
FEPMA: Fine-Grained Event-Driven Power Meter
for Android Smartphones Based on Device Driver

Layer Event Monitoring∗

Kitae Kim1, Donghwa Shin2, Qing Xie3, Yanzhi Wang3, Massoud Pedram3, and Naehyuck Chang1

1Seoul National University, Korea, 2Politecnico di Torino, Italy, 3University of Southern California, USA
1{ktkim, naehyuck}@elpl.snu.ac.kr, 2donghwa.shin@polito.it, 3{xqing, yanzhiwa, pedram}@usc.edu

Abstract—This paper introduces a novel sensor-less, event-
driven power analysis framework called FEPMA for providing
highly accurate and nearly instantaneous estimates of power dis-
sipation in an Android smartphone. The key idea is to collect and
correctly record various events of interest within a smartphone
as applications are running on the application processor within
it. This is in turn done by instrumenting the Android operating
system to provide information about power/performance state
changes of various smartphone components at the lowest layer
of the kernel to avoid time stamping delays and component
state observability issues. This technique then enables one to
perform fine-grained (in time and space) power metering in
the smartphone. Experimental results show significant accuracy
improvement compared to previous approaches and good fidelity
with respect to actual current measurements. The estimation
error of the proposed method is lower by a factor of two than
the state-of-the-art method.

I. INTRODUCTION

Power consumption of smartphones is increasing with each
generation of new devices. This power increase is caused by
the need to provide more functionality, higher performance,
ultra high resolution displays, high-speed wireless communica-
tion, etc. The capacity of batteries that power up such devices
is also increasing, albeit at a much lower pace. This gives rise
to the need to reduce power consumption of smartphones with-
out limiting the functionality or curbing the performance. This
is a very challenging undertaking considering the functional
and performance requirements.

In this paper, we will use the term smartphone component
to refer to all onboard modules in a commercial smartphone
such as the application processor (AP), Wi-Fi, Bluetooth,
cellular, GPS, cameras, display, flash memory, etc. Clearly,
it is essential for the success of any system-wide power
management solution to have an accurate accounting of which
components within the smartphone are consuming power at
a given time instance by how much. Power minimization in
smartphones is typically done through some kind of power
management solution whereby the unused components are
power gated (turned off) while the power and performance
level of active components is reduced to meet performance
requirements. Other techniques such as scheduling tasks to
maximize component idle time so that they can be put to sleep
and offloading compute-intensive tasks to the cloud have also
been suggested [1], [2], [3].
∗This research is supported by the International Research & Development

Program and the Center for Integrated Smart Sensors as Global Frontier
Project of the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT & Future Planning (No.2013075022,
CISS-201373718). The ICT at Seoul National University provides research
facilities for this study.

978-3-9815370-2-4/DATE14/ c©2014 EDAA

Time (ms)
0

1500

2500

Po
w

er
 (m

W
)

data1
data2

data1
data2
Measured power at 1 kHz
Estimated power at 1 Hz

500

200 400 600 800 1000 1200 1400

GPU on/��� Wi-Fi on Wi-Fi off

Wi-Fi packet transmission

1000

2000

3000
3500

Time sampling

Time sampling
0

Fig. 1. Measured and estimated system power consumption while browsing
a website using the Google Chrome browser. The system power consumption
is measured by a DAQ at 1 kHz sampling frequency, and the estimated power
is predicted by a sensor-less and sampling-based power estimation method
that has 1 Hz sampling rate. The 1 Hz estimation does not detect GPU on/off
during 400 ms and 600 ms and perceive the Wi-Fi packet transmission start
at 950 ms and the end at 1200 ms.

Using current sensors for each component can provide
highly accurate power measurements, which show how much
power each component is consuming instantaneously, in real
time. Unfortunately, the stringent form factors, weight, and
cost constraints for smartphones prevent a manufacturer from
employing the current sensor for each component. Instead,
indirect power measurements, which estimate the power con-
sumption of smartphones, are widely used. These power
estimation techniques typically rely on offline, but state-
dependent power characterization of components augmented
by dynamically obtained information about the state of each
component (e.g., active, idle, and sleep) and activity level (e.g.,
activity factor in an AP and packet transmission rate for a
wireless link). In order to obtain the latter information, it is
important to have the right system software support. Critical
to the success of the aforesaid approach is the ability to
correctly and quickly collect information about the state of
each component such as the operating state of the Bluetooth
module, utilization level of the AP, or data communication rate
of the Wi-Fi chipset in an asynchronous (event-driven) manner.
However, this ability is hard to come by because it requires
operating system (OS) kernel support and fine-grained data
collection of individual components with high timing accuracy
in the smartphone. If these conditions are not met, indirect
sensor-less power metering will become inaccurate.

Fig. 1 shows actually measured (1 kHz sampling) and
estimated (1 Hz sampling) power dissipation profiles of a
smartphone. The figure and its caption explain the power
estimation challenge. In contrast, we will show a fine-grained
event-driven indirect power estimation to capture most of the
important events in a timely manner without aliasing. A further
benefit of the fine-grained event-driven power estimation is
that it can be used to guide dynamic power management
(DPM) techniques for a smartphone. This is motivated by the
fact that modern smartphone systems exhibit a rather short

Po
w

er
 sp

ec
tra

l d
en

si
ty

 (d
B

)

1
Frequency (Hz)

10 100 1000 5000

79% 93% 97% 99%

10-5
10-4
10-3
10-2
10-1

Fig. 2. Power spectrum of a smartphone load current and the energy
distribution by the frequency.

idle period as illustrated in Fig. 1. Using the sampling-based
approach for determining the state of a component does not
capture the device state change in a timely manner, which
can inhibit proper deployment of effective system-wide DPM
policies. Nevertheless, previous smartphone power estimation
methods sample the component states in the order of once
every second or so [2], [4], [5], [6]. This is an extremely low
sampling rate for modern digital systems. Even if the authors
knew about this shortcoming, they could not help it because
using a sampling rate of even 10 Hz in their power metering
frameworks would not be practical due to rapid increase in
the profiling overhead as well as timing errors in recording
the events of interest.

The key to overcome limitations of previous approaches is
twofold:

1) Avoid a regular sampling strategy and instead adopt
event-driven recording of component state changes [7], [8].
This is a well-known technique not to lose time granularity
while maintaining reasonable profiling overhead. However,
there is a critical condition that should be satisfied in the
event-driven approach. Events should be captured at a correct
position in the OS event propagation flow.

2) Capture and record events of interest at the lowest level
of the OS kernel so that one can avoid time stamping delays
and state observability issues caused by capturing events at
improper positions. We remind the reader that there are many
different positions to capture device state change events in the
propagation flow. Modern smartphones are equipped with a
full-featured OS that has lots of software locks and memory
buffers from a user program to hardware devices. An event
(say a command to transmit data packets via the Wi-Fi module)
that arrives at the OS kernel entry point can be delayed before
it actually gets to the hardware component due to the locks
and buffers, and vice versa. Hence, if the state changes of
smartphone components are monitored at the highest level of
the OS kernel, the time recording of these events can be far
from reality of what happens in the device itself.

In theory and practice, it is not possible to achieve highly
accurate instantaneous power estimation by sampling at a
low rate or event monitoring at improper positions in the
event propagation flow. Moreover, a comparison of estimation
accuracy should be made with a golden reference that correctly
captures the actual power dissipation profile. In order to do
this, we measure the load current of a commercial smartphone,
which is Samsung Galaxy Nexus, using a high-speed data
acquisition system (DAQ) at a 50 kHz sampling frequency
and visualize its power spectrum in Fig. 2. This figures shows
that even a 200 Hz sampling frequency has a temporal aliasing
because 3% of frequency components in the power spectrum
are distributed above it. Since the golden reference contains
most important parts of the power spectrum, we conclude that
the sampling rate for the golden reference should be at least
1 kHz.

II. SENSOR-LESS POWER METERING FOR SMARTPHONES

The power consumption of a smartphone largely depends
on application and user behaviors, which in turn determine
component-level hardware activities and power modes. Sensor-
less power metering methods read the necessary information
such as system activities and device power modes to predict
the instantaneous power consumption. Previous works on
sensor-less power metering for smartphones can be classified
into two categories: i) sampling-based methods, ii) event-
driven methods.

Sampling-based methods periodically collect the informa-
tion of hardware activities and power modes from the Linux
kernel and predict the system power consumption based on
these information. The regression-based power model [2] es-
timates power consumption by logging user activities. Power-
Booter [4] provides an online power model generation tech-
nique using the battery discharge curve. The model molding
technique [5] is presented to enhance the battery monitoring-
based methods. However, a common issue that all sampling-
based techniques face is the excessive performance and energy
overhead due to frequent accessing the Linux kernel and
reading large amount of data from the kernel. In addition,
authors of [5] rely on a smart battery interface with a fuel
gauge that can measure battery voltage, temperature, and even
current sometimes. However, the sampling rate of the battery
fuel gauge is too low to provide accurate results.

In contrast, event-driven methods collect system activities
only when an event, which affects the system power consump-
tion, occurs. This nature drastically alleviates the profiling
overhead that makes it more suitable for the sensor-less power
metering. The simplest way for implementing the event-driven
method is modifying the source codes of Android or the Linux
kernel. A fine-grained energy profiler called Eprof [7] predicts
the power consumption by modifying the kernel code and
accounting system call events. Authors of [8] develop a non-
disruptive method called AppScope. They use the debugging
tools of the Linux kernel to collect the information by setting
a breakpoint to an arbitrary kernel function without any
code modification. However, these event-driven approaches
also have drawbacks such as inaccurate event timestamps,
unobservable devices, and low time granularity of the power
metering. Moreover, they do not take account of a multi-
core processor and an organic light emitting diode (OLED)
display in their power models. These drawbacks hinder the
accurate power metering and thus limit the proper DPM for
smartphones.

III. FINE-GRAINED EVENT-DRIVEN POWER METERING
FRAMEWORK

A. Device Driver Layer Event Monitoring

The Linux kernel consists of three important parts: the
system call interface, the abstracted generic kernel layer, and
the hardware-dependent device drivers. As the name implies,
the system call interface is an interface between user-space
applications and the generic kernel layer. The abstracted
generic kernel layer is comprised of kernel routines that are
independent from specific hardware components. The device
drivers under the generic kernel layer are hardware-dependent
routines for each hardware component that the kernel supports.
Previous researches [7], [8] monitor system events on the
abstracted generic kernel layer. However, their approaches are
not accurate as they miss some events or collect inaccurate
events. This is due to the fact that the abstracted generic

kernel layer does not directly communicate with the hardware
components.

In contrast, we directly monitor the events in the device
driver layer. We adopt a non-disruptive debugging tool and
define customized callback handler functions for the tool
in the device driver layer. For each device component, we
program the callback handlers to monitor events of interest
such that system activities or the power mode change. We
also record the timestamp of each event as well. Based on
these events, we obtain the necessary information such as the
operating status (i.e., whether the device is being power gated
or clock gated), frequency, utilization time, and so on. These
information are used in corresponding power model to obtain
the power consumption for each component. Because power
modes and utilization for each component are all controlled
by their driver, monitoring the events in the device driver layer
has two advantages as follows against previous approaches.

First, monitoring the events in the device driver layer
provides the most accurate utilization time for hardware com-
ponents. For example, in the network-related components, a
significant time lag exists between a logged event timestamp
at the generic kernel layer and actual time of the event at
the device driver layer. This actually becomes one of main
reasons why previous approaches did not yield accurate results
in fine granularity. In fact, there are several buffers between
the TCP/IP protocol stack of the generic kernel layer and the
device driver of a network interface card (NIC). During a
packet transmission, transmission-related events are captured
immediately after sending packets are inserted into a socket
buffer in the TCP/IP stack if we monitor the events at the
generic kernel layer. However, the packets are not sent out until
they move to the bottom of a queue in the NIC device driver.
Therefore, packets in the buffer and the queue can be delayed
during the transmission depending on the current system status
and Linux kernel’s policy.

Second, monitoring the events in the device driver layer
allows us to access more devices. As the abstracted generic
kernel layer communicates with the underlying device drivers
through pre-defined interfaces, it does not know the detail of
specific hardware operations in the device drivers. Therefore,
the existing techniques [7], [8] are unable to capture some
events from several hardware components such as the GPU,
digital signal processor (DSP), and GPS. For example, there
is no source code to control activity of the GPS module in
the generic kernel layer. Although the authors of [8] manage
to overcome the GPS issue by collecting events from the
Android framework, it is less accurate compared to doing it
in the device driver layer. By monitoring the events in the
device driver layer, we have access to all of these components
aforementioned.

B. Power Modeling of Major Components
In this paper, we use Samsung Galaxy Nexus, which is an

Android smartphone developed by Google and Samsung in
October 2011, as the target smartphone platform. We identify
several power consuming components in the target platform
including the multi-core processor, Wi-Fi, cellular, GPS, and
display-related modules. For each component, we present a
power model based on the accessible information such as
the frequency, utilization, power modes, and so on. Note that
these components are ”logical” in the sense that the CPU and
GPU may be physically integrated on the same AP chip, but
they are typically activated at different time when running
different applications. Thus, we are able to report the power

consumption of CPU separately from that of the GPU although
they are on the same physical chip. In addition, the power
consumption of other supporting circuitry when the CPU
is active will be reported as the CPU power. For example,
memory power is included in the CPU power report because
these two physical components are logically working together
when the CPU is active.

1) Multi-core Processor: The processor core is one of the
major power consumers in the smartphone [9]. Common APs
include multiple processor cores in the system-on-chip (SoC)
design of an AP to provide the computational and processing
power of state-of-the-art smartphones. Unfortunately, previous
researches focusing on power characterization and modeling of
smartphones [2], [4], [6], [8] have only considered a simple
single-core processor. As a result, these techniques become
inaccurate when multiple applications and/or multiple threads
of the same application are running on the multi-core processor
in the state-of-the-art smartphones.

An intuitive way to build a multi-core power model is to
linearly scale up the single-core power model by the number
of cores. However, we observe that the power consumption of
a dual-core processor in the target platform does not increase
linearly with the number of active cores. Thus, we characterize
the dual-core power consumption as a function of the operating
frequency, utilization, and normalized co-utilization rate of
each core. The utilization of each core is the amount of time
that the core has spent in user and kernel mode for handling
a process. The normalized co-utilization rate of each core
that lies between 0 and 1 is a ratio that the core has been
concurrently used with another core in the utilization time,
and it is calculated through dividing the concurrent utilization
time by the total utilization time of the core.

The proposed method monitors events related with a change
of the operating frequency, utilization, and suspend state of
each core. We apply different power models depending on
the current status of the dual-core processor as follows: i) if
the dual-core processor is not in suspend mode, and the total
utilization of all cores is higher than zero,

PCPU =
1
∆t

n

∑
i=1

[
ri ucpu

i β
cpu
dual[f req]+(1− ri) ucpu

i β
cpu
single[f req]

]
,

(1)
ii) if the dual-core processor is not in suspend mode, but the
total utilization of all cores is zero,

PCPU = β
cpu
idle[f req], (2)

iii) if the dual-core processor is in suspend mode,

PCPU = β
cpu
suspend , (3)

where ∆t is the time difference between two successive
events, and n is the number of cores, which is two in this
paper. ucpu

i and ri are the utilization and the normalized co-
utilization rate of the i-th core during ∆t. We figure out the
utilization of each core from the usage statistics variable called
cpu usage stat that cumulates CPU execution and idle time in
the Linux kernel. β

cpu
single, β

cpu
dual , β

cpu
idle, and β

cpu
suspend denote power

coefficients (with the unit of W) for the single-core, dual-core,
idle, and suspend states, respectively, at f req MHz operating
frequency. We obtain values of all power coefficients through
a characterization process that we will describe later. The CPU
power model can be improved to account for the thermal effect
caused by elevated temperature since the temperature sensors
in the smartphone are all accessible from the Linux kernel.
However, it is beyond the scope of delivering the concept of
this paper.

2) Wi-Fi: As we explained in Section III-A, we monitor
the transmission events in the NIC device driver for the Wi-
Fi module. We obtain the accurate event timestamp because
the events happen immediately before and after the actual
transmission occurs. In addition, the Wi-Fi module has a
power saving mode. This mode allows the Wi-Fi module
turns off its transmitter and receiver if it does not have any
packet to transmit. In general, the power consumption of the
Wi-Fi module depends on its power mode and the packet
transmission rate [10]. Thus, we monitor the clock on/off event
of the module and model the Wi-Fi module as follows:

PWIFI =

{
αwi f i

(
β

wi f i
ht +uwi f i ·βwi f i

weight

)
uwi f i > uwi f i

threshold ,

αwi f i ·βwi f i
lt uwi f i <= uwi f i

threshold ,
(4)

where uwi f i is the packet transmission rate during the past 500
ms. αwi f i is 0 if the clock of the Wi-Fi module is disabled,
and 1 otherwise. β

wi f i
ht and β

wi f i
lt denote power coefficients for

the high and low packet transmission rates, respectively, and
β

wi f i
weight is the weight factor of the Wi-Fi module based on the

packet transmission rate. uwi f i
threshold is the threshold rate of the

packet transmission, and we pick the optimal threshold from
our experiments.

3) Cellular: The cellular module has a similar issue to the
Wi-Fi module because Android uses the cellular module as
a network adaptor if the Wi-Fi connection is unavailable. We
monitor the cellular events in the transmission routines of the
cellular module device driver. The cellular module repeatedly
changes its power mode between an awake and a sleep mode
depending on its load, and it goes into the suspend mode when
the user explicitly disables the cellular connection. The power
consumption of the cellular module is related with its power
mode and packet transmission rate [10]. Therefore, we monitor
the clock on/off events of the cellular module as well as the
packet transmission rate. Our cellular power model is given as

PCELL =

{
βcell

awake +ucell ·βcell
weight if power mode is awake,

αcell ·βcell
sleep otherwise,

(5)
where βcell

awake and βcell
sleep denote power coefficients for the

awake mode and the sleep mode, respectively, and βcell
weight is

the weight factor of the cellular module based on the packet
transmission rate. ucell is the packet transmission rate during
the past 500 ms, and αcell is 0 if the cellular module is in the
suspend mode, and 1 otherwise.

4) GPS: The GPS power consumption depends on its
power mode. The Android OS enables the GPS module when
an application requests the current location of the smartphone
and disables the GPS immediately after the location service
is done. We monitor the GPS clock on/off event in the driver
layer, and the power model is defined as

PGPS = α
gps ·βgps

on , (6)

where αgps is 0 if the GPS clock is disabled, and 1 otherwise.
β

gps
on is the power coefficient for the GPS module.
5) Display-related Modules: The power consumption of

an OLED display depends on the pixel color that the dis-
play shows [11], [12], so the conventional power estimation
methods that only use a screen brightness for a liquid-crystal
display (LCD) are not appropriate for the OLED display.
However, previous researches [2], [4], [6], [8] only present
the LCD power model, so they significantly underestimate
the display power consumption when their power models are

used for the state-of-the-art smartphones that have an OLED
display.

In this paper, we present a contents-aware low-overhead
OLED display model. Android draws its video frame to the
display device through the framebuffer of the Linux kernel,
which is a memory area containing the pixel data of a current
video frame that the display shows. For taking into account of
the OLED display, we read the pixel data from the framebuffer
and calculate the average pixel intensity.

In addition, we find that there are correlations in terms of
the utilization among several display-related hardware com-
ponents. We analyze the interaction among the hardwares
using the correlation coefficient calculated from the utilization
of each component. The analysis shows that the correlation
coefficients among the OLED display, GPU, and DSP are
higher than 0.75. This means these components are strongly
correlated to each other. Therefore, we model these compo-
nents all together using the artificial neural network (ANN)
that is more robust to the correlation of the input variables.
We characterize the OLED power consumption as a function
of the average pixel intensity and the utilization of the GPU
and DSP modules, so we monitor the GPU and DSP clock
on/off events in each device driver. The OLED display power
model is given as

PDISP =
p

∑
k=1

[
σ

(
n

∑
j=1

udisp
j β

disp
iw[j][k]+β

disp
ib[k]

)
β

disp
hw[k]

]
+β

disp
ob , (7)

where p and n are the number of nodes in the hidden layer
and the input layer of the ANN model, and we use p = 5
and n = 3 in this paper. σ is the sigmoid function that is
given by σ(x) = (1+ e−x)−1. udisp

1 , udisp
2 , and udisp

3 are the
average of sampled pixels intensity, DSP utilization, and GPU
utilization, respectively. β

disp
iw , β

disp
hw , β

disp
ib , and β

disp
ob denote

power coefficients for the input node weights, hidden node
weights, input node biases, and output node bias of the ANN
model, respectively.

C. Time Granularity
As we described in Section II, the existing sampling-based

techniques cause excessive energy overhead depending on its
sampling frequency. According to our experiment, the energy
overhead of the sampling-based method gradually increases
from 1 Hz sampling frequency and saturates at about 10 Hz.
On the other hand, the event-driven method does not suffer
from the overhead thanks to its asynchronous nature, so it can
perform fine-grained estimation whose granularity is higher
than the sampling-based methods. However, the existing event-
driven technique [8] still make the power estimation in a
low time granularity, i.e., it gives one estimation result per
second no matter how many events are logged during this
second. Thus, we refer its power metering granularity as 1
Hz, and our experimental results show that such coarse-grained
power metering results in significant power estimation error.
Therefore, we employ the fine-grained approach with 1 kHz
power metering granularity because it is enough to cover most
of the power spectrum in the smartphone load currents, as
shown in Fig. 2. We observe that the granularity levels higher
than 1 kHz considerably increase the overhead and do not
provide much more gain though.

IV. IMPLEMENTATION

A. Parameter Extraction
The proposed method takes the non-disruptive event-driven

approach using a debugging tool called KProbes [13], which

is developed by IBM. KProbes gives a non-destructive way
to set a breakpoint to an arbitrary function in the kernel and
specify a callback handler function that is called whenever
the breakpoint hits. In this paper, we use Samsung Galaxy
Nexus as a target platform and implement an event profiler
as a kernel module to set breakpoints to several device driver
routines, and we define customized callback handler functions.
The customized callback handlers monitor events of interest
related to the system activities and power modes. In addition,
it records the timestamp of each event as well as other useful
information (e.g., function parameters and global variables).

It is important to obtain the per component power con-
sumption to extract power coefficients for each component.
However, as state-of-the-art commercial smartphones do not
provide facilities to let us directly measure power consump-
tions per each component, we carefully design some usecases
to disable and enable one component at a time while others
are remained unchanged. We compare the total power con-
sumption before and after we run these usecases to obtain the
power consumption for each component.

We first characterize the multi-core processor. Our event
profiler monitors a change of the operating frequency, uti-
lization, and suspend state on the cpufreq notify transition
and omap4 cpu suspend functions in the Linux kernel. We
implement a custom test-bench application to model the dual-
core processor in the target platform using various usecases.
The processor power consumption is measured while the test-
bench is executing, and all the other hardware components are
disabled or utilized at a constant usage level if they cannot
be disabled. Meanwhile, the proposed event profiler logs the
processor-related events. We characterize other components
in a similar procedure. For each component, we run custom
usecases that only make changes to that component and mea-
sure the system power consumption, and then we subtract the
estimated processor power from the measured system power
consumption so that the per component power consumptions
are mutually exclusive to each other. Our event profiler
monitors the power mode change and the packet transmis-
sion start/stop events in the sdioh request packet and dhds-
dio sdclk functions for the Wi-Fi module and the hsi ioctl,
hsi read, and hsi write functions for the cellular module. It
also monitors the clock on/off events in the omap2 clk enable
and omap2 clk disable functions of the OMAP device driver
for the GPS, GPU, and DSP modules. The model parameters
are extracted by the regression analysis based on the event
logs and measured per-component power consumptions.

B. Online Power Metering
After we characterize the devices and extract the necessary

power coefficients, we input these information to our online
power metering framework named FEPMA. For online usage,
our event profiler, which is a kernel module, captures the
system events and records necessary information such as
operating frequencies and power modes. Our power meter
application, which is executed in user-space, reads the event
log and predicts the system power consumption based on the
presented power models. In addition, the event profiler also
gather a process identifier when it captures events. The process
identifier shows which process raised the event, and it is used
to trace back applications and accumulate the estimated power
consumption of each application in the system. Therefore, the
power meter can show the energy profiles for each application
as well as the total system power consumption.

In order to estimate the OLED display power, the power
meter reads the screen pixel data from the framebuffer of

TABLE I
COEFFICIENTS OF THE FEPMA POWER MODEL. THE COEFFICIENT INDEX

OF THE PROCESSOR DENOTES THE OPERATING FREQUENCY, AND THE
COEFFICIENT INDEX OF DISPLAY-RELATED UNITS DENOTES THE NODE

NUMBER AND INDEX OF COEFFICIENTS IN THE ANN MODEL.

Component Coeff. Coeff. Value Coeff. Coeff. Value
index (W) index (W)

CPU

β
cpu
single

350 0.95

β
cpu
dual

350 1.08
700 1.26 700 1.53
920 1.58 920 1.98
1200 1.89 1200 2.61

β
cpu
idle

350 0.86
β

cpu
suspend N/A 0.72700 1.04

920 1.35
1200 1.58

Display β
disp
iw

1

1 2.24

β
disp
hw

1 -0.30
2 -1.33 2 1.07
3 0.83 3 0.16
4 -0.88 4 -1.04
5 2.45 5 -0.28

2

1 -0.81

β
disp
ib

1 2.94
2 -3.03 2 -9.63
3 -9.21 3 19.91
4 -3.62 4 -2.68
5 16.21 5 -12.62

3

1 2.65

β
disp
ob

N/A 0.10
2 9.51
3 -1.99
4 2.34
5 -4.72

Cellular βcell
awake N/A 0.90 βcell

weight N/A 3.24E-4
βcell

sleep N/A 0.54

Wi-Fi β
wi f i
ht N/A 0.68 β

wi f i
weight N/A 2.21E-4

β
wi f i
lt N/A 0.32 uwi f i

threshold N/A 850
GPS β

gps
on N/A 0.14

the Linux kernel and calculates the average pixel intensity.
It repeatedly performs this process because changing the
pixels in the framebuffer does not raise any event that the
proposed event profiler can detect. The power meter reads the
framebuffer twice per second and divides each video frame
into 3-by-3 pixel blocks, and then it uses the center pixel of
each block to calculate the average pixel intensity. Moreover,
Android provides a feature to adjust the screen brightness even
if the smartphone has an OLED display, which does not have a
backlight module. In general, a controller of the OLED display
adjusts its screen brightness using gamma correction depend-
ing on the brightness level that the user sets. Accordingly, the
pixel data in the framebuffer remains unchanged even though
the brightness level changes, but the brightness change of the
display affects the power consumption of the OLED display.
Therefore, we weight the average pixel intensity by the current
screen brightness to compensate for the difference between the
calculated average pixel intensity from the framebuffer and the
actual average intensity. We use the weighted average pixel
intensity as an input variable of the ANN display power model
in Equation 7.

V. EXPERIMENTS

A. Power Metering Results
We use the NI-9227 DAQ from National Instruments to

measure the load current of the target platform and also use the
E3648A DC power supply from Agilent to provide a constant
voltage. We measure the power consumption at a 50 kHz
sampling frequency from the NI DAQ and use it as the golden
reference. We also implement the state-of-the-art event-driven
power estimation method presented in [8] as the baseline. The
power coefficients for our target platform are characterized
as shown in Table I. We evaluate the FEPMA method using
several famous Android applications. First, we estimate the
power consumptions using the FEPMA and baseline methods,
respectively, while we execute the Android applications, and

Time (s)
0

Po
w

er
 (m

W
)

1500

500
0.5

2500

3500

4500
Measured
Estimated (proposed)

DAQ (50 kHz)
Estimated (proposed)
Estimated (baseline)

DAQ (50 kHz)
Estimated (proposed)
Estimated (baseline)

DAQ (50 kHz)
Estimated (proposed)
Estimated (baseline)Estimated (baseline)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Fig. 3. Long-term measured power by the DAQ and estimated power by FEPMA while playing a music video using the Android movie player.

Time (ms)
0

Po
w

er
 (m

W
)

100 200150

Measured Estimated (proposed)

DAQ (50 kHz)
Estimated (proposed)
Estimated (baseline)

DAQ (50 kHz)
Estimated (proposed)
Estimated (baseline)

DAQ (50 kHz)
Estimated (proposed)
Estimated (baseline)Estimated (baseline)

50 250 300
500

1000

1500

2000

2500

3000

Fig. 4. Short-term power measurements by the DAQ and estimated power
by FEPMA for video playback using the Android movie player.

then we compare our estimation result with the baseline result
and the golden reference. Each set of comparison lasts for
five seconds. This five-second time interval is the long term
for the instantaneous power estimation, and it is also enough
to analyze the state transition of hardware components and
decide a proper DTM strategy for the current condition.

Figs. 3 and 4 show the long-term and short-term power
metering results for video playback using FEPMA, the base-
line, and the golden reference, respectively. Compared to
the coarse-grained baseline results, our method yields more
fine-grained accurate estimation results. The baseline method
fails to capture the instantaneous power changes of hardware
components because its estimation granularity is too low, and
it significantly underestimates the power consumption of some
components such as the multi-core processor, OLED display,
GPU, and DSP due to the lack of consideration of these com-
ponents and the unobservable device problem. In comparison
with the golden reference, the root-mean-square (RMS) errors
of the estimation results by FEPMA and the baseline in Fig. 4
are 293 mW and 538 mW, respectively. Table II provides
the long-term evaluation results for various applications. The
proposed method reduces the power estimation RMS error by
up to 53.1% compared with the baseline.

B. Overhead Analysis
We analyze the overhead of the proposed method in terms

of computation and energy by measuring and comparing the
processor execution time and the system power consumption
of the target platform with and without our event profiler under
the idle, normal load, and heavy load conditions, respectively.
In this experiment, the analysis shows that the computation
and energy overheads of the proposed method are 3.1% and
1.5% (22 mW on average), respectively. On the other hand,
the baseline method shows 5.9% computation overhead and
34.9 mW energy overhead on average in the same conditions.

VI. CONCLUSION

We introduce a novel sensor-less, event-driven power anal-
ysis framework called FEPMA for providing highly accurate
and nearly instantaneous estimates of power dissipation in
an Android smartphone. We monitor system events in the

TABLE II
RMS ERRORS OF ESTIMATED POWER CONSUMPTION BY THE BASELINE

AND FEPMA COMPARED WITH THE GOLDEN REFERENCE.

Application Baseline FEPMA Error
(mW) (mW) reduction

Movie Player 927 435 53.1%
Angry Birds 1169 584 50.0%

Chrome Browser 1324 693 47.7%
Skype (Wi-Fi) 949 510 46.3%

YouTube 987 564 42.9%
Skype (Cellular) 1017 612 39.8%

Google Maps 957 593 38.0%

device driver layer of the Linux kernel to obtain necessary
information such as power modes and activities of hardware
components. By collecting the data at the lowest layer of the
kernel, we manage to obtain accurate information and get
access to many devices, which are not accessible in upper
layer of the kernel. We present power models for identified
components and perform a characterization process to extract
the power coefficients for the proposed power models. The
online power meter monitors system events and calculates
the fine-grained power consumption of the smartphone based
on the proposed power models. Experimental results show
significant accuracy improvement compared to previous power
estimation approaches. The estimation error of the proposed
method is reduced by up to 53.1% compared with the baseline.

REFERENCES

[1] B.-G. Chun and P. Maniatis, “Augmented smartphone applications
through clone cloud execution.,” in HotOS, vol. 9, pp. 8–11, 2009.

[2] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures,”
in MICRO, pp. 168–178, 2009.

[3] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich, “Energy management in mobile devices with the cinder
operating system,” in EuroSys, pp. 139–152, ACM, 2011.

[4] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
CODES+ISSS, pp. 105–114, 2010.

[5] M. Dong and L. Zhong, “Self-constructive high-rate system energy
modeling for battery-powered mobile systems,” in MobiSys, pp. 335–
348, 2011.

[6] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “Devscope: a
nonintrusive and online power analysis tool for smartphone hardware
components,” in CODES+ISSS, pp. 353–362, 2012.

[7] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,”
in EuroSys, pp. 29–42, 2012.

[8] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Appli-
cation energy metering framework for android smartphone using kernel
activity monitoring,” in USENIX ATC, 2012.

[9] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in USENIX, pp. 21–21, 2010.

[10] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy consumption in mobile phones: a measurement study and implica-
tions for network applications,” in IMC, pp. 280–293, 2009.

[11] D. Shin, Y. Kim, N. Chang, and M. Pedram, “Dynamic voltage scaling
of oled displays,” in DAC, pp. 53–58, 2011.

[12] M. Dong, Y.-S. K. Choi, and L. Zhong, “Power modeling of graphical
user interfaces on oled displays,” in DAC, pp. 652–657, 2009.

[13] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy,
and M. Hiramatsu, “Probing the guts of kprobes,” in Linux Symposium,
vol. 6, 2006.

