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Abstract

This paper presents an integrated approach to hard-
ware software partitioning and hardware design space
exploration. We propose a genetic algorithm which
performs hardware software partitioning on a task
graph while stmultaneously contemplating various de-
sign alternatives for tasks mapped to hardware. We
primarily deal with data dominated designs typically
found in digital signal processing and image processing
applications. A detailed description of various genetic
operators is presented. We provide results to illustrate
the effectiveness of our integrated methodology.

1 Introduction

Hardware/Software codesign generates a mixed
hardware and software implementation of the speci-
fication that satisfies the given timing and cost con-
straints [1, 2, 3, 4]. Codesign is the natural solu-
tion when a full hardware realization satisfies the tim-
ing but not the cost constraint whereas a full soft-
ware solution is not fast enough. With the advent
of high speed microprocessors, and new high perfor-
mance cost-effective hardware technologies like FPGAs
and cpLDs, mixed hardware software solution has be-
come very effective for several real-time and embedded
systems applications.

There have been several approaches to solve the
problem of hardware software partitioning [1 5, 6,7,
8, 9]. Fully automatic partitioners are in existence for
quite some time now [5, 1, 6]. Gupta and De Micheli
[5] start with an all hardware solution and iteratively
move one task at a time to software until no further
improvement is possible. Ernst and Henkel [1] on the
contrary follow a software oriented approach which
starts with an all software solution and uses a simu-
lated annealing partitioning engine. Hou and Wolf [6]
proposed a process level partitioning heuristic based
on hierarchical clustering. Eles [8] performs a perfor-
mance guided partitioning based on simulated anneal-
ing and tabu search. Catania [9] uses fuzzy logic based
techniques to partially automate the development of
embedded systems.

Although there has been extensive amount of work
in the hardware/software partitioning domain, to the
best of our knowledge, none of the work presented
thus far take into account the alternatives in the de-
sign space that can be explored when implementing
a given task in hardware. For example, consider a
task which is a multiplication of two 2x2 maftrices.
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Depending on how many multipliers and adders are
available for the task, the hardware cost and time in-
formation will change Therefore, there is not just a
single hardware time and hardware cost pair associ-
ated with each task but there is a large set of options
available. As the granularity of the tasks increase the
number of such options tend to increase at a much
faster rate. It is hence important for the partitioner
not only to bind tasks to hardware and software but it
must also choose the right architectures for the tasks
mapped to hardware such that the overall timing and
cost constraints are met. In this paper we propose
an approach to investigate hardware design alterna-
tives during the cosynthesis procedure. We feel that
that the hardware design exploration or the architec-
ture binding problem has to be tackled at the time of
hardware software partitioning. There has been sev-
eral contributions in the area of hardware design space
exploration and pruning recently [10, 11, 12, 13, 14].
We use similar techniques to prune the hardware de-
sign space and create a tractable number of design
points so that an integrated environment for hardware
software partitioning and design space exploration is
feasible.

This paper presents a Genetic Algorithm (Ga)
[15] based evolutionary approach to hardware-software
partitioning and architecture binding.  Figure 1
presents our overall methodology. The input to the
system is a task graph. Nodes in the graph rep-
resent computational tasks that can be mapped to
hardware or software. The edges represent the in-
ter task data dependencies. The first step in our de-
sign process is the task level performance estimation.
We generate hardware and software models for each
task in the graph. A software profiler and a hard-
ware performance estimator are used to determine
the required software and hardware metrics for each
task to aid the genetic partitioner in performing hard-
ware/software trade-off analysis. The genetic parti-
tioning engine is tied to a codesign performance esti-
mator module that evaluates the fitness of the chromo-
somes the Gaproduces. A detailed explanation of the
steps in our methodology is presented in the sections
to follow.

The organization of the paper is as follows. In
Section 2 we formulate our problem in the perspec-
tive of our task graph model and the target architec-
ture model. Section 3 presents the task level perfor-
mance estimation technique. Details of our genetic
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Figure 1: Partitioning Methodology

algorithm is provided in Section 4. Section 5 presents
the codesign performance estimation and scheduling
algorithm. Results to illustrate the efficiency of our
approach is in Section 6. In the final section, we put-
forth our conclusions and discuss related issues.

2 Problem Formulation

Our goal is to find a hardware-software implemen-
tation of the task graph specification that maps onto
a single host processor, single coprocessor type target
architecture such that cost and time constraints are
not violated.

2.1 Task Graph

The behavior of the design is presented to the par-
titioning environment through a directed acyclic task
graph, G = (V| E). Each node v € V denotes a task in
the input design. A task represents a single thread of
execution and cannot be preempted, i.e. 1t is atomic.
Each task may be executed in hardware or software.
The computational complexities of the task can vary
from simple operations (fine grain) to large functional
blocks (course grain). Each edge e € F denotes data
dependencies between tasks. Associated to each task
are a hardware specification segment and a software
code segment. In our case, we use VHDL and C to rep-
resent the hardware and software models for each task.
Although control constructs cannot be represented at
the task graph level, the individual task themselves
have no restrictions. The task graph model fits very
well in DSP image processing and communication do-
mains where most of the algorithms are computation-
ally intense and data flow oriented with very little or
no control flow. Note that the entire task graph may
be iteratively executed on different blocks of data, as
it is the case with many DSP and image processing al-
gorithms. This lends to issues of loop pipelining which

have been addressed elsewhere [16, 17, 18, 19].

2.2 Target Architecture

The Figure 2 shows the target architecture model.
This is a single host processor, single coprocessor
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Figure 2: The Target Architecture

model. The communication between the software and
hardware tasks is through the shared memory. At any
given time only one task is allowed to execute on the
coprocessor. However, software and hardware tasks
may execute concurrently on the microprocessor and
the coprocessor, provided the data dependencies are
not violated. Each time any task begins execution, it
first reads all the required shared variables from the
shared memory, performs the computation and writes
the required variables back into the shared memory.

3 Task Level Performance and Time

Estimation

As shown in Figure 1, the hardware and software
performance and cost metrics of each individual task
is available prior to the invocation of the partitioner.

3.1 Software Performance Estimation

Software runtimes for each task is evaluated
through profiling the software model of the task graph.
The software model of the task graph is extracted
from the individual C code fragments for all the tasks.
We use Quantify~, a commercially available profil-
ing tool [20], to gather software runtime statistics for
all tasks. A user given set of profile data is used for
profiling the software. This set of profile data is con-
sidered to emulate real time input patterns. For the
tasks with ND (Nondeterministic Delay) operations
[2], their runtimes vary with the input stimuli. In such
cases, we approximate the software runtime to be the
average runtime over a large set of profiling stimuli.

3.2 Hardware Performance and Area Es-
timation

We follow a high level synthesis [21, 22] oriented
approach to hardware performance estimation. Typi-
cally, the design flow for most high level synthesis en-
vironments, starts by exploring the hardware design
space available to implement the specification. This
step i1s usually called module set generation. A module
set is a set of components (with repetitions allowed)
from the component library which is sufficient to im-
plement the given specification. The largest module
set is the one required by the AsAP (As Soon As Possi-
ble) schedule of the specification. The smallest module
bag is the one required by the least parallel schedule.
Even for reasonably large designs there usually are
thousands of possible module sets that are feasible.



Ex_task {

temp00 = inp00*c00 + inpOi1*cO01 +
inp02*c02 * inp03*c03;

temp01 = inp10*c10 + inpli*cil +
inp12*c12 * inp13*c13;

Figure 3: Code segment for a 4x4 DCT compu-
tation

The feasible module sets form the hardware design
space.

Each point in the design space can potentially be
considered an area-time trade off point. When there
is a large design space available, it is extremely dif-
ficult to analyze each point in the space. Thus, effi-
cient heuristics are needed to select a tractable num-
ber of candidates that truly capture the flavor of the
entire design space. There have been several efforts
in the past to perform fast and efficient design space
exploration and pruning. A popular approach is to
employ lower bound estimation techniques [23, 10] to
determine the requirements on the functional unit re-
sources. Later, there has been an effort to provide
an exact solution to a 3D design space [11] using in-
teger linear programming and functional unit lower
bounding. Traditionally, there have been approaches
that employ several performance estimation heuristics
[12, 14] to predict design quality. There is also work on
hierarchical design space exploration [24] that main-
tains a set of candidate solutions while pruning the
design space. Also, there has been an effort to solve
high level synthesis and design space exploration us-
ing problem space genetic algorithms [13]. Currently,
we run a high level synthesis tool to explore various
design points and gather this information [14].

Example:

Consider the task example shown in Figure 3. This
task is part of a simple 4x4 pcT (Discrete Cosine
Transform) computation. The AsAP schedule for this
task requires 8 multipliers and 4 adders. The least
parallel schedule requires just one multiplier and one
adder. Figure 4 shows two possible hardware imple-
mentations of the Ex_task. Figure 4-(a) is the case
when the module set < 8%,44+ > is chosen. The
schedule in (a) takes 3 control steps. Figure 4-(b)
uses the module set < 2x%,2+ > and takes 6 control
steps. The area of a module set is the sum of the
areas of the components in the set. We assume that
all components are unit cycle operations and thus the
cycle time is equal to the maximum delay component
selected in the module bag. If there are no control
flow nodes and nondeterministic delay operations in
the task, then the hardware run time of the task is the
product of the number of control steps and cycle time.
In the presence of control flow or nondeterministic de-
lay operations, we perform a post-schedule profiling
of the schedule generated to estimate the number of
cycles the task takes to complete simulation. Similar
to the software profiling case, we average the runtimes
achieved over a large range of profiling stimuli.

Table 1 i1s the result of hardware performance es-
timation for Ex_task of Figure 3. The table gives 10
hardware design options for Ex_task. It can be no-

(a) Scheduling under resource constraint : 4 multipliersand 4 adders
Number of Control Steps=3

(b) Scheduling under resource constraint : 2 multipliersand 2 adders
Number of control steps =6

Figure 4: Two different Schedules for Ex_task

ticed that area is represented in terms of CLBs (Con-
figurable Logic Block) in a FPGA based coprocessor.
A parameterized component library with each compo-
nent characterized for delay and area values is avail-
able to the performance estimator. In Table 1, the
fastest implementation has an execution time of 420
ns and occupies 888 CLBs while the slowest implemen-
tation has an execution time of 1540 ns but occupies
only 316 CLBs. The execution times are based on a
clock period of 140 ns.

The hardware/software partitioner we discuss in
the next section performs two levels of binding. First,
it binds tasks to hardware and software and secondly,
it makes an architecture selection for the tasks in hard-
ware. In our space exploration model discussed above
we do not restrict the possibility of existence of mul-
tiple implementations of a single library component.
For example, the component library may have two dif-
ferent implementations of an adder - ripple carry, and
carry look ahead. In such a case we consider each
implementation as a unique component.

3.3 Communication Performance and
Time Estimation

As discussed earlier in Section 2.2, we have a shared

memory communication model between the cpu and

the coprocessor. The cost and performance values re-



|| Module Set | #mult | #add | #mux | freg || #c-steps

exec-time (ns) | Area (CLBs) ||

1 8 4 18 16 3 420 888
8 2 22 16 4 560 880

3 8 1 24 16 7 980 876
4 6 2 26 12 4 560 704
5 4 3 36 8 4 560 564
6 4 2 38 8 4 560 560
7 4 1 40 8 7 980 556
8 4 2 46 4 6 840 400
9 4 2 48 4 7 980 396
10 4 1 52 2 11 1540 316

Table 1: Hardware Design Space Table for Ex_task

ported by the software profiler and the hardware per-
formance estimator do not include the communication
time to read and write data from and to the shared
memory and the communication cost involved in com-
munication and synchronization hardware. The com-
munication cost and time scale linearly with the num-
ber of data variables to be read and written back to
the shared memory. Let 7)) and 7;} be unit data read
and write times between the software (cpu) and the

shared memory. Similarly, let 7?, and T be the unit
data read and write times between the coprocessor and
the shared memory.

All data that is shared between hardware and soft-
ware tasks is maintained in the shared memory. Read
set of a task is the set of data variables that the task
reads from the shared memory and write set is the set
of data variables that the task writes to the shared
memory. Once tasks are bound to hardware and soft-
ware, 1t is easy to determine the read and write sets for
all tasks. For the tasks mapped to hardware, notice
that read and write sets are independent of the imple-
mentation. For a task ¢, we further define r(¢) to be
the size of the read set of ¢ and w(t) to be the size of
its write set. The hardware-software communication
time for a task ¢, is given by:

Holland in 1975 [15], and since then has been used suc-
cessfully for solving several combinatorial problems in
VLSI design automation [25, 26, 27]. Following is a
summary of how a genetic algorithm works.

A genetic algorithm consists of an iterative proce-
dure during which a series of generations of popula-
tions, one per iteration, are created. Each member
of of population, also called chromosome, represents
a solution of the problem being solved. The solu-
tion representation is based on a suitable encoding
of the solution space. The population during itera-
tion ¢ of the genetic algorithm is denoted by the set,
pi = {2}, -, 2L}, where, 2%, denotes the mth member
of the population in ith iteration and n is the size of
the population that is usually fixed for the run of the
GA. Note that solutions may repeat in a population.
The initial population, p; may be created randomly or
by using some deterministic heuristic [28, 29]. From
the optimization perspective, genetic algorithms at-
tempt to discover an optimal — least cost — solution
to the problem. Let the cost of the solution x be des-
ignated by cost(z). Cost function is supplied by the
user as part of the problem specification. The GA is
oblivious to the properties of cost functions. Without
loss of generality, we assume that the cost function is

Toomm () = defined such that for any solution, cost(z) > 0. Let
T*xr(t) + TS *w(t) ift is mapped to SW the fitness of a solultlon be defined by,
Thxr(t) + T xw(t) otherwise (1) fitness(z) = T+cost(x) (3)

The communication and synchronization hardware

for a task ¢ that is mapped to hardware is given by :

Ceomm (t) = Ceomm * (r(t) + w(t)) (2)

where, ¢.omm 1s the communication hardware cost

incurred for unit data variable read or write between
the FPGA and the shared memory.

4 Hardware/Software Partitioning Al-
orithm
4.1 Genetic Algorithms

We model and solve the partitioning problem
through a Genetic Algorithm (Ga). To form an ef-
fective search strategy, Gas combine “survival of the
fittest” approach with a randomized, yet structured
information exchange mechanism among potential so-
lutions. Search using Gas strikes a reasonable bal-
ance between exploiting the available information and
exploring the unsearched regions of the design space.
The genetic search procedure was developed by John

Note that for any solution z, 0 < fitness(z) < 1.
In our case, the cost of a chromosome is evaluated
by the codesign performance estimator which will be
discussed in the next section. GA uses an evolution
function to generate a new generation p;;1 from an
existing generation p;. The evolution function usually
consists of three components, called operators:

o Selection: Selection operators probabilistically se-
lect some of the members of the current popu-
lation to move to the next generation. The se-
lection heuristic is such that highly fit solutions
in the population are most likely to be selected.
The function select_chromosome() probabilisti-
cally selects a highly fit chromosome. The selec-
tion operator is used to create a small number
(10-30%) of the members in the next generation.
The remaining are provided by the crossover op-
erator.

e (rossover: Crossover operators attempt to com-



bine the features of highly fit members of a popu-
lation in the hope of creating new members that
are likely to be better fit than either of their par-
ents. Crossover operators attempt to enhance
the genetic mix of the population by mating two
highly fit parents. It is believed that this is the
key to success of natural evolution and hence
might be to artificial evolution as well.

e Mutation: Mutation operators randomly alter the
structure of the chromosomes. The user specifies
a mutation probability, P,,,. Mutation probability
is usually set to low values in the range [0.05;0.2].
Mutation attempts to introduce new features into
the population that did not exist in the previous
generation. Mutation alone would represent ran-
dom walk through the solution space.

Following the generation of the new population, the
current population is discarded and the new popula-
tion becomes current. This evolution process contin-
ues until a user specified termination condition has
reached. The termination condition is either a con-
straint satisfying solution or an upper limit of the
number of generations that the GA explores.

4.2 GA for HW/SW Partitioning

Encoding: As discussed earlier in Section 3.2, the
hardware performance and area estimator generates a
table of design options for every task (Table 1). The
size of the table is fixed for all tasks. Any feasible
encoding for the solution must provide information
about the binding of the each task to hardware or
software and if the binding is to hardware, it must
point to an entry in the hardware performance table.

We use an integer array to represent each chromo-
some (hardware-software partition). The length of the
array is equal to the number of tasks. Let NV be the
number of tasks and let the integer array c[l .. N]
denote a chromosome. If k; 1s the number of entries
(i.e. number of hardware implementation options) in
the hardware performance table of task ¢, then for
1<i< N, 1<c[i] <2.k;. In other words, each entry
in the chromosome array can range form 1 to twice the
number of entries in the hardware performance table
of the corresponding task.

Associated with each task ¢ 1s a mapping array, M*,
of size 2.k;. The mapping array is an array of pointers.
Of the 2.k; pointers in the mapping array k; randomly
chosen pointers are NULL. The remaining k; pointers
point to one of the rows in the hardware performance
table of the task 7. No two pointers in the map array
can point to the same row of the table. Creating the
mapping array for each task is a one time operation.

The interpretation of the encoding is as follows. If
M[c[@]] is NULL then the task i is bound to software,

else, the task is bound to hardware and M*[c[i]] points
to the implementation (hardware design point) chosen
for the task i. The reason of having 2.k entries in
M and leaving k of the NULL is to provide equal
opportunity for a task to either be in hardware or
software. Thus, there is no bias towards a hardware
or a software solution. Consider a case when N = 4,
k1 = 4 and k4 = 2. The Figure 5 pictorially illustrates
our encoding scheme.

Initial Population: We force one of the chromo-
somes in the initial population to be an all software

T1 T2 T3 T4

5 1 4 8 Chromosome
——— Map Array
;, forT4 \
/1 2 3 4.
/ Map Array for T1 . 5l sl1]s
A1 2 3 4 5 68 7 8 TT1 1
4|s|3|s|2|1|s]|s - =
L|lL] L1 N S e e
1 | Hardware Performance
2 table for task T4
# |« + [ -
% Hardware Performance
T3 | tablefortask T1
4
Figure 5: Chromosome Encoding
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Figure 6: Effect of Uniform Crossover

solution. The rest of the chromosomes are randomly
generated. For the random chromosomes, for each en-
try c[i] in the array is assigned a random value be-
tween 1 and 2.k;, where k; 1s the number of entries in
the hardware performance table for task i.

Crossover: We use a uniform crossover operator.
In this crossover, a binary string, 7', whose length is
equal to the number of tasks in the graph is generated.
Each bit in this template is randomly set to either 0
or 1. Next, two parents p; and ps are probabilistically
selected for mating. Let ¢; and ¢y be the children
resulting from the crossover. Then,

) 1fe] i T(E)=1
ali] = { ZQH othe(r\)zvise
. 1[7] i T(2) =
esfi] = { Zz H otie(rzviseo

Figure 6 shows the effect of uniform point crossover.

Mutation: The mutation operator randomly se-
lects an entry in the chromosome array and changes
its value. Effectively, the mapping of a single task is
modified. The mapping of the task can change in three
ways. The task can move from software to hardware,
hardware to software, or the the task may continue to
remain in hardware with a change in its implementa-
tion.

5 Codesign Performance and Cost Es-

timation
Each chromosome generated by the genetic parti-
tioning engine corresponds to a solution in the code-
sign space and hence has to be evaluated for its fitness.



Algorithm 5.1 (Codesign Hardware Area Estimation)

T: set of tasks bound to hardware.

€1,C3--CN_1,cN are the components in the design li-
brary.

tey: Number of components of type c, present in the
implementation chosen for task x.

Area(eg): The area of the component ¢y

Estimate_hwarea(T)
begin
for jin I to N do
n; — maz{¥t; € T : t;;}
end do
Hardware_area «— Zf\il (n; x Cost(c;))
Rhard — {(Cla n1)7 (621 n2)7 e (CN1 nN)}
return(Hardware_area, Rparq
end

The fitness of the chromosome depends on whether it
satisfies the hardware area and execution time con-
straints posed on the task graph.

Hardware Area Estimation: Since the tasks as-
signed to the co-processor do not execute in paral-
lel, hardware resources can be fully shared among the
hardware tasks. Hence, adding the areas of the cho-
sen resource bags of all hardware tasks may be an over
estimation of the hardware area. For this reason we
use the procedure in Algorithm 5.1 to estimate the
hardware area. The hardware required for communi-
cation 1s estimated as discussed in Section 3.3 and is
not shown in this figure.

Codesign Runtime Estimation: The area es-
timation procedure in Algorithm 5.1 returns the the
hardware resource set available (Rg). The perfor-
mance tables of all hardware tasks are revisited to find
the fastest feasible implementation constrained by the
resource set Ry. The communication time penalties
as estimated in Section 3.3 are added to the respec-
tive tasks. Now that the run times and binding of
each task is available, we use a list scheduler [22] to
schedule the task graph. The priority function of our
list scheduler implementation is based on the mobility
values of the tasks. We used list scheduler because it is
very fast and efficient. However, changes can be made
to the priority function at will and the scheduler itself
can be modified, if need be, without affecting the rest
of the partitioning environment.

The schedule time gives us the estimated codesign
execution time of the task graph.

Codesign Cost Function: Our goal is to produce
a codesign implementation which satisfies the conflict-
ing constraints. Accordingly, the cost function, which
determines the cost of a partition is a combination of
the two conflicting cost factors. Let A.g; and T, be
the estimated area and execution time of the codesign
and let A,,q0 and Th,e0 be the respective user specified
constraints. Then our cost function is:

y AA n AT
cost =
Amas Trmax
. 0 if Test S Tmal‘
where, AT = { Tost — Tonaw otherwise

Example | Num. | Num. | Num. Library
Name Tasks | FEdges Components

DCT-1 9 20 4
DCT-2 36 76 4
Reg_Anal 8 8 6
FFT 15 22 5
LT 9 12 6
Mean 9 12 10
LUD 9 11 6
rand_20 20 40 8
rand_50 50 100 10
rand_75 75 100 6
rand_100 100 500 6
rand_400 400 800 15
rand_500 500 1500 20

Table 2: Design Data for Test Examples

] o if Aese < Amas
Ad = Acst — Amaz otherwise

Fitness of the chromosome is calculated according
to the equation (3) in Section 4.1.

6 Experimental Results

In this section we present results of the genetic al-
gorithm (Ga) for hardware software partitioning. We
have implemented all algorithms in C++ on a Sparc
5 Unix workstation at clock-speed 143 Mhz. We com-
pare the results of the GA with an implementation of
simulated annealing (sA) [30]. The reason for picking
sA for our comparison is because sA is a well estab-
lished randomized algorithm and is widely used by sev-
eral researchers in various problem domains, including
hardware software partitioning [1, 8].

Table 2 shows the design data for the various
test graphs we used to study the effectiveness of our
methodology. DCT-1and DCT-2 are both task graphs
for a 4x4-matrix discrete cosine transform operation.
The tasks in DCT-2 are fine grain resolution in com-
parison with DCT-1. Reg_Anal was generated from
a C code which computes the line of best fit using
linear regression analysis. FFT is a fast Fourier trans-
form butterfly network model. LT is a Laplace Trans-
form task graph. Mean is a task graph for performing
mean value analysis and LUD performs LU decompo-
sition. The four task graphs models FFT, LT, Mean
and LUD are the ones developed by Ahmad et. al.
in [13]. Since we wanted to verify the performance of
the GA on large task graphs, we implemented a task
graph generator to generate synthetic graphs of ar-
bitrary sizes. Designs rand_20 through rand_500 are
randomly generated graphs of varying sizes. Column
4 of Table 2 gives the number of different component
types that we used in the design. For all the tasks
belonging to the task graphs in Table 2, the size of
the hardware performance table ranged from 10 to 50
entries depending on the granularity of the task. For
the synthetic benchmarks, the performance tables for
all the tasks involved was also randomly generated.

The GA was executed with population size 200,
crossover percentage 80%, and mutation probability
0.15. The GA terminates either if a constraint sat-
isfying solution is reached or if 200 generations have



Area Time Genetic Algorithm Simulated Annealing
Example Cnst. Cont. Acst Teet Fitness run time Acst Teet Fitness run time
CLBs ns CLBs ns hh:mm:ss CLBs ns hh:mm:ss
2800 3000 2744 2820 0.9400 00:00:51 2744 2820 0.9400 00:00:26
DCT-1 5000 2600 4976 2520 1.0000 00:01:03 4976 2520 1.0000 00:00:34
1000 8000 1212 7980 0.8251 00:03:11 1244 7980 0.8039 00:01:34
DCT-2 2000 7000 1276 7980 0.8772 00:03:27 1276 7980 0.8772 00:01:45
1000 2100 ar7 2180 0.9633 00:01:44 921 2180 0.9633 00:00:38
Reg_Anal. 700 2200 733 2310 0.9115 00:03:34 733 2310 0.9115 00:00:36
9000 80 11523 81 0.7735 00:06:44 11853 80 0.7593 00:04:13
FFT 10000 20 10603 92 0.9238 00:02:37 10772 92 0.9090 00:00:42
8100 50 10463 47 0.7742 00:05:01 46 10717 0.7558 00:03:28
LT 10000 350 358 1119 0.8813 00:06:40 12068 349 0.8291 00:03:34
6900 160 15016 143 0.4595 00:06:53 15724 148 0.4388 00:04:13
Mean 15000 150 14785 150 1.0000 00:07:26 15281 149 0.9816 00:05:17
3100 400 3005 404 0.9900 00:03:31 3005 404 0.9900 00:01:54
LUD 7900 160 8222 147 0.9608 00:03:08 8594 147 0.9192 00:01:28
9500 500 13704 500 0.6856 00:01:28 14123 500 0.6726 00:00:53
rand_20 7500 1000 7735 1028 0.9440 00:01:27 7519 1065 0.9367 00:01:19
18000 1900 18339 1868 0.9815 00:03:34 19190 1898 0.9379 00:02:23
rand_50 17000 2200 17195 2198 0.9887 00:07:51 17288 2230 0.9703 00:05:17
900 13000 867 13215 0.9837 00:20:21 13439 857 0.9673 00:12:21
rand_75 9000 900 12831 891 0.7015 00:19:09 13081 897 0.6880 00:16:26
12000 1900 12743 1847 0.9417 00:20:19 14096 1859 0.8513 00:14:45
rand_100 31000 2000 30960 1984 1.0000 00:29:06 30994 1983 1.0000 00:29:34
rand_400 42000 | 10000 45466 9792 0.9238 01:31:47 45519 9862 0.9226 01:07:13
rand_500 55000 | 11000 58526 | 10900 | 0.9398 01:58:12 58800 | 10996 0.9353 01:00:05

Table 3: Results of Genetic Hardware Software Partitioning

passed without improvement in the best solution. The
simulated annealing implementation uses the same
chromosome encoding and cost estimation as used by
the gA. The perturbation function of the sa modifies
the mappings of the tasks in the chromosome. The
amount of perturbation depends on the temperature.
We start the sA at very high temperature of 100,000
and cool it down to 0.1. The cooling factor is set to a
very low value (0.00003) so that the sa had enough op-
portunity to search for good neighborhood solutions.

Table 3 presents the results of the comparison be-
tween the GA and the sA. Columns 2 and 3 are the
area and time constraints posed on the codesign re-
spectively. The table reports the estimated area and
time of the best solution detected by the GA and saA.
It also reports the fitness of the best solution and the
cpu time taken to arrive at that solution for both Ga
and sA. When the constraints were loose, both sa
and GA were efficient and arrived at the constraint
satisfying solution. For this reason we set very tight
constraints on area and time to investigate how the
two algorithms perform under tight constraints.

The results in Table 3 show that the GA has a defi-
nite edge over the sA terms of fitness of the best solu-
tion generated. The GA produced better solution than
sA 17 out of 24 times (shown bold faced in the Ga fit-
ness column). For the remaining cases the Ga and
sA produced the same best fitness value. The reason
for GA performing better than sA may be attributed
to the fact that GaA maintains a population of solu-
tion and has a structured evolution strategy while the
sA moves from one point in the solution space to the
other in a less structured manner. Moreover the GaA

operators avoid being trapped in local minima. The
GA pays some time penalty for carrying a population
of solution along. However, the table shows that for
most cases the sA and GA times are in a comparable
range. Even for the largest example, rand_500, the Ga
is not much slower than the sA. Given the fact that
partitioning a task graph is a one time operation, the
additional time spent in generating a better solution
most often is worth the effort.

7 Discussion and Conclusions

This paper presented an integrated approach to
hardware software partitioning and hardware design
space exploration. We proposed a genetic partition-
ing environment which can partition a task graph into
hardware or software while at the same time perform
trade-off analysis among the different hardware alter-
natives available for each task. In the case where
there are multiple software alternatives available for
the tasks, it i1s easy to extend our genetic framework
to perform a combined hardware software design space
exploration problem of which hardware software par-
titioning becomes a sub-problem. In comparison to
a simulated annealing algorithm performing the same
task, the genetic algorithm proved much superior in
effectively exploring the codesign space.

In the methodology discussed in this paper, a high
level synthesis tool initially estimates the performance
of all the tasks and generates a tractable number of
hardware design points for the genetic algorithm to
contemplate. The GA chooses an implementation for
each of the tasks. The implementation may be a soft-
ware implementation or one of the hardware options.
Thus the GA performs hardware/software binding and



design space exploration at the same time. Another
approach to solve this problem, uses the Problem
Space Genetic Algorithm IPsGa) [13] approach. Here
the genetic algorithm works on the problem space
rather than on the solution space, like it is done nor-
mally.

A PsGA model for the integrated partitioning and
exploration problem, will start with a genetic algo-
rithm producing chromosomes representing resource
sets available to implement the hardware tasks. For
each chromosome produced by the PsGa, a hard-
ware performance estimator has to be invoked for all
tasks and performance estimates are collected for that
resource set. We will then have a standard hard-
ware/software partitioning problem to solve. This ap-
proach was discarded because, having a performance
estimator inside the genetic algorithm loop will be too
time consuming.
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