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Abstract—Machine learning (ML) based modeling attacks are
the currently most relevant and effective attack form for so-called
Strong Physical Unclonable Functions (Strong PUFs). We provide
an overview of this method in this paper: We discuss (i) the basic
conditions under which it is applicable; (ii) the ML algorithms
that have been used in this context; (iii) the latest and most
advanced results; (iv) the right interpretation of existing results;
and (v) possible future research directions.

Index Terms—Physical Unclonable Functions, Machine Learn-
ing, Modeling Attacks, Cryptanalysis

I. INTRODUCTION

Electronic devices are now pervasive in our everyday life.
This makes them an accessible target for adversaries, leading
to a host of security and privacy issues. Classical cryptography
offers several measures against these problems, but they all rest
on the concept of a secret binary key: It is assumed that the
devices can contain a piece of information that is, and remains,
unknown to the adversary. Unfortunately, it can be difficult
to uphold this requirement in practice. Physical attacks such
as invasive, semi-invasive, or side-channel attacks, as well as
software attacks like API-attacks and viruses, can lead to key
exposure and full security breaks. The fact that the devices
should be inexpensive, mobile, and cross-linked aggravates the
problem.

The described situation was one motivation that led to the
development of Physical Unclonable Functions (PUFs). A
PUF is a (partly) disordered physical system P that can be
challenged with so-called external stimuli or challenges Ci,
upon which it reacts with corresponding responses termed
RCi

. Contrary to standard digital systems, a PUF’s responses
shall depend on the nanoscale structural disorder present in the
PUF. This disorder cannot be cloned or reproduced exactly,
not even by its original manufacturer, and is unique to each
PUF. As PUF responses can be noisy, suitable error correction
techniques like fuzzy extractors [12] may be applied in prac-
tice to obtain stable outputs R′

Ci
. Assuming successful error

compensation, any PUF P can be regarded as an individual
function FP that maps challenges Ci to (stable) responses R′

Ci

(compare [42]).
Due to its complex and disordered structure, a PUF can

avoid some of the shortcomings associated with digital keys.
For example, it is usually harder to read out, predict, or derive
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its responses than to obtain the values of digital keys stored in
non-volatile memory. This fact has been exploited for various
PUF-based security protocols. Prominent examples include
schemes for identification and authentication [33], [14], key
exchange or digital rights management purposes [15].

For a more detailed introduction and overview of PUFs, we
refer the reader to a recent paper by Rührmair, Devadas and
Koushanfar [38] and by Rührmair and Holcomb [36].

II. PUF MODELING ATTACKS AND THEIR APPLICABILITY

What are PUF modeling attacks? Under which conditions
and to which PUF types are they applicable? In general,
modeling attacks on PUFs presume that an adversary Eve has,
in one way or the other, collected a subset of all CRPs of
the PUF. She then tries to derive a numerical model from
this CRP data, i.e., a computer algorithm which correctly
predicts the PUF’s responses to arbitrary challenges with high
probability. Machine learning (ML) techniques are a natural
and powerful tool for this task, but also other methods like
linear programming or algebraic techniques have been applied
in the past [13], [25], [31], [28], [46], [42], [44], [8]. If and
how the required CRPs can be collected, and how relevant
modeling attacks are in practice, very strongly depends on the
considered type of PUF. It again makes sense to distinguish
between Weak PUFs and Strong PUFs here (see [38], [37],
[42], [43], [36]).

1) Strong PUFs: Strong are the PUF class for which
modeling attacks have been designed originally, and to which
they are best applicable. The reason is that they usually have
no protection mechanisms that restrict Eve in freely applying
challenges and reading out their responses [38], [37], [42],
[36]. A Strong PUF’s responses are usually not post-processed
on chip in a protected environment [33], [47], [29], [16],
[24], [26]. Most electrical Strong PUFs furthermore operate
at frequencies of a few MHz [24]. Therefore even short
physical access periods enable Eve to read-out and collect
many CRPs. A yet further CRP source is simple protocol
eavesdropping, for example on standard Strong PUF-based
identification protocols, where the CRPs are sent in the clear
[33]. Both CRP sources are part of the established, general
attack model for PUFs.

Once a predictive model for a Strong PUF has been derived,
the two main security features of a Strong PUF no longer hold:



The PUF is no longer unpredictable for parties that are not in
physical possession of the PUF; and the physical unclonability
of the PUF is overcome by the fact that the digital simulation
algorithm can be cloned and distributed arbitrarily. Any Strong
PUF protocol which is built on these two features is then no
longer secure. This includes any standard, widespread Strong
PUF protocols known to the authors. 1

For example, if Eve can use her intermediate physical access
in a PUF-based key exchange protocol [10], [3] to derive a
predictive model of the PUF, she can later predict the key that
was exchanged between the honest parties. A similar effect
occurs in 1-out-of-2 oblivious transfer (OT) protocols [35], [3]:
If the OT-receiver can derive a numerical model of the PUF
before he physically transfers the PUF to the OT-sender, he can
later break the security of the sender, and learn both transfered
bits b0 and b1. Also in the CRP-based, standard identification
protocols for Strong PUFs [32], [33], a numerical model can
be used to impersonate the original PUF.

Concerning applications where the form factor of the PUF
may play a role, such as smartcards, it is important to empha-
size that the simple additive simulation models derived in most
modeling attacks can be implemented in similar environments
as the original PUFs, and with a relatively small number of
gates. An active fraudster can come so close to the original
form factor in a newly set-up, malicious smartcard hardware
that the difference is very difficult to notice in practice.

2) Weak PUFs: Weak PUFs (or POKs) are PUFs with few,
fixed challenges, in the extreme case with just one challenge
[42], [38]. It is usually assumed that their response(s) re-
main inside the PUF-carrying hardware, for example for the
derivation of a secret key, and are not easily accessible for
external parties. Weak PUFs are the PUF class that is the least
susceptible to modeling attacks.

They only apply to them under relatively rare and special
circumstances: namely if a Strong PUF, embedded in some
hardware system and with a not publicly accessible CRP
interface, is used to implement the Weak PUF. This method
has been suggested in [13], [47]. Thereby only a few (of the
very many possible) challenges of the Strong PUF are used for
internal key derivation. Our attacks make sense in this context
only in the special case that the Strong PUF challenges C∗

i

that are used in the key derivation process are not yet fixed in
the hardware at the time of fabrication, but are selected later
on. For one reason or another, the adversary may learn about
these challenges at a point in time that lies after his point of
physical access to the PUF. In this case, machine learning and
modeling of the Strong PUF can help the adversary to derive

1One sole potential exception are a few recent bit commitment protocols
for PUFs that were explicitly designed for the so-called “bad PUF model”
or the “malicious PUF model”. They promise to uphold security even if one
or all used PUFs are not unpredictable (see partly van Dijk and Rührmair
[11] and mainly Damgard and Scafuro [7]). At least some of these protocols
are relatively non-standard in a number of aspects, however, such as the
assumed input/output lengths of the used PUFs. Asides from these two special
protocols, all other practically relevant, widespread Strong PUF schemes
straightforwardly break down if the main security feature of the Strong PUF
is violated by a modeling attack, namely their unpredictability.

the key, even though the points in time where he has access to
the PUF and where he learns the challenges C∗

i strictly differ.
In order to make our ML methods applicable in this case, one
must assume that the adversary was able to collect many CRPs
of the Strong PUF, for example by physically probing the
internal digital response signals of the Strong PUF to randomly
injected challenges, or by malware that abuses internal access
to the underlying Strong PUF’s interface. We comment that the
latter scenarios obviously represent very strong attack models.
Under comparable circumstances also many standard Weak
PUFs and other secret key based architectures break down.

In any other cases than the above, modeling attacks are not
relevant for Weak PUFs. This means that they are not appli-
cable to the majority of current Weak PUF implementations,
including the Coating PUF [48], SRAM PUF [17], Butterfly
PUF [22], and similar architectures.

We conclude by the remark that this should not lead to the
impression that Weak PUFs are necessarily more secure than
other PUFs. Other attack strategies can be applied to them,
including invasive, side-channel and virus attacks, but they are
not the topic of this paper. For example, probing the output
of the SRAM cell prior to storing the value in a register can
break the security of the cryptographic protocol that uses these
outputs as a key. Also physical cloning strategies for certain
Weak PUFs have been reported recently [19]. Some overview
of these attacks is provided in [18].

III. THE PROCESS OF PUF MODELING AND ITS MAIN
CHALLENGES

We will now discuss the basic process of machine-learning
based modeling and its main challenges in greater detail.
The modeling process essentially is a two-step procedure. Its
first step consists of setting up an internal, parametric model
of the PUF. This requires finding a function F (·, ·) which
correctly describes the PUF’s challenge-response behavior (or
input-output behavior). F should take as input (i) a challenge
Ci that is applied to the PUF, and (ii) values that describe
the internal, unique, fabrication-dependent parameters of the
PUF. The latter are usually given by some multidimensional
parameter vector w⃗ with values in the reals or rationals. F
then shall output the correct corresponding responses RCi of
the PUF on challenge Ci, i.e., F (w⃗, Ci) = RCi .

In a second step, the parametric model F is used together
with a suitably chosen ML algorithm for PUF learning. The
algorithm takes as input a large set of CRPs of the PUF, the
so-called “training set”. Its goal is to find a concrete vector
w⃗′ that leads to a good prediction quality of the PUF. This
quality is evaluated on a second, independent CRP set, the so-
called “test set”. 2 One noteworthy aspect in this context is
that the vector w⃗′ derived by the ML algorithm do not need to

2Typically, the test set can have a fixed size of a few thousand CRPs,
while the size of the training set required for successful learning usually
strongly depends on the PUF and its complexity. It can be linear for certain
PUFs (like the Arbiter PUF), and very large, even exponential in some system
parameter for others (XOR Arbiter PUF, Lightweight PUF). Overall, the CRP
requirements for a sucessful ML attack are mainly determined by the size of
the training set.



be equal to the “real” parameter values w⃗ of the considered,
physical PUF instance. Depending on the PUF architecture
and the model F , many different vectors can lead to an almost
equivalent output behavior, and identifying one of them may
be sufficient for a good prediction quality.

What are the main challenges in this process? The first issue
consists of finding a suitable model of the considered PUF at
all. Given some knowledge about the physical mechanisms
underlying the PUF (e.g., about the used integrated circuits
or optical systems), however, a parametric model usually can
be developed fairly easily. Finding a model that is computa-
tionally efficient can be harder. To that end, the underlying
mechanisms in the PUF may need to be simplified or suitably
approximated.

A second problem is to identify a suited ML algorithm
that performs efficiently on the considered PUF. In the ideal
case, the performance should be polynomial in some system
parameter (typically in the PUF’s challenge bitlength) and in
the aspired prediction quality. However, since PUFs cannot be
scaled indefinitely due to cost and stability constraints, also
mild exponential growth rates may be acceptable in certain
situations, as long as the algorithm still can break practically
relevant PUF sizes. One well-known example for this effect
are the modeling attacks on XOR Arbiter PUFs: The practical
stability of these PUFs decreases exponentially in their number
of XORs. Current attacks have a complexity that increases
exponentially in the same parameter, but still reach practically
relevant size and complexity levels (compare [42], [44] and
Section IV-C).

Finally, we remark that the two problems of constructing
suitable models and of finding efficient ML algorithms are
closely intertwined in several ways. Firstly, many powerful ML
algorithms require certain additional properties of the paramet-
ric models in order to be applicable. They may demand, for
example, that the model is linearly separable (this allows the
application of support vector machines), or that it is differen-
tiable (this enables working with logistic regression, among
other techniques). This means that only the identification of
such models makes these powerful ML algorithms applicable.
Secondly, the performance of the ML algorithm can depend
strongly on the used model and its computational efficiency.
Both the model and the ML algorithm may thus need to be
optimized jointly for optimal attacks performance. Suitable
design of the PUF models and choice of the appropriate ML
algorithm usually requires some in-depth knowledge about
ML.

IV. AN EXAMPLE: ARBITER PUFS AND VARIANTS

Let us illustrate the above discussion by a concrete example,
namely by modeling attacks on Arbiter PUFs and their variants
(i.e., XOR Arbiter PUFs, Lightweight (LW) PUFs, and Feed
Forward (FF) Arbiter PUFs), which are currently the best
investigated electrical Strong PUF type [16] [24] [47].This
section is organized as follows: We will discuss the employed
machine learning methods in Section IV-A and the attacked
PUF types in Section IV-B. Finally, we survey the latest

modeling results from [42], [44] on simulated and silicon CRP
data in Section IV-C.

A. Employed Machine Learning Methods

Various machine techniques have been applied to PUFs in
the literature [13], [25], [31], [28], [46], [42], [44], [8], includ-
ing Support Vector Machines (SVMs), Logistic Regression
(LR), Evolution Strategies (ES), and briefly also Neural Nets
and Sequence Learning [42]. The two approaches described in
the sequel have been identified as the currently best performing
methods.

1) Logistic Regression with Rprop: LR is a well-
investigated supervised machine learning framework, which
has been described, for example, in [2]. In its application to
PUFs with single-bit outputs, each challenge C = b1 · · · bk is
assigned a probability p (C, r | w⃗) that it generates a output
r ∈ {0, 1} ). The vector w⃗ encodes the relevant internal
parameters, for example the particular runtime delays, of
the individual PUF. The probability is given by the logistic
sigmoid σ(x) = (1 + e−x)−1 acting on a function f(w⃗, C)
parametrized by the vector w⃗ as

p (C, r | w⃗) = rσ(f) + (1− r)(1− σ(f)). (1)

Thereby the decision function f determines through f = 0
a decision boundary of equal output probabilities. For a
given training set M of CRPs the boundary is positioned
by choosing the parameter vector w⃗ in such a way that the
likelihood of observing this set is maximal, respectively the
negative log-likelihood is minimal:

ˆ⃗w = argminw⃗ l(M, w⃗) = argminw⃗
∑

(C, r)∈M

−ln p (C, r | w⃗)

(2)
As there is no analytical solution to determine the optimal
parameter vector ˆ⃗w, it has to be optimized iteratively, e.g.,
using the gradient information

∇l(M, w⃗) =
∑

(C, r)∈M

(σ (f (w⃗))− r)∇f(w⃗) (3)

From the different possible optimization methods, RProp [2],
[34] has been identified as optimal in earlier ML works
on PUFs [42], [44]. RProp makes a very big difference in
convergence speed and stability of the LR algorithms (k-XOR
Arbiter PUFs for medium or large k were only learnable with
RProp).

In general, logistic regression has the asset that the exam-
ined problems need not be (approximately) linearly separable
in feature space, as is required for successful application of
support vector machines, for example, but merely differen-
tiable.

2) Evolution Strategies: Evolution Strategies (ES) [1], [45]
belong to an ML subfield known as population-based heuris-
tics. They are inspired by the evolutionary adaptation of a
population of individuals to certain environmental conditions.
In our case, one individual in the population is given by a
concrete instantiation of the runtime delays in a PUF, i.e., by a



concrete instantiation of the vector w⃗ appearing in Eqns. 2 and
3. The environmental fitness of the individual is determined
by how well it (re-)produces the correct CRPs of the target
PUF on a fixed training set of CRPs. ES runs through several
evolutionary cycles or so-called generations. With a growing
number of generations, the challenge-response behavior of
the best individuals in the population better and better ap-
proximates the target PUF. ES is a randomized method that
neither requires an (approximately) linearly separable problem
(like Support Vector Machines), nor a differentiable model
(such as LR with gradient descent); a merely parameterizable
model suffices. Since all known electrical PUFs are easily
parameterizable, ES is a very well-suited attack method.

B. Parametric Models for Arbiter PUF and Their Variants

It has become standard to describe the functionality of
Arbiter PUFs and their variants via an additive linear delay
model [25], [42], [44]. The overall delays of the two racing
signals are modeled as the sum of the delays in the stages.
The final delay difference ∆ between the upper and the lower
path in an n-bit Arbiter PUF is expressed as

∆ = w⃗T Φ⃗, (4)

where w⃗ and Φ⃗ are vectors of dimension n+1. The parameter
vector w⃗ encodes the delays for the subcomponents in the
Arbiter PUF stages, whereas the feature vector Φ⃗ is solely a
function of the applied n-bit challenge C [25], [42], [44].

In greater detail, the following holds. We denote by δ
0/1
i

the runtime delay in stage i for the crossed (1) respectively
uncrossed (0) signal path. Then

w⃗ = (w1, w2, . . . , wk, wn+1)T , (5)

where w1 =
δ01 − δ11

2 , wi =
δ0i−1 + δ1i−1 + δ0i − δ1i

2 for all

i = 2, . . . , n, and wn+1 =
δ0n + δ1n

2 . Furthermore,

Φ⃗(C⃗) = (Φ1(C⃗), . . . ,Φk(C⃗), 1)T , (6)

where Φl(C⃗) =
∏n

i=l(1− 2bi) for l = 1, . . . , n.
The output r of an Arb-PUF is determined by the sign of

the final delay difference ∆:

r = Θ(∆) = Θ(w⃗T Φ⃗). (7)

with Θ being the Heaviside step function, i.e., Θ(x) =
0 if x < 0 and Θ(x) = 1 if x ≥ 0. Eqn. 7 shows that the
vector w⃗ via w⃗T Φ⃗ = 0 determines a separating hyperplane in
the space of all feature vectors Φ⃗. Any challenges C that have
their feature vector located on the one side of that plane give
response r = 0, those with feature vectors on the other side
r = 1. Determination of this hyperplane allows prediction of
the PUF and can be achieved by setting the decision function
f in Eqn. 1 to the linear delay model f = w⃗T Φ⃗.

More complex architectures that use k standard Arbiter
PUFs in parallel, possibly together with special input or output
mappings, can then simply be modelled by using the linear
additive delay model for each of the parallel Arbiter PUFs.

Overall, this involves k feature vectors Φ⃗1, . . . , Φ⃗k derived
from the effective challenges at the individual Arbiter PUFs
(given by the input mapping) and k weight vectors w⃗1, . . . , w⃗k:

o = Θ(
k∏

i=1

∆i) = Θ(
k∏

i=1

w⃗T
i Φ⃗i) (8)

Eqn. 8 defines a decision boundary at
∏k

i=1 w⃗
T
i Φ⃗i = 0. Any

challenges C that have their feature vector set Φ⃗1, . . . , Φ⃗k

located on the one side of the boundary (e.g. o < 0 respectively
an odd number of individual delays ∆i smaller than zero) give
response r = 0, those with feature vectors on the other side
r = 1. Determination of this boundary allows prediction of
the PUF and can be achieved by setting the decision function
f in Eqn. 1 to this boundary f =

∏k
i=1 w⃗

T
i Φ⃗i. It implies an

optimization along the gradient in Eqn. 3:

∇f(w⃗j) = Φ⃗j

∏
i ̸=j

w⃗T
i Φ⃗i (9)

This principle has been applied to XOR Arbiter PUFs and
Lightweight PUFs in the literature.

C. Results and Growth Rates

The application of the above ML algorithms and models to
Arbiter PUFs and their variants (XOR Arbiter PUF, LW PUF,
FF Arbiter PUF) has led to the results shown in Table I, which
are taken from [44]). The attacks thereby have been carried
out both on simulated and silicon CRP data [44]. Note in this
context that the use of error-free, simulated CRP data obtained
by a linear additive delay model is one standard method of
obtaining ML results on Arbiter PUF variants, even though
it has one unexpected side effects: It can lead to prediction
rates that are higher than the real-world temperature stability
of the attacked PUF (compare the discussion in Section II-G
of [44]).

Together with the analyses in [42], [44], the findings of
Table I illustrate that the XOR-based Arbiter PUF variants
(XOR Arbiter PUF, LW PUF) lead to an exponential complex-
ity, while the other types (standard Arbiter PUFs, FF Arbiter
PUFs) can be learned successfully with polynomial effort. In
greater detail [42], [44], the complexity of the attacks on XOR
Arbiter PUFs and LW PUFs is exponential in the number of
XORs (k). Furthermore, it is merely polynomial (of degree k)
in the challenge bitlength n. At the same time, the stability of
these two architectures is exponentially bad in k, too.

This makes the ML-resilient implementation of existing
Arbiter PUF variants a race between machine learners and
circuit designers: Can the design be optimized in its noise
level, so that it is practically secure against ML existing
attacks, while still being stable? Or can the ML algorithms be
optimized and run on more powerful hardware, so that they
can reach and break all practically stable XOR Arbiter PUF
and LW PUF architectures? The authors of [42], [44] estimate
that the former is the case, and that XOR Arbiter PUFs and
LW PUFs with 8 XORs and bitlength 512 are still stable, but
beyond the reach of current ML methods. Future efforts will



PUF-Type No. of XORs/ ML Bit CRP CRPs Training Prediction
FF-Loops Method Length Source (×103) Time Rate

Arbiter PUF — LR
128 Simulation 39.2 2.10 sec 99.9%
64 FPGA 6.5 0.83 sec 99%
64 ASIC 6.5 0.76 sec 99%

XOR Arbiter PUF 5 LR
128 Simulation 500 16:36 hrs 99%
64 FPGA 78 39 min 99%
64 ASIC 78 18:09 min 99%

Lightweight PUF 5 LR 128 Simulation 1000 267 days 99%
FF Arbiter PUF 8 ES 128 Simulation 50 3:15 hrs 99%

TABLE I
SOME MAIN ATTACK RESULTS ON ARBITER PUFS AND VARIANTS THEREOF, TAKEN FROM [44]. BOTH SIMULATED, NOISE-FREE CRPS AND SILICON
CRPS FROM FPGAS AND ASICS HAVE BEEN USED IN THE ML EXPERIMENTS. THE PREDICTION RATES AND TRAINING TIMES ARE AVERAGED OVER
SEVERAL INSTANCES. ALL PRESENTED TRAINING TIMES ARE CALCULATED AS IF THE ML EXPERIMENT WAS RUN ON ONLY one single CORE OF one

single PROCESSOR. USING k CORES WILL APPROXIMATELY REDUCE THEM BY 1/k.

have to tell whether this estimate was reasonable or perhaps
too optimistic.

V. SUMMARY AND CONCLUSIONS

A. Discussion

Two straightforward, but biased interpretations of the exist-
ing modeling attacks would be the following: (i) All Strong
PUFs are insecure. (ii) The long-term security of electrical
Strong PUFs can be restored trivially, for example by increas-
ing the PUF’s size. Both views are simplistic, and the truth is
more involved.

Starting with (i), the current attacks are indeed sufficient
to break several electrical, delay-based PUF implementations.
Pappu et al.’s optical PUF, however, has never been attacked
successfully by modeling techniques, and generally seems out
of reach of ML-based modeling [39]. Furthermore, even in
electrical Strong PUFs there are a number of ways how PUF
designers might be able fight back in future designs.

For example, increasing the bitlength n in an XOR Arbiter
PUF or Lightweight Secure PUF with k XORs increases
the effort of the presented attacks methods as a polynomial
function of n with exponent k (in approximation for large
n and small or medium k). At the same time, it does not
worsen the PUF’s stability [9]. It has hence been argued in
[42], [44] that one might disable attacks through choosing a
strongly increased value of n and a value of k that corresponds
to the stability limit of such a construction. For example,
an XOR Arbiter PUF with 8 XORs and bitlength of 512
is implementable by standard fabrication processes [9], and
currently seems beyond the reach of pure ML-based modeling
attacks, so the authors of [42], [44] argue.

Also new design elements that could be added to standard
Arbiter PUFs and their variants may raise the attacker’s
complexity further. One example could be adding nonlinear-
ities, such as AND and OR gates that correspond to MAX
and MIN operators [25]. Combinations of Feed-Forward and
XOR architectures could be hard to machine learn too, partly
because they seem susceptible only to different and mutually-
exclusive ML techniques.

Moving away from delay-based PUFs, the exploitation of
the dynamic characteristics of current and voltage seems

promising, for example in analog circuits [6]. Also special
PUFs with a very high information content (so-called SHIC
PUFs [40], [41], [21]) could be an option, but only in such
applications where their slow read-out speed and their compar-
atively large area consumption are no too strong drawbacks.
Their promise is that they are naturally immune against
modeling attacks, since all of their CRPs are information-
theoretically independent. Finally, optical Strong PUFs, for
example systems based on light scattering and interference
phenomena [33], show strong potential in creating high input-
output complexity.

Regarding view (ii), PUFs are different from classical
cryptoschemes like RSA in the sense that increasing their
size often likewise decreases their input-output stability. For
example, raising the number of XORs in an XOR Arbiter
PUF and Lightweight PUF has an exponentially strong effect
both on the attacker’s complexity and on the instability of the
Strong PUF. PUF research was yet unable to find parameters
that increase the attacker’s effort exponentially while affecting
the PUF’s stability merely polynomially. Nevertheless, one
practically viable possibility is to increase the bitlength of
XOR Arbiter PUFs and Lightweight PUFs, as discussed above.
Future work will have to show whether the described large
polynomial growth of the latter method can persist in the long
term, or whether its high degree can be diminished by further
analysis.

B. Future Work

The upcoming years will presumably witness some com-
petition between codemakers and codebreakers in the area of
Strong PUFs. Similar to the design of classical cryptoprimi-
tives, for example stream ciphers, this process can be expected
to converge at some point to solutions that are resilient against
the known attacks.

For PUF designers, it may be interesting to investigate some
of the concepts that we mentioned above. One major goal will
be the development of practical (=stable, area efficient, low
cost) Strong PUFs that still possess high modeling resilience.
Some first attempts into this direction have already been made
in [51], [30], [4], [5], [23].

For PUF breakers, a worthwhile starting point is to improve



the attacks presented in this paper through optimized imple-
mentations and new ML methods. Another, qualitatively new
path is to combine modeling attacks with extra information
obtained from direct physical PUF measurements or from side
channels. For example, applying the same challenge multiple
times gives an indication of the noise level of a response bit.
It enables conclusions about the absolute value of the final
runtime difference in the PUF. Such side channel information
can conceivably improve the success and convergence rates of
ML methods. Some first steps towards these end have been
made just recently in a number of works [8], [27].

REFERENCES
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[11] M. van Dijk, U. Rührmair: Physical Unclonable Functions in Crypto-
graphic Protocols: Security Proofs and Impossibility Results. Cryptology
ePrint Archive, 2012:228, 2012.

[12] Y. Dodis, R. Ostrovsky, L. Reyzin, L., A. Smith: Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM
Journal on Computing, 38(1), 97-139, 2008.

[13] B. L. P. Gassend. Physical random functions. MSc thesis, MIT, 2003.
[14] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon physical

random functions. ACM CCS 2002.
[15] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Controlled

physical random functions. ACSAC 2002.
[16] B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas. Iden-

tification and authentication of integrated circuits. Concurrency and
Computation: Practice & Experience, 16(11):1077–1098, 2004.

[17] J. Guajardo, S. Kumar, G.J. Schrijen, and P. Tuyls. FPGA intrinsic PUFs
and their use for IP protection. CHES 2007.

[18] C. Helfmeier, D. Nedospasov, S. Tajik, C. Boit, J.-P. Seifert: Physical
Vulnerabilities of Physically Unclonable Functions. Design, Automation
and Test in Europe (DATE’14), 2014.

[19] C. Helfmeier, C. Boit, D. Nedospasov, J.P. Seifert: Cloning Physically
Unclonable Functions. HOST 2013.

[20] D.E. Holcomb, W.P. Burleson, and K. Fu. Initial sram state as a finger-
print and source of true random numbers for RFID tags. Conference on
RFID Security, 2007.

[21] C. Jaeger, M. Algasinger, U. Rührmair, G. Csaba, and M. Stutzmann.
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[38] U. Rührmair, S. Devadas, F. Koushanfar: Security based on Physical
Unclonability and Disorder. In M. Tehranipoor and C. Wang (Editors):
Introduction to Hardware Security and Trust. Springer, 2011.
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