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Abstract

This paper presents a novel hardware resource alloca-
tion technique for hardware/software partitioning. It al-
locates hardware resources to the hardware data-path us-
ing information such as data-dependencies between op-
erations in the application, and profiling information.
The algorithm is useful as a designer’s/designtool’s aid
to generate good hardware allocations for use in hard-
ware/software partitioning. The algorithm has been imple-
mented in a tool under the LYCOS system [9]. The results
show that the allocations produced by the algorithm come
close to the best allocations obtained by exhaustive search.

1 Introduction
When designing digital embedded system to be used

in cellular phones, laser printers, etc., performance is a
critical issue. A well-known technique to meet perfor-
mance constraints is software speed-up. This is illustrated
in figure 1. If the application cannot comply with perfor-
mance constraints when implemented solely on the pro-
cessor, time-consuming parts of the application are ex-
tracted and executed on dedicated hardware, the ASIC.
The target architecture for this type of software speed-
up is co-processor based, i.e. a single processor and one
or more ASICs. This type of target architecture has suc-
cessfully been used for application speed-up in different
co-synthesis systems such as COSYMA [2], Vulcan [3]
and the LYCOS system [9]. The ASIC is implemented as
a data-path composed of functional units such as adders,
multipliers, etc., and a controller that controls the compu-
tation in the data-path. This is shown in figure 1, which
also shows that the hardware data-path in this target ar-
chitecture is composed of two adders, one subtractor and
one multiplier. We call this an allocation of hardware
resources; two adders, one subtractor and one multiplier
have been allocated to the hardware data-path.

In the LYCOS system, software speed-up is achieved by
partitioning the application onto the preselected target ar-
chitecture using the PACE algorithm [7]. Input to the par-
titioning tool is the application and the before mentioned

target architecture. The hardware/software partitioning re-
sults in a mapping of non-time critical parts of the appli-
cation to software (i.e. the processor in the target architec-
ture) while the most time critical parts of the application
are mapped to the ASIC in order to achieve the software
speed-up. As figure 1 shows, the target architecture must
be fixed before the partitioning can take place. This in-
cludes selecting the processor and allocating the type and
number of hardware resources to the hardware data-path
(a memory mapped communication scheme between hard-
ware and software is assumed).
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Figure 1. Software speed-up by HW/SW partition-
ing using a pre-allocated HW data-path

This paper presents a technique that, prior to parti-
tioning, allocates the hardware resources for the hardware
data-path. This is a key aspect in the process of achieving
the best possible speed-up after the hardware/software par-
titioning has been done. The preallocation of the data-path
resources is done taking characteristics of the application
into account, knowing that the application subsequently
will be partitioned between hardware and software. The
allocations generated by the algorithm comes very close to
the optimal allocations. An optimal allocation will ensure
that the hardware/software partitioning generated by the
PACE algorithm gets maximum speed-up. However, find-
ing the optimal partition for a given application (manually
or by exhaustive search) is an extremely time-consuming
task due to the very large number of different allocations.



The algorithm is described in the context of the LY-
COS system. The algorithm is, however, of a nature that
makes it applicable in general. To the authors knowledge,
no prior work has been done in the area of allocating re-
sources for hardware while considering the consequences
for the combined hardware/software system, although sev-
eral approaches [1, 4, 5] for allocating resources for an all-
hardware solution have been proposed. However, in our
approach the application is partitioned between software
and hardware. The fact that parts of the application will
still run as software is taken into account in the hardware
resource allocation algorithm.

2 The HW resource allocation problem
Software speed-up by hardware/software partitioning

is in our approach done by dividing the application
into appropriate chunks of computation (Basic Schedul-
ing Blocks, BSBs) and then trying out different hard-
ware/software mappings of these. This is illustrated in fig-
ure 2A where five BSBs are partitioned onto hardware and
software. Moving a BSB to hardware will give the BSB a
speed-up. This is due to the fact that in software, opera-
tions are executed serially whereas the hardware data-path
has multiple resources that can exploit the inherent paral-
lelism between operations in the BSB.
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The hardware is divided into one piece for the data-path
resources, i.e. the functional units that execute the opera-
tions in the BSBs, and one piece for the controllers, i.e. the
implementations of the finite state-machines that control
the execution of the BSBs that are placed in hardware.

In our partitioning approach, resources must be allo-
cated to the hardware data-path in advance. The remain-
ing hardware area is the area left for the controllers of the
BSBs actually moved to hardware during partitioning. In
this way, the cost of moving a BSB to hardware is only
the cost of the corresponding controller. This principle is
shown in figure 2B, where the two gray boxes indicate the
controllers of BSBs B3 and B4, which are moved to hard-
ware by the partitioning algorithm. But allocating the best
resources to the hardware data-path is a difficult problem

as illustrated in the following.
If the preallocated data-path is small, as in figure 3A,

the speed-ups of the individual BSBs are small. How-
ever, the small data-path allocation means that there is
more room for controllers. As a result, many BSBs may
be moved to hardware which leads to many small speed-
ups. If, on the other hand, the data-path allocation is large
as in figure 3B, the speed-up of the individual BSBs will
be higher since more parallelism can be exploited. How-
ever, the large data-path allocation leaves only little room
for controllers. Hence, there will be few but large speed-
ups from the BSBs which are moved to hardware. The
question is whether the many small speed-ups add up to
a higher resulting speed-up than the few large speed-ups?
Also, there is the question of which resources should be
allocated to the hardware data-path.

The discussion above indicates that the preallocation of
the hardware data-path resources should somehow balance
the requirements for hardware resources against the need
for room for controllers while at the same time taking into
consideration which types of resources are necessary (e.g.
“is an adder necessary?, are two multiplier?, . . . ”).

3 The application model
The applications in our approach are represented as

Control Data Flow Graphs, CDFGs. This is illustrated in
figure 4. The CDFG is obtained from an input description
in VHDL or C. The nodes of the CDFG express loops, con-
ditionals, wait-statements, functional hierarchy and actual
computation (the Data Flow Graphs, DFGs). The CDFG is
for partitioning purposes translated into a Basic Schedul-
ing Block (BSB) hierarchy. This hierarchy is more suited
for partitioning, but contains the same information as the
CDFG. The bulk of the application is made up of the leaf
BSBs which consist of single DFGs (other BSBs repre-
sent the control structures). The leaf BSBs are enclosed
by rectangles in figure 4 and they contain the operations
(such as multiplication, addition, etc.) that are executed
by the BSBs and information about data dependencies be-
tween these operations.
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Figure 4. The CDFG to BSB correspondence

In the allocation algorithm, the application is repre-



sented as an array of leaf BSBs (from now on only de-
noted BSBs). The application in figure 4 is for example
represented by the BSB-array , corre-
sponding to the BSBs listed to the right in figure 5.

4 The hardware resource allocation algo-
rithm

The fact that the application in later synthesis stages is
going to be partitioned between hardware and software is
used in the allocation algorithm. The algorithm generates
an allocation by generating a pseudo partition of the ap-
plication’s BSBs. The basic idea of the algorithm is to try
to move as many BSBs as possible to hardware while tak-
ing into consideration the hardware cost of moving these
BSBs. A BSB has a minimal set of resources required
for executing it in hardware (the algorithm considers only
the functional resources, i.e. interconnect and storage re-
sources are not considered). When considering moving a
BSB, some of these required resources may already have
been allocated as a result of other BSBs having previously
been moved to hardware. A BSB is moved only when there
is room to allocate the (additional) resources and the con-
troller required for executing the BSB in hardware. As
a result, an allocation is produced while moving BSBs to
hardware.

Before describing the algorithm, some basic definitions
should be made.

Definition 1 Define the following type:

An RMap (Resource Map) is a mapping from resources to
integers. Two operators are defined on RMaps:

Example 1 Given the two allocations:

the operators and will result in e.g.:

Indexing and updating in RMaps results in e.g.:

The algorithm is shown in algorithm 1. Before entering
the main loop, the array of BSBs is prioritized, see sec-
tion 4.1. Then, starting with the first BSB in the prioritized
array, if it is already in hardware, some operation in the
BSB is urgent and, if possible, one more resource that can
execute this operation should be allocated (the name of the

ALLOCATE

Allocation, ReqResources, Restrictions : RMap

Allocation
RemainingArea Area
for i 1 to L do Move BSBArray[i] to Software
BSBArray Prioritize(BSBArray)
i 1
while ((i L) and (RemainingArea 0))

AllocationChanged False
B BSBArray[i]
if (B is in Hardware) then

R MostUrgentResource(B)
if ((Area(R) RemainingArea) and

(Allocation(R) + 1 Restrictions(R)) then
Allocation(R) Allocation(R) + 1
RemainingArea RemainingArea - Area(R)
AllocationChanged True

else
ReqResources GetReqResources(B) Allocation
Cost ECA(B) + Area(ReqResources)
if (Cost RemainingArea) then

Allocation Allocation ReqResources
RemainingArea RemainingArea - Cost
Move BSBArray[i] to HW
AllocationChanged (ReqResources )

if (AllocationChanged) then
BSBArray Update (BSBArray, Allocation)
BSBArray Prioritize(BSBArray)
i 1
else
i i + 1

return Allocation

Algorithm 1. The hardware allocation algorithm

resource is returned by the function MostUrgentResource).
If this is possible (if the area of the resource is less than
the remaining hardware area, and the restrictions are not
violated, see section 4.3), the allocation and the remaining
area are updated. If the allocation of the required resource
is not possible, the BSB is skipped.

If the BSB currently being investigated is still in soft-
ware it should be tried to move it to hardware. Moving
a BSB to hardware will induce a cost (see section 4.2),
which consists of the Estimated Controller Cost (ECA) and
the cost of allocating (additional) resources in order to ex-
ecute the BSB in hardware. These additional resources are
the resources in ReqResources which equal the resources
necessary to execute the BSB in hardware (found by the
function GetReqResources) minus the already allocated
resources.



After investigating the current BSB, B, the allocation
might have changed as a result of allocating one more re-
source for an operation in B (if B was already placed in
hardware) or as a result of moving B from software to hard-
ware. If the investigation of B has resulted in a new alloca-
tion, the information associated with each BSB is updated,
see section 4.1, and the array is re-prioritized. If not, B is
skipped and the next BSB in the array is investigated. If
the last BSB is reached without having changed the allo-
cation, or if the remaining area reaches zero, it means that
no more BSBs can be moved to hardware and no more re-
sources can be allocated; the algorithm exits and returns
the obtained allocation.

4.1 Prioritizing the BSBs
When considering which BSBs to move to hardware, a

metric of urgency is employed when prioritizing the BSBs.
Consider a BSB in the application. Each operation in the
BSB will, if the BSB is placed in hardware, be executed by
some resource in the hardware data-path. If the BSB con-
tains a lot of operations of a specific type, and the num-
ber of resources that can execute this type of operation
is small, the final hardware schedule produced during the
hardware/software partitioning process will be stretched,
leading to a loss of performance.

Note that the communication overhead of moving a
BSB to hardware is ignored. This is due to the fact that
the algorithm works at an early stage in the design flow,
using a limited amount of information about the applica-
tion. At this point in the design trajectory the main issue is
to get a good guess on a feasible hardware data-path allo-
cation fast, thus it is acceptable no neglect certain charac-
teristics such as the communication overhead. If too many
characteristics are taken into account, the algorithm would
become too slow.

Since hardware is able to exploit the inherent paral-
lelism between operations in a BSB, BSBs with heavy in-
herent parallelism are prioritized over BSBs which do not
have as heavy inherent parallelism. However, since the
total execution time of a BSB is also determined by the
number of times it is executed (during one execution of the
application), the priority function is also based on profiling
information.

The algorithm is guided towards allocating resources
for operations that can be executed in parallel. As an esti-
mate of the inherent parallelism in a BSB, the Functional
Unit Request Overlap (FURO), which estimates the prob-
ability that two operations in a BSB will compete for a
hardware data-path resource, is used. The estimate is an
extension of the one in [10]:

Definition 2 Let and be operations in a BSB, , and
let be the profile count for . The Functional Unit
Request Overlap, FURO, for the operation of type in
is:

T(i) returns the type of the operation i, Ovl(i,j) is the over-
lap of the ASAP-ALAP intervals of the two operations and
M(i), M(j), respectively, is the mobility of the operation
(ALAP - ASAP + 1). In figure 5, M(i) = 5 - 1 + 1 =
5, Ovl(i,j) = 3. Note, that it is necessary to ensure, that
the two operations are not successors of each other, since
if they are, they cannot compete for resources, since they
cannot be scheduled in the same control-step (Succ(i) re-
turns the set of all successor operations of i).

i

i

t=1

t=2

t=3

t=4

t=5

j

j

Figure 5. Overlap of operations

The higher the overlap is, the higher is the probabil-
ity that the two operations will be scheduled in the same
control-step. On the other hand, if the operations have
large mobilities, they could probably be moved away from
each other in the final schedule.

Each BSB is for each operation annotated with a
value .

Definition 3 Let be an operation type and a BSB.
Let InHW( ) be the function that returns true if is in
hardware, false otherwise. Then

if not InHW( )

if InHW( )

Alloc(o) returns the number of resources allocated so far,
that can execute an operation of type .

In this way, as the allocation grows, will de-
crease for a given BSB placed in hardware and a given
operation . The priority of BSBs is based on the values

:

Definition 4 Let mean that has priority over
. Then

for all operation types (if a BSB, , does not have
operations of type , is zero).



This means, that when considering two BSBs, the BSB
with the highest for any type of operation will
have priority over the other, meaning either that the BSB
should be moved to hardware before the other BSB or, if it
is already in hardware, contains an operation for which
it is urgent to allocate one more resource before it can be
considered to move the other BSB to hardware.

Example 2 Consider two blocks and which, for
the sake of simplicity, contain only one operation type
denoted . At first, is prioritized over because

. Then is moved to hardware,
and a resource that can execute operation is added to
the allocation (if one was not allocated already). Now, ac-
cording to definition 3, drops while
stays the same because is still in software. As long as

, resources that can execute are
added to the allocation, but in this way, could get pri-
ority over and as a result also be moved to hardware.

As shown in example 2, BSBs that already benefit from
being placed in hardware are dynamically given lower pri-
orities than BSBs still in software. The updating of the
information associated with the BSBs mentioned in sec-
tion 4 means re-calculating the values as a result
of allocating additional resources.

4.2 The cost of moving a BSB
The algorithm starts with all BSBs being placed in soft-

ware. Moving a BSB to hardware will induce a cost in
terms of hardware area. Part of this area is the controller
area, part is the area of the allocation of resources neces-
sary to execute the BSB in hardware.

The controller is composed of a number of registers to
hold the state. The number of states for a BSB is esti-
mated as the ASAP schedule length. This estimate is op-
timistic, but it is the only estimate available, since there
is no allocation available to generate a more precise list-
based schedule (the allocation is what we are looking for).
The number of registers necessary to hold the states for a
BSB is proportional to where is the estimated
number of states of the BSB. In addition, the controller has
decode logic which is proportional to . In all this means
that the control logic is proportional to . A
more thorough description of the controller size estimate
can be found in [6], where it is shown that the Estimated
Controller Area, ECA, is calculated as

where , , , and are the areas of a register,
an and-gate, an or-gate and an inverter-gate.

The other part of the cost of moving a BSB to hard-
ware is the total area of the resources necessary to exe-
cute the operations of the BSB. The algorithm will, when

a BSB is moved to hardware, allocate a minimum of re-
sources (maximum one of each) so that all operations in
the BSB can be executed. Note, that the allocation might
in advance contain resources that can execute some of the
operations in the BSB. This means that the new resources
are added to the existing allocation only if they are nec-
essary. For instance, if the BSB that should be moved to
hardware contains only additions and multiplications, and
a subtracter and a multiplier has already been allocated, the
only required resource for moving this BSB to hardware is
an adder. The total cost of moving a BSB from software to
hardware can now be formulated as:

4.3 Allocation restrictions
Since the allocation algorithm is greedy, a situation

where it allocates too many resources that can execute a
specific operation type can occur. The ASAP-schedule can
be used to give an estimate of the maximum number of
operations of a specific type that can be executed in paral-
lel. The algorithm will not produce allocations that exceed
these limits (a maximum of 3 multipliers, for instance).

4.4 Algorithm complexity
The runtime of the allocation algorithm is difficult to

estimate. However, the runtime of the initial computation
of the Functional Unit Request Overlaps is proportional to

, where is the number of BSBs and is the max-
imum number of operations in any of the BSBs. It is the
computation of the FUROs that is the time consuming task,
but this computation is only done once. The allocation al-
gorithm could be executed several times for the same array
of BSBs with different area constraints, different hardware
resource library (or restrictions for that matter).

5 Results
The quality of the allocations generated by the alloca-

tion algorithm is evaluated using the PACE algorithm [7].
First, the PACE algorithm is used to generate a partition of
the application for all possible allocations. Through this
exhaustive search, the allocation that gives the best parti-
tioning result in terms of speed-up is marked as the best
allocation. The PACE algorithm is then used to generate
a partition using the allocation generated by the allocation
algorithm, and this result is compared with the partitioning
result obtained with the best allocation.

Four applications have been used to test the allocation
algorithm, and the results after partitioning are shown in
the table below. The table shows the size of the applica-
tions and the speed-up that can be achieved using the allo-
cation found by the algorithm compared with the speed-up
(SU) that can be achieved using the best allocation (speed-
up is computed as the decrease in execution time from



an all software solution to a combined hardware/software
solution including hardware/software communication time
estimates). The column Size shows the size of the alloca-
tion (i.e. HW data-path) in percentage of the total size of
the HW data-path and controllers (interconnect and stor-
age are ignored in these figures). The next column shows
how much of the applications were placed in HW and how
much in SW, and the last column shows the run-time for
the allocation algorithm on a Sparc20.

hal is the well-known example from [11], man is an ap-
plication that calculates the Mandelbrot set [12] and eigen
is an algorithm that calculates the eigen-vectors in an al-
gorithm that computes interpolated cloud-movement pic-
tures for a stream of meteo-satellite pictures [8]. straight
is taken from [9].

Example Lines SU/SU(best) Size HW/SW CPU sec
straight 146 1610%/1610% 62% 58%/42% 0.1
hal 61 4173%/4173% 93% 80%/20% 0.2
man 103 30%/3081% 92% 8%/92% 0.2
eigen 488 20%/311% 82% 19%/81% 0.5

Table 1. Results

The explanation of the third result, which apparently
looks quite bad, is that the application contains a lot of par-
allel loading of constant values for multiplication. These
constant loadings are situated in a single BSB which means
that the estimated number of states, , and hence the ECA
is extremely poor for this block when moved to hardware.
Therefore, the algorithm allocates many constant genera-
tors which reduces the available controller area, and there-
fore the partitioning algorithm cannot move as many BSBs
to hardware. However, with a single design iteration, in
which the number of allocated constant generators was re-
duced from the automatically generated value to a value
of one, the Best SU was obtained. The same was the case
for the eigen example; one design iteration where only the
number of allocated resources that executes division was
reduced by one was necessary to obtain the Best SU solu-
tion.

It might seem strange that a speed-up of 3081% can be
achieved for the Mandelbrot example by placing only 8%
of the application in HW. However, these 8% constitutes an
extremely computing intensive part of the algorithm. Thus
a large speed-up can be achieved by placing this fraction
of the application in HW.

5.1 The effect of optimistic controller estimation
In section 4.2 it was shown how the controller is esti-

mated on basis of an ASAP schedule length. This is of

1The eigen benchmark has approximately 1.000.000 different alloca-
tions. Evaluating one allocation takes more than 30 seconds which makes
exhaustive evaluation impossible. The allocation which makes the best
speed-up is the best allocation found using numerous experiments from
tutorial sessions with the LYCOS environment.

course an optimistic estimate of the final schedule length –
the resulting controllers for BSBs actually moved to hard-
ware are larger. This means that the algorithm will allo-
cate a few too many resources for the hardware data-path
than actually affordable. However, knowing this, the de-
signer can always reduce the number of allocated resources
slightly in order to obtain the best possible partitions. It
is never necessary to increase the number of allocated re-
sources to achieve the best allocation.

6 Conclusion and future work
This paper has presented a novel allocation algorithm

for hardware/software partitioning which allocates re-
sources to the hardware data-path. The allocations gen-
erated come close to the best possible allocations obtained
exhaustive search.

Directions for future work includes extending the al-
gorithm to be able to deal with selection between several
resources that can execute the same type of operation. An-
other extension is the generalization to target architectures
that contain more than one ASIC. Also, aspects such as in-
corporating interconnect and storage size estimates would
be interesting to look into.
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