarse scheduling is performed such that the
latency and module requirement of the �nal data path
is not compromised. In Phase 2, detailed scheduling
is done by assigning operations to control steps and
modules. The data paths synthesized by the proposed
technique while having signi�cantly lower BIST area
overhead are competitive in terms of performance and
area with those synthesized by traditional techniques.

Acknowledgments
The authors would like to acknowledge Prof. Ed-

ward J. McCluskey and Dr. LaNae J. Avra of the
Center for Reliable Computing at Stanford University
for providing the TOPS synthesis system.

References
[1] M. Abramovici, M.A. Breuer, and A.D. Friedman.

Digital Systems Testing and Testable Design. IEEE

Press, 1990.

[2] C. Papachristou, S. Chiu, and H. Harmanani. A Data

Path Synthesis Method for Self-Testable Designs. In

Proc. 28th Design Automation Conf., pages 378{384,

June 1991.

[3] H. Harmanani and C. Papachristou. An Improved

Method for RTL Synthesis with Testability Trade-

o�s. In Proc. Intn'l Conf. on Computer-Aided Design,

pages 30{35, November 1993.

[4] L. Avra. Allocation and Assignment in High-level

Synthesis for Self-testable Data Paths. In Intn'l.

Symp. on Circuits and Systems, pages 463{472, Au-

gust 1991.

[5] I. Parulkar, S.K. Gupta, and M.A. Breuer. Data Path

Allocation for Synthesizing RTL Designs with Low

BIST Area Overhead. In Proc. 32nd Design Automa-

tion Conf., pages 395{401, June 1995.

[6] I.G. Harris and A. Orailoglu. Microarchitectural Syn-

thesis of VLSI Designs with High Test Concurrency.

In Proc. 31st Design Automation Conf., pages 206{

211, June 1994.

[7] I. Parulkar, S.K. Gupta, and M.A. Breuer. Lower

Bounds on Test Resources for Data Flow Graphs. In

Proc. 33nd Design Automation Conf., pages 143{148,

June 1996.

[8] Data Book. G10-p Cell-Based ASIC Products. LSI

Logic Corp., May 1996.

[9] S-P Lin, C.A. Njinda, and M.A. Breuer. A Systematic

Approach for Designing Testable VLSI Circuits. In

Proc. Intn'l Conf. on Computer-Aided Design, pages

496{499, November 1991.

[10] I. Parulkar, S. K. Gupta, and M.A. Breuer. Scheduling

Data Flow Graphs for Minimizing BIST Area Over-

head of Data Paths. CEng Tech. Report 97-05, Univ.

of Southern California, Dept. of Elect. Engineering -

Systems, February 1997.

[11] G. D. Micheli. Synthesis and Optimization of Digital

Circuits. McGraw-Hill, Inc., 1994.

[12] L. Stok. Architectural Synthesis and Optimization of

Digital Systems. Ph.D. Dissertation, Eindhoven Uni-

versity, The Netherlands, 1991.

[13] L.J. Avra, L. Gerbaux, J-C. Giomi, F. Martinolle, and

E.J. McCluskey. A Synthesis-for-Test Design Sys-

tem. Tech. Report CSL TR 94-622, Computer Sys-

tems Laboratory, Stanford University, May 1994.

[14] N. Dutt and C. Ramachandran. Benchmarks for the

1992 High-level Synthesis Workshop. Tech. Report

92-107, Univ. of California, Irvine, 1992.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

