
Repartitioning and Technology Mapping

of Electronic Hybrid Systems
�

Christoph Grimm and Klaus Waldschmidt

EMail: fgrimmjwaldschg@ti.informatik.uni-frankfurt.de

Johann Wolfgang Goethe - University, Frankfurt am Main

Abstract

The systematic top-down design of mixed-signal
systems requires an abstract speci�cation of the in-
tended functions. However, hybrid systems are sys-
tems whose parts are speci�ed using di�erent time
models. Speci�cations of hybrid systems are not purely
functional as they also contain structural information.
The structural information is introduced by partition-
ing the speci�cation into blocks with a homogeneous
time model. This often leads to ine�cient implemen-
tations.

In order to overcome this problem, a homogeneous
representation for behavior of hybrid systems { KIR
{ is introduced. This representation makes it possible
to represent behavior in all time models in a common
way so that the separation in di�erent modeling styles
is no longer necessary. Rules for re-writing the KIR-
graph are given which permit the description of the
same behaviour in another time model.

1 Introduction
The design of analog and mixed-signal system is

still done rather bottom up. A more structured, top-

down design of such systems would require an abstract

speci�cation of the intended functions. The behaviour

of mixed-signal { or more general hybrid { systems is

speci�ed using di�erent speci�cation formalisms ([1],

�gure 1):

In Di�erential Equation Speci�ed Systems (DESS),
signals and states change their values continuously and

at all points in time. The behaviour is speci�ed by

di�erential equations. In Discrete Time Speci�ed Sys-
tems (DTS), signals and states change their values

discontinuously at discrete points in time. The be-

haviour can be speci�ed for example by automata or

di�erence-equations. In Discrete-Event Speci�ed Sys-
tems (DEVS), signals and states change their values

discontinuously at any point in time. Behaviour is

speci�ed for example by timed automata or commu-

nicating processes.

�
This work has been sponsored by the DFG (WA 357/9).

DTSDESS DEVS

t 2 R t 2 R : t = n � tc t 2 R

Figure 1: Time models of di�erent speci�cation for-

malisms in hybrid systems.

Because each speci�cation formalism has di�erent

requirements for the behaviour to be described, in

hybrid systems the formalisms are separated by, for

example, the blocks of a block diagram. Each block

then has its own homogeneous speci�cation formalism.

Which speci�cation formalism is used for the descrip-

tion of an intended function depends on two di�erent

criteria:

First, it is important that the intended function can

be described in an e�cient way.

Second, a speci�cation formalism has to be cho-

sen depending on the tool and design methodology

(register-transfer synthesis, high-level synthesis, mod-

ule generators for �lters, . . .) that is intended to be

applied on the speci�cation.

In [2] and [3], approaches for systematic top-down

design of analog and mixed-signal systems are pro-

posed. Both rely on the intuitive, manual partitioning

done before speci�cation. Therefore, the speci�cation
is not a purely functional description of an intended

behaviour { The speci�cation also implies a partition-

ing of the structure that has to be designed:

1. The choice of the speci�cation formalism de-

termines the domain (RT-Synthesis, High-Level

Synthesis, module generators for DESS) of its

implementation, although implementation in an-

other domain could be more e�cient.

2. The separation of di�erent time models intro-

Implementation

A/D, A/SC
D/SC, D/A
or SC/A, SC/D
Converter

or digital
Analog, SC

Implementation
or digital
Analog, SC

Implementation
or digital
Analog, SC

Simulation
Functional Verification by

Front-end:

KIR

KIR

KIR+
Mapping

Linear High-Level
Synthesis

 Entry
Schematic

Compiler

Functions Converters

Technology mapping

Synthesis
Filter

FSMD

Technology-independent
Optimisations and 1st Re-Partitioning

(only in digital)

Description of
intended functions

mapping of KIR-
Graph on modules

for non-conservative systems)
VHDL-AMS (subset

Nonlinear
Functions

Module generators
of KANDIS: Blocks
either in analog, SC
or digital

Figure 2: The new front-end of KANDIS.

duces the structure of a block diagram. More

e�cient structures may exist.

The tool KANDIS[4] supports the choice of an

implementation-domain for single blocks of a block

diagram by estimations, starting from an initial parti-

tioning into analog and digital blocks. Single blocks,

whose behaviour is described functionally can be im-

plemented either in analog, in digital or with switched

capacitors (SC). Blocks whose behaviour is described

algorithmically are implemented in digital using high-

level synthesis. The problem is that the structure of

the block-diagram cannot be overcome. For this rea-

son we try to �nd a good mapping of the speci�cation

onto blocks already in the front-end. These blocks will

then be designed with the help of the tool KANDIS.

In this paper, we give an overview of the top-down

methodology we use in the new front-end of the tool

KANDIS (�gure 2,[5]). In this frontend, the KAN-

DIS Intermediate Representation (KIR)[6] is used as

a homogeneous representation of hybrid systems (sec-

tion 2). The structuring of the speci�cation in blocks

is then no longer necessary (section 3). With the help

of graph-rewriting, the time-model of single nodes of

a KIR-graph can then be changed (section 4). Finally,

the KIR-graph can be mapped onto a block-diagram

with a structure that leads to a more e�cient imple-

mentation (section 5).

In di�erence to previous approaches, our approach

extends the top-down methodology by a more abstract

speci�cation, and a methodology which allows to map

this speci�cation systematically onto a block-diagram,

which is the structure of the implementation.

2 Description of hybrid systems with

KIR
Known graph-based models have either a discrete

(e. g. Petri-Nets) or a continuous (e. g. Bond-Graphs)

implicit time-model. The time-model is given by the

semantics of the graph-based model. Therefore, they

cannot be used for the description of hybrid systems.

The KIR-Graph permits the combined use of dif-

ferent activation rules and time models in one graph;

the semantics of KIR describe the behaviour at the

interfaces of di�erent time models (see also [7]).

Edges represent directed signals that transport val-

ues from an origin to a destination-node. Edges have

one of the types REAL, INTEGER or ENUMERA-

TION. If the origin node of an edge is not active, the

edge keeps the last value assigned from its origin node.

Nodes describe relations between in- and out-edges.

For each node we specify:

� A function f .

� An activation rule a.

The function f can be speci�ed declaratively by

giving one of a set of prede�ned functions (i. e. add,

integrate, . . .). Alternatively, f can be described op-

erationally by a KIR-Graph describing an algorithm

or the structure of a �lter. This makes the de�nition

of a KIR-Graph recursive. The hierarchical structure

allows us to express partitioning decisions. The ac-

tivation rules can be chosen from a set of prede�ned

activation rules:

� aDESS : The activation rule aDESS leads to a con-

tinuous activation of its node. Therefore, f de-

scribes a functional relation between the signals

of the in- and the out-edges. KIR-Graphs whose

nodes have the activation rule aDESS can be com-

pared to continuous-time block diagrams known

from control-theory.

� aDTS : The activation rule aDTS leads to an ex-

ecution of f in constant time-steps tclk KIR-

Graphs with only the activation rule aDTS can

be compared to discrete-time signal-
ow graphs.

As opposed to discrete-time signal-
ow graphs,

nonlinear operations are allowed.

� aDEV S : The activation rule aDEV S executes its

function when at least one signal of a subset Ea �

Ein of the in-edges Ein has changed its value.

KIR-Graphs with only the activation rule aDEV S
can be compared to data-
ow graphs.

Since the nodes of a KIR-graph dont have to have

the same activation rules, it can occur that a value is

required at a point in time when a node is not active.

Here, we de�ne that, if the origin of an edge is not

active, the edge keeps the last value assigned from its

origin-node.

2.1 Simple Example

In �gure 3 the block diagram of a signal generator

is given. This block diagram is already partitioned in

blocks with intended analog and digital implementa-

tion. The example given is intentionally partitioned

poorly. It consists of three blocks:

PROCESS(y)
 IF y>=5.0 THEN

 ELSE
 IF y<=0.0 THEN
 load <= false;

 load <= true;load

x y
MPX-5

0.1 R
dt

Figure 3: Block diagram of a signal generator.

The most important part of the signal generator

is the integrator generating a continuously increasing

signal y from a value x on its input. The value of x

can be chosen by a switch depending on the boolean

value load. These two blocks are described using a

continuous time model. We suppose an implementa-

tion of these blocks in analog, as the integration over

the continuous time cannot be implemented precisely

with discrete-time digital circuits. The calculation of

the value load depending on the signal y has been

described algorithmically (discrete-event time model).

There exists no systematic way to transform algorith-

mic speci�cations into analog circuits. Therefore, we

suppose this block is to be implemented in the digital

domain.

In this simple example, the choice of the speci�-

cation methodologies has unintentionally determined

the domain of implementation. The structure which

has been introduced is ine�ective, because an A/D

converter will be required between the analog integra-

tor and the process which is implemented in digital.

As we show below, another representation of the same

behavior leads to a more e�cient implementation.

In �gure 4 the KIR-Graph of the signal generator is

given. As opposed to the block-diagram in �gure 3, the

behaviour of each block is now described in a unique,

graph-based way. The block described algorithmically

is now divided into a small graph with feedback which

represents the discrete state of the process, two com-

parisons and some nodes producing constants.

f

t
t

f

x

(t,f)

(t,f)

load

unload

un-

edge 2 Ea

edge =2 Ea

SEL

(load,unload)

aDEV S

aDEV S

aDEV S
aDESS

aDESS

aDESSaDESS

aDESS

aDESS

aDEV S

aDEV S

aDEV S

CONST

CONST

INTEG

CONST

CONST

SEL
SEL

REALREAL

<=

>=

CONST

CONST

load

load

y

Figure 4: KIR-Graph of the signal generator with

structure from block-diagram.

3 Removing the structure of a block

diagram

The partitioning of the speci�cation of a hybrid sys-

tem into blocks with di�erent time models was neces-

sary to separate di�erent modeling methodologies.

Because in KIR each node { and therefore each ele-

mentary function or operation { has its own activation

rule, this separation is no longer necessary. Therefore,

the partitioning in di�erent blocks can be removed.

This results in a hierarchically
at graph as in �g-

ure 5. As opposed to the original block-diagram, the

granularity of the basic blocks/nodes is very �ne. The

nodes of this KIR-Graph are no longer blocks whose

complex functions are described in di�erent model-

ing methodologies, but nodes with very simple and

elementary functions: arithmetical and boolean func-

tions, selection, integration/di�erentiation over time

or store (nodes with aDEV S and Ea 6= Ein).

f

t
t

f

x

(t,f)

(t,f)

load

unload

un-

edge 2 Ea

edge =2 Ea

SEL

(load,unload)

aDEV S

aDEV S

aDEV S
aDESS

aDESS

aDESSaDESS

aDESS

aDESS

aDEV S

aDEV S

aDEV S

CONST

CONST

INTEG

CONST

CONST

SEL
SEL

REALREAL

<=

>=

CONST

CONST

load

load

y

Figure 5: Flattened KIR-Graph of the signal genera-

tor.

On the hierarchically
at KIR-Graph many known

optimizations are applied that produce descriptions of

the same behavior which lead to more e�cient imple-

mentations:

� Common subexpression elimination is applied on

the KIR-Graph. This optimization reduces the

number of nodes and later the number of mod-

ules generated. We apply common subexpression

elimination[8] on descriptions in all (even mixed)

time models and not only separately on single

blocks which are modeled algorithmically. Fur-

thermore, constant folding removes constant ex-

pressions.

� Representations of transfer functions in the fre-

quency domain are transformed into di�erent

structures of simple nodes by partial fraction ex-

tension or factorization. This is not done in the

front-end, but in the back-end of KANDIS[9].

� Rewriting rules that have been previously applied

on discrete-time signal
ow graphs (e. g. [10]) can

also be applied on KIR-Graphs with the activa-

tion rules aDTS and aDEV S . They are not imple-

mented in the front-end, because we prefer more

functional (continuous-time) descriptions instead

of more concrete discrete-time descriptions.

By removing the structure of the initial block-diagram

as described above, the structure introduced by sep-

arating the di�erent computational models in blocks

can be eliminated, and optimization techniques can be

applied on the unstructured graph. However, the ac-

tivation rule still may determine the implementation

of partitions of nodes.

4 Changing the time model
In this section, rules are presented that are used in

the front-end and back-end of KANDIS to change the

time model and implementation domain of a node.

The possibility to approximate continuous-time

functions by a discrete-time function is well-known.

The Shannon-Theorem[11] requires that the sampling

frequency 1=tclk is at least twice as much as the band-

width that has to be transmitted. For getting discrete-

time di�erence equations from linear DAE, various s-

to z-transforms can be used[12].

The discrete-time representation of continuous-

time functions is not possible in a general form which

is valid for all frequencies. Therefore, the transforma-

tion from a continuous into a discrete time model de-

termines system-parameters like sampling frequencies

and bandwidth. For this reason, this transformation

is not really an alternative representation of identi-

cal behavior. It can be seen as a part of the design

process which is necessary to implement a continuous-

time function in digital. For this reason, these trans-

formations are not done in the front-end of KANDIS,

but rather during system-level design later.

Re-writing rule 1 (DESS to DTS) Nodes with
the activation rule aDESS and a known bandwidth
fmax � fmin can be replaced by a node with the acti-
vation rule aDTS and fclk > 2 � (fmax � fmin).
The new function fnew must ensure that
fnew(n � tclk) = fold(n � tclk)8n 2 N

Aside from the well-known s- to z-transforms and

the Shannon theorem there are further methods that

+

-

Attribute:

* * *

+

+

0.434 423.30.144

Technology-Mapping

(is-a WeightedSum)

Module Generator of KANDIS

* * *

+

+

0.434 423.30.144

Figure 6: Technology-mapping onto blocks, for which module-generators are provided.

allow us to describe continuous-time functions in a

discrete-event way. This is possible if the continuous-

time function does not have an internal state which

requires continuous activation. In this case, the out-

put is only dependent from the input, and each change

of an input leads to a direct change of the output in

both time models.

Re-writing rule 2 (DESS to DEVS) Nodes with
the activation rule aDESS, which have no internal
state (integration, di�erentiation have an internal
state, for example), whose in-edges are coming from
nodes with a discrete time model (aDEV S oder aDTS)
or whose value-range is discrete (INTEGER, ENU-
MERATION) can be replaced by a node with the acti-
vation rule aDEV S, identical function f and Ea = Ein.

Re-writing rule 3 (DEVS to DESS) Nodes with
the activation rule aDEV S and Ein = Ea can be re-
placed by a node with the same function f and the
activation rule aDESS, if they are in a graph with the
activation rule aDESS.

In the front-end of KANDIS, rule 3 is applied when

comparisons modeled algorithmically (aDEV S) are de-

pendent only on nodes modeled functionally (aDESS),

whose output is not used by other nodes with the ac-

tivation rule aDEV S . In this case, applying rule 3 on

the KIR-Graph replaces an A/D converter with a com-

parator in the implementation.

Rule 2 can be applied in an interactive way to build

up larger partitions with the activation rule aDEV S
that can be synthesized by high-level synthesis. At

the moment we have no strategy which would allow

us to determine if an application of rule 2 results in a

more e�cient implementation.

5 Technology mapping
The rules described above have removed the struc-

ture of a block-diagram separating di�erent time-

models. Further, some optimizations strategies have

been applied. These optimizations were technology-

independent and did not change the behavior speci-

�ed. Now, it would be possible to �nd an implemen-

tation of the KIR-Graph with KANDIS:

Partitions with the activation rules aDTS and

aDEV S can be synthesized with the high-level syn-

thesis of KANDIS. Nodes with aDESS can be imple-

mented with the module generators for �lters and non-

linear functions. The back-end KANDIS allows us to

�nd analog, SC or sampled digital implementations

for these nodes (rule 3). Where necessary, converters

are introduced.

However, such a technology-mapping would not be

e�cient. Often, analog computing devices can calcu-

late more than only an elementary function of a KIR-

Node:

� Many additions and multiplications with con-

stants can be mapped onto a single adder.

� Integrators and di�erentiators allow us also to

multiply the signal with a constant value.

� Inverting summers can also integrate.

In �gure 6 an example for the technology-mapping

of a set of addition- and multiplication-nodes onto a

weighted adder is given. As many nodes as possible

are clustered to one graph-node, which gets an at-

tribute "is-a". This attribute denotes the name of the

module-generator of KANDIS which has to be used

for this module. KANDIS has module-generators for

�lters (analog and digital with rule 1), linear and non-

linear operations (also analog and digital with rule 1)

and a simple High-Level Synthesis tool for mapping

partitions with the activation rule aDEV S onto digital

hardware.

DESSa

a DESS
a

DEVSa

DEVSa
DEVSa

DESS

a

DEVS

a

DESS

a

a

INTEG
a

DESS

DESS
DESS

DESS

a
SEL

f

t

true

false

0.0

5.0

t

f

>=

<=

COND
COND

CONST

CONST

CONST

y

CONST

CONST

CONST

s

x

constgen

constgen

constgen

constgen

mpxgen integgen

hls/rt-synth

compgen

compgen

Figure 7: Signal generator after repartitioning and

technology-mapping.

Figure 4 shows how the intenionally poor signal

generator description from �gure 3, will look as a hier-

archically
at KIR-Graph. After application of rule 3,

the comparisons of y with 5:0 and 0:0 are taken out of

the algorithmic description. Technology-mapping re-

sults in a KIR-graph as shown in �gure 7. In �gure 8,

the structure of the signal generator on OpAmp-Level

is shown. This implementation is more e�cient than

the one we would have built without re-partitioning,

because no A/D converter is required. The only mod-

ules required are two comparators, an implementation

of a very simple automata, a multiplexer and an inte-

grator.

>= 1

0.1V

V
5

5

y

a

b

LATCH

en

MPX +

-

+

-

-

+

OTA

d

Gc

comp2

comp1
V

Figure 8: Signal generator on OpAmp-Level.

6 Summary and Future Work
The speci�cation of mixed-signal systems intro-

duces a structure into the speci�cation of hybrid sys-

tems. If this structure is not repartitioned, the im-

plementation may be ine�cient. In the front-end

of KANDIS, a speci�cation of a hybrid system is

mapped systematically onto a set of synthesizable or

pre-designed modules in three steps:

Translation to KIR and unstructuring: First,

the speci�cation given in a VHDL-AMS subset

or as a block-diagram is translated into a KIR-

Graph by a compiler. The structure introduced

by separating di�erent modeling methodologies

can be omitted. This results in a hierarchically

at graph without a block-structure.

Technology-independent optimizations: Rewri-

ting-techniques are applied on the KIR-Graph as

described in section 3 (Common subexpression

elimination, constant folding). The time model of

nodes near potential A/D converters is changed,

so that as many converters as possible can be

saved.

Technology-mapping: Finally, the hierarchically

at KIR-Graph is mapped onto a set of modules,

for which generators in KANDIS are provided.

The algorithm tries to put as many KIR-Nodes

as possible into one module (�gure 6).

The front-end described in this paper should not be

seen as a synthesis-tool which generates mixed-signal

hardware automatically. It is just a �rst approach

to support the systematic top-down design and A/D-

partitioning of mixed-signal systems. The design and

repartitioning still requires interaction with the user.

The module generators also should be used more for

estimation purposes, since an optimized analog design

can only be done by hand at the moment.

One application is design-space exploration by com-

paring di�erent partitionings. Here, KANDIS may

help to save some design-cycles by providing early es-

timations. Currently, we are implementing strategies

and algorithms to automatically choose the transfor-

mations that lead to more e�cient implementations.

Another application is the rapid pro-

totyping of embedded systems (see also

http://www.ti.informatik.uni-frankfurt.de/Pa-

pers/RapidPro/abstract). We are going to add

a back-end which maps the output of KANDIS on

FPGA and FPAA (Field Programmable Analogue

Array) from Motorola. It will then be possible to

generate a prototype of a mixed-signal system from

its VHDL-AMS model.

References
[1] B. P. Zeigler, Theory of Modelling and Simula-

tion. New York, Chichester, Brisbane, Toronto:

John Wiley, 1976.

[2] S. Donnay, K. Swings, G. Gielen, W. Sansen,

W. Kruiskamp, and D. Leenaerts, \A Method-

ology for Analog Design Automation in Mixed-

Signal ASICs," in The European Design Automa-
tion Conference (EURO-DAC), (Paris, France),
pp. 530{534, Feb. 1994.

[3] H. Chang, A. Sangiovanni-Vincentelli, F. Blarin,

and E. C. et al., \ A Top-Down, Constraint-

Driven Design-Methodology for Analog Inte-

grated Circuits," Proceedings of the Custom In-
tegrated Circuit Conference, pp. 841{846, May

1992.

[4] P. Oehler, C. Grimm, and K. Waldschmidt,

\KANDIS - A Tool for Construction of Mixed

Analog/Digital Systems," in European Design
Automation Conference, (Brighton, UK), Sept.

1995.

[5] C. Grimm, P. Oehler, I. Kanakis, and K. Wald-

schmidt, \KANDIS - A Tool for System-Level

Speci�cation and Design of Mixed-Signal Sys-

tems," in IEEE/VIUF International Workshop
on Behavioural Modeling and Simulation, (Wash-

ington DC, USA), Oct. 1997.

[6] C. Grimm and K. Waldschmidt, \KIR - A

graph-based model for description of mixed ana-

log/digital systems," in European Design Au-
tomation Conference, (Geneva, Switzerland),

Sept. 1996.

[7] H. Praehofer and B. P. Zeigler, \Modelling

and Simulation of Non-Homogeneous Models,"

in Computer Aided Systems Theory | EURO-
CAST'89 (Serie: Lecture Notes in Computer
Science, Vol. 410) (F. Pichler and R. Moreno-

Diaz, eds.), (Las Palmas, Spain), pp. 200{211,

Springer-Verlag, February 26 | March 4 1989.

[8] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers
- Principles, Techniques, Tools. Addison-Wesley,

1985.

[9] P. Oehler and K. Waldschmidt, \A Knowledge-

Based System-Level Construction Methodology,"

in The Second World Conference on Integrated
Design & Process Technology, (Austin, Texas,

USA), Dec. 1996.

[10] C. Huijs, \A Graph Rewriting Approach for

Transformational Design of Digital Systems," in

EUROMICRO'96, (Prague), pp. 177{184, Sept.
1996.

[11] C. E. Shannon andW.Weaver, The Mathematical
Theory of Communication. Illinois: University of
Illinois Press, 1949.

[12] A. V. Oppenheim and R. W. Schafer, Digital Sig-
nal Processing. Englewood Cli�s, 1979.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

